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Abstract. The installation of dense seismometer arrays in Japan
approximately 20 years ago has led to the discovery of deep low-frequency
tremors, which are oscillations clearly different from ordinary earth-
quakes. As such tremors may be related to large earthquakes, it is an
important issue in seismology to investigate tremors that occurred before
establishing dense seismometer arrays. We use deep learning aiming to
detect evidence of tremors from past seismic data of more than 50 years
ago, when seismic waveforms were printed on paper. First, we construct
a convolutional neural network (CNN) based on the ResNet architecture
to extract tremors from seismic waveform images. Experiments applying
the CNN to synthetic images generated according to seismograph paper
records show that the trained model can correctly determine the presence
of tremors in the seismic waveforms. In addition, the gradient-weighted
class activation mapping clearly indicates the tremor location on each
image. Thus, the proposed CNN has a strong potential for detecting
tremors on numerous paper records, which can enable to deepen the
understanding of the relations between tremors and earthquakes.

Keywords: Deep low-frequency tremor · Convolutional neural
network · ResNet · Gradient-weighted class activation mapping

1 Introduction

The surface of the Earth comprises 15 tectonic plates, with each plate individu-
ally moving several centimeters per year. Seismic phenomena often occur at the
boundary where a plate subducts beneath another one in the subduction zone
by releasing strains accumulated over a long time. Figure 1 shows the schematic
of a subduction zone, in which an oceanic plate is subducting beneath a conti-
nental plate. For example, the Philippine Sea Plate is subducting beneath the
Eurasian Plate around southwest Japan, forming a subduction zone called the
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Fig. 1. Schematic of subduction zone. The ellipses represent the locations of seismic
phenomena occurrence.

Nankai Trough. In a subduction zone, various seismic phenomena occur depend-
ing on the magnitude of plate friction: ordinary earthquakes (high friction), slow
earthquakes (low friction), and stable sliding (no friction). The friction gener-
ally increases as the temperature decreases and the pressure increases. As both
temperature and pressure increase with depth, the friction according to depth
presents a complicated relation. This relation might lead to different locations of
seismic phenomena occurrence, as shown in Fig. 1. Ordinary earthquakes usually
occur when the strains accumulated over a long time are released instantaneously
at a shallow depth, where the friction is very high. At the beginning of the 21st
century, new phenomena called slow earthquakes originated from subduction
zones were discovered [8]. Owing to the lower friction, slow earthquakes repeat
with much shorter intervals and have smaller magnitudes than ordinary earth-
quakes.

Hi-net [9,12], the seismometer network installed by NIED and operating since
1996, led to the discovery of deep low-frequency tremors, which are categorized
as slow earthquakes. The Hi-net seismometers are more sensitive and densely
located than conventional seismometer networks. Thus, they allow to observe
weak oscillations that were previously unobservable and correlatively analyze
records between neighboring seismometers. The envelope correlation method [8]
successfully extracted evidence of tremors from Hi-net data, which has been rec-
ognized as the first discovery of tremors in the world. Such tremors are weak
oscillations that occur in a deeper area than ordinary earthquakes. These tremors
have an approximate dominant frequency of 2–8 Hz, last from several hours to
several days, and have magnitudes below 1.3 according to the tremor catalog
published by NIED [4,11]. Thus, tremors cannot be perceived on the ground.
According to the NIED catalog, more than 30,000 tremors have been observed
in southwest Japan from January 2001 to April 2019, indicating their high fre-
quency. Tremors have been detected in various subduction zones worldwide after
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the first discovery (e.g., [5,15]), and they represent a research hotspot in seis-
mology, as many studies have been indicated the relations between tremors and
large earthquakes (e.g., [10]). In fact, seismologists expect tremors to provide
clues to predict large earthquakes and understand their mechanisms. Currently,
only digital data from the last 20 years are available for studying tremors. Con-
sidering that megathrust earthquakes have periodically occurred in the Nankai
Trough over intervals of 100–200 years, it is important to analyze tremor occur-
rences in southwest Japan over a longer period. Before the seismic records were
available in digital format, seismometers continuously recorded waveforms with
a pen on drum-rolled papers.

In this study, we aimed to detect tremors from seismograph paper records
by using a convolutional neural network (CNN), a deep-learning method that
has shown high performance for image recognition. A CNN can automatically
tune its internal parameters by learning the characteristics of tremors from input
images without requiring prior knowledge of tremors or manually adjusting the
parameters. Training a CNN from scratch with real data polluted by a variety
of noises may hinder the model construction and hyperparameter tuning. Thus,
we conducted numerical experiments to construct a CNN and train it with syn-
thetic images similar to the seismograph paper records. These experiments aim
to obtain clues to improve the model and provide pretrained models for sub-
sequent fine-tuning, which is a popular learning method to improve the model
performance and learning efficiency.

2 Seismographs

Modern seismic research based on observational data strongly relies on digital
records. In Hi-net, more than 1000 seismometers installed in Japan Islands con-
tinuously observe the velocity of the ground at a sampling rate 100 Hz, and NIED
collects and publishes the corresponding digital data in real time. Multivariate
time-series analyses on digital seismic data considering spatial correlations enable
to increase the signal-to-noise ratio of detected phenomena or eventually uncover
unknown phenomena such as slow earthquakes and tremors.

Past seismometers used over 50 years ago drew waveforms directly on paper.
Considering the time interval between megathrust earthquakes in the subduction
zones, paper records are a valuable source for research on slow earthquakes (e.g.,
[2]). Figure 2 shows an example of a seismograph paper record. The daily records
are drawn on a single piece of paper, in which each time series is drawn hori-
zontally and contains approximately 2.5 min of data. Besides seismic waveforms,
the records contain pulses that indicate a time stamp every second. The average
image size of a paper record excluding its margins is approximately 7000× 7000
pixels.

The digitization of paper records by tracing the waveforms is effective for
investigating large earthquakes because such waveforms are extractable even
from overlapping time series given the low frequencies and large amplitudes of
earthquakes (e.g., [6]). In contrast, tremors generally have smaller amplitudes
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Fig. 2. Seismograph paper record from August 13, 1966, 19:47 to August 14, 1966,
20:05 in Kumano, Japan [14].

and higher frequencies than large earthquakes. Consequently, their digitization
is difficult, especially for overlapping waveforms. Therefore, CNN-based image
recognition is a promising alternative for analyzing tremors compared to indi-
vidual waveform extraction through digitization.

Both digital and analog seismic data include a wide variety of phenomena
such as earthquakes, tremors, pulsations excited by oceanic waves, teleseisms
(distant earthquakes), oscillations due to meteorological events, and noise. Thus,
identifying tremors from seismic data becomes difficult when large earthquakes
or other signals in similar spectra pollute the measurements.

3 Methods

To detect tremors by applying CNNs to real data, we conducted numerical exper-
iments based on synthetic images to obtain a trained model that determines
correctly the presence of tremors in an input image. In this section, we detail
these experiments, including image synthetization and CNN construction.

3.1 Generation of Synthetic Images

We generate synthetic images based on seismograph paper records from Kumano,
Japan (Fig. 2). Figure 3 shows examples of synthetic images. Each image is
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Fig. 3. Representative examples of synthetic images. Details of each image are available
on the text and Table 1.

Table 1. Versions of synthetic images. The checkmarks represent the waveforms con-
tained in each version. The values next to the checkmarks indicate the ratio of the
waveform amplitude with respect to Ver. 1.

Waveforms Ver. 1 Ver. 2 Ver. 3

Observation noise (Gaussian noise) � � �
Time stamps (pulses every second) � � �
Pulsations (Gaussian noise + bandpass filter) � (1.0) � (2.0) � (2.0)

Tremors (Gaussian noise + bandpass filter) � (1.0) � (0.5) � (1.0)

Earthquakes (P waves & S waves) �

7000 × 7000 pixels and corresponds to a daily record that contains 576 time
series of 2.5 min vertically stacked. The synthetic images correspond to one of
three versions, Ver. 1, Ver. 2, or Ver. 3, according to the included types of signals
and noise listed in Table 1. For each version, 100 images were generated without
tremors (labeled “none”), and 100 images were generated with tremors (labeled
“tremor”). Ver. 1 images (Figs. 3(a) and 3(b)) contain observation noise, time
stamps, and pulsations, as well as tremors only for “tremor” images. Ver. 1 repre-
sents a simple case that allows straightforward tremor detection. In Ver. 2 images
(Figs. 3(c) and 3(d)), the tremors are smaller and the pulsations are larger than
those in Ver. 1 images. In Ver. 3 images (Figs. 3(e) and 3(f)), we change the
amplitudes of tremors and pulsations and insert earthquakes. Figure 4 confirms
that Ver. 3 images suitably resemble the paper records regarding both their
overview and details.
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Fig. 4. (a) Ver. 3 “tremor” image. (b) Magnified view of (a). (c) Image of paper record
shown in Fig. 2. (d) Magnified view of (c).

3.2 Preprocessing of Synthetic Images

For preprocessing, we divide each image vertically into five strips of 7000× 1400
pixels and then resize each strip to 2000×400 pixels. The vertical division allows
to easily distinguish between tremors and noise. As a tremor usually lasts several
hours, the five strips must include its evidence, unlike temporary noise. This
feature is useful to decide the presence of tremors on the images. For example,
consider five strips extracted from an image with unknown label, either “none”
or “tremor.” If a CNN assigns “none” to four of the five strips and “tremor”
to the remaining strip, we can assume that the image corresponds to “none”,
and the misjudgment for the last strip is due to noise. The reduced resolution
after resizing aims to reduce the number of model parameters and consequently
the computational cost. After preprocessing, each version comprises 500 “none”
images and 500 “tremor” images. For each version, we use 800 images for training
and the remaining 200 for validation, as detailed in the next subsection.

3.3 CNN for Tremor Detection

The CNN is a representative deep learning method that has exhibited high
performance in tasks such as image recognition and handwriting recognition. A
CNN has two distinctive layers, the convolutional layer and the pooling layer,
which mathematically describe the function of human visual cells. These layers
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Fig. 5. Architecture of proposed CNN.

allow the CNN to extract features from input images. In recent years, CNNs have
begun to be used in seismology for tasks such as detection or discrimination of
seismic phenomena (e.g., [7,13]).

Below, we define the key terms and formulas of CNNs. Let x be an input
image for a CNN. Image x has a true label � in set S of labels. Let M be a
CNN with internal parameters θ. For an input x, CNN M = M(θ) provides
predictions y = (p�)�∈S , where p� is the predicted probability that the true
label of x is �. In a CNN, the loss is a function that expresses its performance.
The loss returns a non-negative real number for a pair (�,y) of the same x. If
the loss value for x is close to 0, the prediction performance for x is favorable.
On the other hand, the accuracy is the agreement rate between true label �
and predicted label �̂ = arg max�∈S p� for the inputs. Training is the process
to optimize parameters θ by minimizing the loss value for inputs with known
labels. Then, validation calculates the loss and accuracy at fixed parameters θ for
inputs with known labels but not used for training. Thus, validation evaluates
the predictive performance of the CNN for previously unseen inputs. Finally,
test performs prediction on inputs with unknown labels.

We built the proposed CNN by incorporating the residual connections used
in the ResNet [1]. Figure 5 shows the architecture of the proposed CNN, which
establishes a binary classifier that determines whether the input image has label
“none” or “tremor.” The CNN output has the form y = (p“none”, p“tremor” ) cor-
responding to S = {“none”, “tremor” }. We used the categorical cross-entropy
as the loss function and optimized it using the Adam method [3] with a batch
size of 16 in this study.

4 Results

Figure 6 shows the accuracy and loss throughout learning of Ver. 1 images. An
epoch (horizontal axis) indicates learning iterations, that is, a set of training
using all the training images and validation using all the validation images.
Although the validation accuracy does not improve in the initial learning stage,
it rapidly increases after 13 epochs to reach almost 1.0, possibly after the model
parameters leave a local optimum. Figure 7 shows the gradient-weighted class
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Fig. 6. (a) Accuracy and (b) loss for Ver. 1 images according to number of training
epochs.

Fig. 7. (a) Ver. 1 “none” image and corresponding Grad-CAMs for prediction of labels
(b) “none” and (c) “tremor.” (d) Ver. 1 “tremor” image and corresponding Grad-CAMs
for prediction of labels (e) “none” and (f) “tremor.”

activation maps (Grad-CAMs) [16] of Ver. 1 images. Each Grad-CAM indicates
the image regions that influence the prediction calculation, with red (light) indi-
cating the highest influence and blue (dark) indicating no influence. For pre-
diction of “none”, the response is uniform on the entire image, except for the
areas containing tremors (Figs. 7(b) and 7(e)). In Fig. 7(f), remarkable responses
clearly appear in areas containing tremors. Therefore, the model correctly detects
tremors and correctly identifies the “tremor” image.

Figures 8 and 9 show the learning performance and Grad-CAMs for Ver. 2
images, respectively. Although the tremors in Ver. 2 are smaller than those in
Ver. 1, model training and tremor detection are successful.
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Fig. 8. (a) Accuracy and (b) loss for Ver. 2 images according to number of training
epochs.

Fig. 9. (a) Ver. 2 “none” image and corresponding Grad-CAMs for prediction of labels
(b) “none” and (c) “tremor.” (d) Ver. 2 “tremor” image and corresponding Grad-CAMs
for prediction of labels (e) “none” and (f) “tremor.”

Figures 10 and 11 show the learning performance and Grad-CAMs for Ver. 3
images, respectively. In Ver. 3 images, the Grad-CAM responses to earthquake
waveforms are notable. For small earthquake waveforms, the Grad-CAMs do not
show any remarkable response. This result may be due to the input image shrink-
ing as it passes through the convolutional layers, and small waveforms eventually
disappear during shrinking. On the other hand, in Figs. 11(b) and 11(e), the large
earthquake waveforms cause the most influential responses. This result suggests
that the CNN can distinguish earthquake waveforms from tremors, observation
noise, and pulsations. Moreover, the proposed CNN may be able to achieve
multinomial classification of labels such as “none,” “tremor,” “earthquake,” and
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Fig. 10. (a) Accuracy and (b) loss for Ver. 3 images according to number of training
epochs.

Fig. 11. (a) Ver. 3 “none” image and corresponding Grad-CAMs for prediction of labels
(b) “none” and (c) “tremor.” (d) Ver. 3 “tremor” image and corresponding Grad-CAMs
for prediction of labels (e) “none” and (f) “tremor.”

“both.” Figure 11(f) shows tremor responses that do not appear when tremors
are masked by earthquake waveforms.

Overall, the tremor waveforms appear to show a band-like pattern in the
images. This result may indicate that the CNN discriminates tremors based on
a rough view of the image. To discard this possibility, we conducted an additional
experiment using monochromatic and dichromatic images, as shown in Fig. 12.
The set of monochromatic images consists of 256 images for grayscale values from
0 to 255. The set of dichromatic images consists of 200 images, with each image
containing a monochromatic band-like pattern on a monochromatic background.
By providing these images as inputs to the CNN trained on Ver. 3, all the
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Fig. 12. Proposed CNN trained on Ver. 3 images correctly predicts label “tremor” for
“tremor” images and label “none” for all monochromatic and dichromatic images.

predicted labels are “none.” Although Ver. 3 “tremor” images seem to be similar
to the dichromatic images, the CNN correctly determines the presence of tremors
in Ver. 3 images. This result indicates that the CNN appropriately learned tremor
features.

5 Conclusion

The proposed CNN is expected to effectively detect tremors from seismograph
paper records, as verified through numerical experiments. Based on the find-
ing from the experiments, we will conduct CNN training with real data, which
contain a wider variety of noises than synthetic images. To improve the CNN
performance, we will also explore persistent parameter tuning and additional
data preprocessing methods.
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or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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