Skip to main content

Conservation and Utilization of Genetic Diversity in Coconut (Cocos nucifera L.)

  • Chapter
  • First Online:
Cash Crops

Abstract

Genetic diversity is an important determinant of future yield security and hence is a significant factor for crop varietal improvement. Genetic diversity in coconuts is evidenced by differences in morphological characters such as plant height (tall and dwarf), nut size, nut shape and colour, leaf and leaflet length, width and colour, husk and endosperm/kernel thickness. The coconut diversity is threatened because of several reasons such as the cultivation of improved varieties and hybrids possessing a narrow genetic base, natural calamities, high incidence of pests and diseases and urbanization. Hence, there is an urgent need for the conservation of coconut diversity to avoid genetic erosion. Existing approaches to conserve coconut germplasm such as in situ and ex situ conservation, encompassing in vitro conservation techniques such as cryopreservation of zygotic embryos, pollen and embryogenic calli, in conjunction with the advancements in coconut biotechnology for sustainably conserving coconut genetic resources, will facilitate addressing of the limitations faced in the conservation of coconut genetic resources. These multifunctional approaches could enable the strengthening of strategies which would guarantee efficient conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aljohi HA, Liu W, Lin Q, Zhao Y, Zeng J, Alamer A, Alanazi IO, Alawad AO, Al-Sadi AM, Hu S, Yu J (2016) Complete sequence and analysis of coconut palm (Cocos nucifera) mitochondrial genome. PLoS One 11(10):e0163990. https://doi.org/10.1371/journal.pone.016399

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrade-Torres A, Oropeza C, Sáenz L, González-Estrada T, Ramírez-Benítez JE, Becerril K, Chan JL, Rodríguez-Zapata LC (2011) Transient genetic transformation of embryogenic callus of Cocos nucifera L. Biologia 66(5):790–800

    Article  CAS  Google Scholar 

  • Anonymous (1976) Annual Report 1975-76. Central Plantation Crops Research Institute, Kasaragod

    Google Scholar 

  • Anonymous (1991) Proceedings of tenth All India Coordinated Project on Palms, Kasaragod

    Google Scholar 

  • Arellano J, Oropeza C (1995) Lethal yellowing. In: Oropeza C, Howard FW, Ashburner GR (eds) Lethal yellowing: research and practical aspects, vol 5: Development in Plant Pathology. Springer, Netherlands, pp 1–15

    Google Scholar 

  • Arunachalam V, Rajesh MK (2008) Breeding of coconut palm (Cocos nucifera L.). In: CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources no. 053. https://doi.org/10.1079/PAVSNNR20083053

  • Arunachalam V, Rajesh MK (2017) Coconut genetic diversity, conservation and utilization. In: Ahuja MR, Jain M (eds) Biodiversity and conservation of woody plants. Springer, Cham, pp 3–36. https://doi.org/10.1007/978-3-319-66426-2_1

    Chapter  Google Scholar 

  • Arunachalam V, Jerard BA, Elangovan M, Ratnambal MJ, Dhanapal R, Rizal SK, Damodaran V (2001) Unexploited diversity in coconut palm (Cocos nucifera L.). Plant Genet Resour Newsl 127:39–43

    Google Scholar 

  • Arunachalam V, Augustine Jerard B, Elain Apshara S, Jayabose C, Subaharan K, Ravikumar N, Palaniswami C (2013) Digital phenotyping of coconut and morphological traits associated with eriophyid mite (Aceria guerroronis Keifer) infestation. J Plant Crops 41(3):417–424

    Google Scholar 

  • Ashburner GR, Thompson WK, Halloran GM, Foale MA (1997) Fruit component analysis of south Pacific coconut palm populations. Genet Resour Crop Evol 44(4):327–335

    Article  Google Scholar 

  • Assy Bah B, Durand-Gasselin T, Pannetier C (1987) Use of zygotic embryo culture to collect germplasm of coconut (Cocos nucifera L.). Plant Genet Resour Newsl 71:4–10

    Google Scholar 

  • Assy-Bah B, Engelmann F (1992a) Cryopreservation of immature embryos of coconut (Cocos nucifera L.). Cryo-Letters 13:67–74

    Google Scholar 

  • Assy-Bah B, Engelmann F (1992b) Cryopreservation of mature embryos of coconut (Cocos nucifera L.) and subsequent regeneration of plantlets. Cryo-Letters 13:117–126

    Google Scholar 

  • Assy-Bah B, Durand-Gasselin T, Pannetier C (1987) Use of zygotic embryo culture to collect germplasm of coconut (Cocos micifera L.). FAOlIBPGR Plant Genet Resour Newsl 71:4–10

    Google Scholar 

  • Bajaj YPS (1984) Induction of growth in frozen embryos of coconut and ovules of citrus. Curr Sci 53:1215–1216

    Google Scholar 

  • Bandupriya HD, Dunwell JM (2016) Transcriptome analysis for discovering candidate genes involve in embryogenesis in coconut (Cocos nucifera L.) through 454 pyrosequencing. J Natl Sci Found Sri Lanka 43:4

    Google Scholar 

  • Bandupriya HDD, Fernando SC, Verdeil JL, Malaurie B (2007) Effect of abscisic acid on survival and recovery of cryopreserved plumule explants of coconut (Cocos nucifera L.). Cocos 18:58–68

    Google Scholar 

  • Bandupriya HDD, Fernando SC, Verdeil JL, Malaurie B (2010) Cryopreservation of encapsulated plumules of coconut: effect of transport/store conditions. Asia-Pac J Mol Biol Biotechnol 18:135–137

    Google Scholar 

  • Bandupriya HDD, Gibbings JG, Dunwell JM (2014) Overexpression of coconut AlNTEGUMENTA-like gene, CnANT, promotes in vitro regeneration in transgenic Arabidopsis. Plant Cell Tissue Org 116(I):67–79

    Article  CAS  Google Scholar 

  • Baudouin L, Lebrun P (2002) The development of microsatellite kit and dedicated software for use with coconuts. Burotrop Bull 17:16–20

    Google Scholar 

  • Baudouin L, Lebrun P, Konan JL, Ritter E, Berger A, Billotte N (2006) QTL analysis of fruit components in the progeny of a Rennell Island Tall coconut (Cocos nucifera L.) individual. Theor Appl Genet 112(2):258–268

    Article  CAS  PubMed  Google Scholar 

  • Been BO (1981) Observations on field resistance to lethal yellowing in Jamaica. Oleagineux 36(1):9–12

    Google Scholar 

  • Benoit H, Ghesquiere M (1984) Electrophorèse, compte rendu cocotier. IV. Déterminisme génétique, Rapport interne, IRHO-CIRAD, France

    Google Scholar 

  • Bhavyashree U, Lakshmi Jayaraj K, Rachana KE, Muralikrishna KS, Sajini KK, Rajesh MK, Karun A (2015) Maintenance of embryogenic potential of calli derived from shoot meristem of West Coast Tall cv. of coconut (Cocos nucifera L.). J Plant Crops 43(2):105–116

    Google Scholar 

  • Bhavyashree U, Fayas T, Muralikrishna K, Sajini K, Rajesh MK, Karun A (2016) A comparative study of three different methods of shoot meristem excision for induction of embryogenic calli in coconut. Res Biotechnol 7:50–57

    Google Scholar 

  • Bourdeix R, N’Cho YP, Sangare A, Baudouin L (1993) Coconut genetic improvement: Results and prospects. In: Proceedings of the Eurococo Seminar, Montpellier, CIRAD, France, pp 29–31

    Google Scholar 

  • Bourdeix R, Batugal P, Oliver JT, MLC G (eds) (2010) Catalogue of conserved coconut germplasm. International Coconut Genetic Resources Network (COGENT), Bioversity International, Regional Office for Asia, the Pacific and Oceania, Serdang

    Google Scholar 

  • Branton RL, Blake J (1984) Development of organized structures in callus derived from explants of Cocos nucifera L. Ann Bot 52:673–678

    Article  Google Scholar 

  • Cardeña R, Oropeza C, Zizumbo-Villarreal D (1998) Leaf proteins as markers useful in the genetic improvement of coconut palms. Euphytica 102:81–86

    Article  Google Scholar 

  • Cardena R, Ashburner GR, Oropeza C (2003) Identification of RAPDs associated with resistance to lethal yellowing of the coconut (Cocos nucifera L.) palm. Sci Hortic 98(3):257–263

    Article  CAS  Google Scholar 

  • Cavagnaro T, Gleadow R, Miller RE (2011) Plant nutrient acquisition and utilisation in a high carbon dioxide world. Funct Plant Biol 38(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Chan E, Elevitch CR (2006) Species profiles for pacific island agroforestry: Cocos nucifera, traditional tree. http://agroforestry.net/tti/Cocos-coconut.pdf

  • Chempakam B, Ratnambal MJ (1993) Variation for leaf polyphenols in coconut cultivars. In: Nair MK, Khan HH, Gopalasundaram P, Bhaskara Rao EVV (eds) Advances in coconut research and development. Oxford and IBH Publishing, New Delhi, pp 51–53

    Google Scholar 

  • Chempakam B, Kasturi Bai KV, Rajagopal V (1993) Lipid peroxidation in relation to drought tolerance in Coconut. Plant Physiol Biochem 20:5–10

    Google Scholar 

  • Chin HF, Krishnapillay B, Hor YL (1989) A note on the cryopreservation of embryos from young coconuts (Cocos nucifera var. Mawa). Pertanika 12(2):183–186

    Google Scholar 

  • Chowdhury D, Nath JC, Mohan NK (2001) ‘Kamrupa’ – a newly released coconut variety by Assam Agricultural University. Indian Coco J 31:12–13

    Google Scholar 

  • Copeland EB (1931) The coconut. Macmillan, London

    Google Scholar 

  • CPCRI (2010) Annual report 2009–2010. Central Plantation Crops Research Institute, Kasaragod, p 150

    Google Scholar 

  • CPCRI (2011) Annual report 2010–2011. Central Plantation Crops Research Institute, Kasaragod, p 146

    Google Scholar 

  • CPCRI (2012) Annual report 2011–2012. Central Plantation Crops Research Institute, Kasaragod, p 128

    Google Scholar 

  • Dasanayaka PN, Nandadasa HG, Everard JMDT, Karunanayaka EH (2009) Analysis of coconut (Cocos nucifera L.) diversity using microsatellite markers with emphasis on management and utilisation of genetic resources. J Natl Sci Found Sri Lanka 37(2):99. https://doi.org/10.4038/jnsfsr.v37i2.1065

    Article  CAS  Google Scholar 

  • De Guzman EV (1970) The growth and development of coconut “Makapuno” embryos in vitro. I. Induction of rooting. Philippine Agric 53:65–78

    Google Scholar 

  • Dery SK, Philippe R (1995) Results of preliminary study of the epidemiology of the Cape St Paul Wilt disease of coconut in Ghana. In: International workshop on lethal yellowing-like diseases on coconut, Elmina, Ghana, p 14

    Google Scholar 

  • Devakumar K, Jayadev K, Rajesh MK, Chandrasekhar A, Manimekalai R, Kumaran PM, Parthasarathy VA (2006) Assessment of genetic diversity of Indian coconut accessions and their relationship to other cultivars using microsatellite markers. Plant Genet Resour Newsl 145:38–45

    Google Scholar 

  • Devakumar K, Thomas RJ, Nair RV, Jerard BA, Rajesh MK, Jacob PM, Jayadev K, Parthasarathy VA (2011) Analysis of population structure and genetic relatedness among root (wilt) disease resistant and susceptible coconut palms (Cocos nucifera L.) cv. West Coast Tall using microsatellite markers. Indian J Agric Sci 81(5):487–493

    Google Scholar 

  • Dhamodaran S, Ratnambal MJ, Chempakam B, Pillai RV, Viraktamath BC (1993) In: Nair MK, Khan HH, Gopalasundaram P, EVV BR (eds) Advances in coconut research and development. Oxford & IBH Publishing, New Delhi, pp 123–128

    Google Scholar 

  • Duran Y, Rohde W, Kullaya A, Goikoetxea P, Ritter E (1997) Molecular analysis of East African Tall coconut genotypes by DNA marker technology. J Genet Breed 51:249–288

    Google Scholar 

  • Eden-Green SJ (1997) History, world distribution and present status of lethal yellowing disease of palms. In: Eden-Green SJ, Offori F Elmina (eds) Proceedings of international workshop on lethal yellowing like disease of coconut, Ghana, pp 9–26

    Google Scholar 

  • Eeuwens CJ (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol Plantarum 36(1):23–28

    Article  CAS  Google Scholar 

  • Everard JMDT, Katz M, Gregg K (1996) Inheritance of RAPD markers in the coconut palm, Cocos nucifera L. Trop Agric Res 8:124–135

    Google Scholar 

  • Faleiro JR, Rangnekar PA (2001) Ovipositional preference of red palm weevil Rhynchophorus ferrugineus Olive to coconut cultivars. Indian Coconut J 32(6):22–23

    Google Scholar 

  • Fan H, Xiao Y, Yang Y, Xia W, Mason AS, Xia Z, Qiao F, Zhao S, Tang H (2013) RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. PLoS One 8(3):e59997. https://doi.org/10.1371/journal.pone.0059997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farias Neto JTD, Lins PMP, Müller AA (2003) Estimation of repeatability coeficients for production of fruits and solid albumen in hybrids of coconut palm. Pesquisa Agropecuária Brasileira 38(10):1237–1241

    Article  Google Scholar 

  • Fernando WMU, Gajanayake G (1997) Patterns of isozyme variations in coconut (Cocos nucifera L.) populations used for breeding improved varieties. Plantations Recherche Développement 4:256–263

    CAS  Google Scholar 

  • Fernando SC, Vidhanaarachchi VRM, Weerakoon LK, Santha ES (2010) What makes clonal propagation of coconut difficult? Asia-Pac J Mol Biol Biotechnol 18:163–165

    Google Scholar 

  • Flores A (2008) Fiji Dwarf sets new durability standards in coconuts. Agric Res 56(5):17

    Google Scholar 

  • Fremond Y, Ziller R, de Nuce de Lamothe M (1966) The coconut palm. International Potash Institute, Berne, 227p

    Google Scholar 

  • Galvez HF, Lantican DV, Sison MLJ, Gardoce RR, Caoili BL, Canama AO, Dancel MP, Manohar ANC, Latina RA, Cortaga CQ, Reynoso DSR, Guerrero MS, Rivera SM, Emmanuel EE, Cueto CA, Reaño CE, Rivera RL, Vasquez MSC, Cabangbang RPM, Fernandez ECJ, Strickler SR, Mueller LA (2018) Coconut genetics and genomics for host insect resistance. In: The abstract list of the 26th international plant and animal genome conference (PAG XXVI), held at Town and Country Hotel, San Diego, 12–18 Jan 2018. https://pag.confex.com/pag/xxvi/meetingapp.cgi/Paper/31854

  • Ganesamurthy K, Natarajan C, Rajarathinam S, Vincent S, Khan HH (2002a). Genetic variability and correlation of yield and nut characters in coconut. J Plant Crops 30(2):23–25

    Google Scholar 

  • Ganesamurthy K, Natarajan C, Vaithilingam R, Giridharan S, Khan HH (2002b). Screening of coconut germplasm for tender coconut water. Ind Coconut J 33(8):31–34

    Google Scholar 

  • Geethanjali S, Anitha Rukmani J, Rajakumar D, Kadirvel P, Viswanathan P (2017) Genetic diversity, population structure and association analysis in coconut (Cocos nucifera L.) germplasm using SSR markers. Plant Genet Resour 16:1–13. https://doi.org/10.1017/S1479262117000119

    Article  CAS  Google Scholar 

  • Ghose S, Mishra BD, Rout MK (2006) Varietal evolution and occurrence of coconut grey leaf spot disease in coastal Orissa. J Mycopathol Res 44(1):105–107

    Google Scholar 

  • Gomez-Navarro C, Jaramillo C, Herrera F, Wing SL, Callejas R (2009) Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. Am J Bot 96:1300–1312

    Article  PubMed  Google Scholar 

  • Govindan M, Radhakrishnan TC, Sathiarajan PK (1991) Reaction of certain varieties and hybrids of coconut to natural infection of leaf blight caused by Pestalosphaeria elaeidis. In: Silas EG, Aravindakshan M, Jose AI (eds) Proceedings of national symposium on coconut breeding and management. Kerala Agricultural University, Thrissur, pp 156–157

    Google Scholar 

  • Gunn BF, Baudouin I, Olsen KM (2011) Independent origins of cultivated coconut in the old world tropics. PLoS One 6(6):e21143. https://doi.org/10.1371/journal.pone.0021143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunn BF, Baudouin L, Beulé T, Ilbert P, Duperray C, Crisp M, Issali A, Konan JL, Rival A (2015) Ploidy and domestication are associated with genome size variation in Palms. Am J Bot 102(10):1625–1633

    Article  CAS  PubMed  Google Scholar 

  • Harries HC (1970) The ‘Malayan dwarf’ supersedes the ‘Jamaica tall’ coconut. I. Reputation and performance. Oléagineux, 25:527–531

    Google Scholar 

  • Harries HC (1978) The evolution, dissemination and classification of Cocos nucifera. Bot Rev 4:265–320

    Article  Google Scholar 

  • Harries HC (1990) Malesian origin for a domestic Cocos nucifera. In: The plant diversity of Malesia. Springer, Dordrecht, pp 351–357

    Chapter  Google Scholar 

  • Harries HC (1998) Breeding phytoplasma disease resistant coconuts: alternative strategies for field exposure trials. In: Proceedings of international cashew and coconut conference: trees for life – the key to development, Dar es Salaam, Tanzania, 17–21 Feb 1997, pp 375–379

    Google Scholar 

  • Harries HC (2001) Coconut varieties and lethal yellowing: a regional perspective for the Americas. Palms 45:148–150

    Google Scholar 

  • Hayati DPK, Hartana A, Suharsono, Aswidinnoor H (2000) Genetic diversity of Jombang coconut populations based on RAPD markers. In: International conference on science and technology for managing plant genetic diversity in the 21st century, 12–16 June 2000, Kuala Lumpur, Malaysia, p 11

    Google Scholar 

  • Hebbar KB, Sashidhar VR, Udayakumar M, Devendra R, Rao CN (1994) A Comparative assessment of WUE in groundnut grown in containers and in the field under water limited conditions. J Agric Sci 122:429–434

    Article  Google Scholar 

  • Hebbar KB, Sheena TL, Shwetha Kumari K, Padmanabhan S, Balasimha D, Kumar M, Thomas GV (2013) Response of coconut seedlings to elevated CO2 and high temperature in drought and high nutrient conditions. J Plant Crops 41:118–122

    Google Scholar 

  • Herran A, Estioko L, Becker D, Rodriguez MJB, Rohde W, Ritter E (2000) Linkage mapping and QTL analysis in coconut (Cocos nucifera L.). Theor Appl Genet 101(1):292–300

    Google Scholar 

  • Hornung R, Domas R, Lynch PT (2001) Cryopreservation of plumular explants of coconut (Cocos nucifera L.) to support programmes for mass clonal propagation through somatic embryogenesis. Cryoletters 22(4):211–220

    CAS  PubMed  Google Scholar 

  • Howard FW, Rodriguez AE (1991) Tightness of the perianth of coconuts in relation to infestation by coconut mites. Florida Entomol 74:358–361

    Article  Google Scholar 

  • Huang YY, Matzke AJM, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut Palm (Cocos nucifera). PLoS One 8(8):e74736. https://doi.org/10.1371/journal.pone.0074736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YY, Lee CP, Fu JL, Chang BCH, Matzke AJ, Matzke M (2014) De Novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation. G3: Genes Genomes Genet 4:2147–2157

    Article  Google Scholar 

  • ICAR-CPCRI (2019) Annual report 2011–2012. Central Plantation Crops Research Institute, Kasaragod, p 102

    Google Scholar 

  • ICC (2019) Statistics. International Coconut Community. https://coconutcommunity.org/regular/coconut_statistical_yearbook

  • IPCC (2007) Climate change 2007: the physical science basis. Inter-governmental Panel for Climate Change, 324. Cambridge University Press, Cambridge

    Google Scholar 

  • Iyer RD (1981) Embryo and tissue culture for crop improvement, especially of perennials, germplasm conservation and exchange. In: Rao AN (ed) Tissue culture of economically important plants. ANBS, Singapore, pp 229–230

    Google Scholar 

  • Iyer RD, Rao EVVB, Kutty MPG (1979) Super yielders in coconut. Indian Fmg 28(10):3–5

    Google Scholar 

  • Jacob KC (1941) A new variety of coconut palm (Cocos nucifera L.) var. Spicata. J Bombay Nat Hist Soc 41:906–907

    Google Scholar 

  • Jacob PM, Rawther TSS (1991) Varietal resistance. In: Nair MK, KKN N, Koshy PK, Jayasankar NP (eds) Coconut root (Wilt) disease. Central Plantation Crop Research Institute, Kasaragod, pp 67–72

    Google Scholar 

  • Jay M, Bourdeix R, Potier F, Sanslaville C (1989) Premiers resultats de l’etude du polymorphisme des polyphenols foliares du cocotier. Oleagineux 44:151–161

    Google Scholar 

  • Jerard BA, Damodaran V, Niral V, Samsudeen K, Rajesh MK, Sankaran M (2013) Conservation and utilization of soft endosperm coconut accession from Andaman Islands. J Plant Crops 41(1):14–21

    Google Scholar 

  • Jerard BA, Rajesh MK, Elain SE, Sajini KK, Rahman S, Fayas TP, Karun A (2014a) Scope of novel and rare bulbiferous coconut palms (Cocos nucifera L.). Genet Resour Crop Evol 61:1–6

    Article  Google Scholar 

  • Jerard BA, Niral V, Dhanapal R, Damodaran V, Arunachalam V, Rajesh MK, Devakumar K, Samsudeen K, Nair RV, Kumaran PM, Thomas GV (2014b) IND 221–Andaman horned Cocos (IC0598221; INGR13063), a coconut (Cocos nucifera) germplasm with distinct character of horny nuts. Indian J Plant Genet Resour 27(1):66–89

    Google Scholar 

  • Jerard BA, Niral V, Samsudeen K, Gayathri UK (2016) Pink husked coconut selection- a trait of promise. In: Chowdappa P, Muralidharan K, Samsudeen K, Rajesh MK (eds) Abstracts – 3rd international symposium on coconut research and development, 10–12 Dec 2016

    Google Scholar 

  • Jerard BA, Rajesh MK, Thomas RJ, Niral V, Samsudeen K (2017) Island ecosystems hosts rich diversity in coconut (Cocos nucifera): evidences from Minicoy islands. India Agric Res 6:214–226

    Article  Google Scholar 

  • John CM, Narayana G (1949) Varieties and forms of the coconut (Cocos nucifera Linn). Indian Coconut J 2:209–226

    Google Scholar 

  • Julia JF, Mariau D (1979) New research on the coconut mite E. guerreronis (K), in the Ivory Coast. Oléagineux 34:181–189

    Google Scholar 

  • Kapadia MN (1981) Further record of a host plant of Nephantis serinopa Meyrick in Gujarat. Indian Coconut J 12(12):12

    Google Scholar 

  • Karun A, Sajini KK (1994) Short-term storage of coconut embryos in sterile water. Curr Sci 67(2):118–120

    Google Scholar 

  • Karun A, Sajini KK (2010) Cryopreservation of coconut zygotic embryos and pollen. Technical Bulletin No. 63. ICAR-CPCRI, Kasaragod

    Google Scholar 

  • Karun A, Shivasankar S, Sajini KK, Saji KV (1993) Field collection and in vitro germination of coconut embryos. J Plant Crops 21:291–294

    Google Scholar 

  • Karun A, Sajini KK, Radha E, Parthasarathy VA (2004) Efficacy of CPCRI embryo culture protocol in germplasm expedition. J Plant crops 32:139–143

    Google Scholar 

  • Karun A, Sajini KK, Parthasarathy VA (2005) Cryopreservation of mature coconut embryos by desiccation method. CORD 21:13–19

    Google Scholar 

  • Karun A, Sajini KK, Niral V, Amarnath CH, Remya P, Rajesh MK, Samsudeen K, Jerard BA, Engelmann F (2014) Coconut (Cocos nucifera L.) pollen cryopreservation. Cryo-Letters 35(5):407–417

    CAS  PubMed  Google Scholar 

  • Karun A, Sajini KK, Rajesh MK, Muralikrishna KS, Samsudeen K, Kumar PA, Nagwekar DD (2017) In vitro retrieval via embryo rescue of ‘Mohachao Narel’, a sweet endosperm coconut from Maharashtra. Int J Innov Hortic 6(2):147–150

    Google Scholar 

  • Kasturi Bai KV, Rajagopal V, Chempakam B, Prabha CD (1996) Assay of enzymes in coconut cultivars and hybrids under non-stress and stress conditions. J Plantat Crops 20:548–554

    Google Scholar 

  • Konan JNK, Koffi KE, Konan JL, Lebrun P, Dery SK, Sangare A (2007) Microsatellite gene diversity in coconut (Cocos nucifera L.) accessions resistant to lethal yellowing disease. Afr J Biotechnol 6:341–347

    Google Scholar 

  • Lantican DV, Strickler SR, Canama AO, Gardoce RR, Mueller LA, Galvez HF (2019) De novo genome sequence assembly of dwarf coconut (Cocos nucifera L.‘Catigan Green Dwarf’) provides insights into genomic variation between coconut types and related palm species. G3: Genes Genomes Genet 9(8):2377–2393

    Article  CAS  Google Scholar 

  • Lebrun P, N’Cho YP, Seguin M, Grivet L, Baudouin L (1998) Genetic diversity in coconut (Cocos nucifera L.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101:103–108

    Article  CAS  Google Scholar 

  • Lebrun P, Baudouin L, Bourdeix R, Konan JL, Barker JHA, Aldam C, Herran A, Ritter E (2001) Construction of a linkage map of the Rennell Island Tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome 44:962–970

    Article  CAS  PubMed  Google Scholar 

  • Lebrun P, Baudouin L, Myrie W, Berger A, Dollet M (2008) Recent lethal yellowing outbreak: why is the Malayan Yellow Dwarf Coconut no longer resistant in Jamaica? Tree Genet Genomes 4(1):125–131

    Article  Google Scholar 

  • Li D, Zheng Y, Wan L, Zhu X, Wang Z (2009) Differentially expressed microRNAs during solid endosperm development in coconut (Cocos nucifera L.). Sci Hortic 122:666–669

    Article  CAS  Google Scholar 

  • Liang Y, Yuan Y, Liu T, Mao W, Zheng Y, Dongdong L (2014) Identification and computational annotation of genes differentially expressed in the pulp development of Cocos nucifera L. by suppression subtractive hybridization. BMC Plant Biol 14:205. https://doi.org/10.1186/s12870-014-0205-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liyanage DV (1958) Varieties and forms of the coconut palm grown in Ceylon. Ceylon Coconut Qtly 9:1–10

    Google Scholar 

  • Loiola CM, Azevedo AON, Diniz LREC, Aragão WM, CD de O Azevedo, Henrique P, Santos AD, Ramos HCC, Pereira MG, Ramos SRR (2016) Genetic relationships among tall coconut palm (Cocos nucifera L.) accessions of the International Coconut Genebank for Latin America and the Caribbean (ICG-LAC), evaluated using microsatellite markers (SSRs). PLOS Journals Published between 08–15 March 2016

    Google Scholar 

  • Maloney BK (1993) Paleoecology and the origin of the coconut. Geo J 31(4):355–362

    Google Scholar 

  • Manimekalai R, Nagarajan P (2006) Assessing genetic relationships among coconut (Cocos nucifera L.) accessions using inter simple sequence repeat markers. Sci Hortic 108:49–54

    Article  CAS  Google Scholar 

  • Mao Z (1986) An investigation on meteriological indices for coconut cultivation in China. Oleagineux 41:119–128

    Google Scholar 

  • Mao ZS, Lai YT (1993) The coconut germplasm of Hainan Island, China. Plant Genet Resour Newsl 91–92:53–57

    Google Scholar 

  • Marechal H (1928) Observations and preliminary results on the coconut palm with a view to developing improved seednuts for Fiji. Fiji Agric J 1:16–45

    Google Scholar 

  • Mariau D, Dery SK, Sangaré A, N’Cho YP, Philippe R (1996) Le jaunissement mortel du cocotier au Ghana et tolérance du matériel végétal. Plantation, Recherche, Développement 3:105–112

    Google Scholar 

  • Mathai G, Mathew J, Balakrishnan B (1991) Reaction of exotic cultivars of coconut (Cocos nucifera L.) to root (wilt) disease of Kerala. In: Silas EG, Aravindakshan M, Jose AI (eds) Proceedings of national symposium on coconut breeding and management. Kerala Agricultural University, Thrissur, pp 161–162

    Google Scholar 

  • Mauro-Herrera M, Meerow AW, Borrone JW, Schnell RJ (2006) Ten informative markers developed from WRKY sequences in coconut (Cocos nucifera). Mol Ecol Notes 6(3):904–906

    Article  CAS  Google Scholar 

  • McCormack G (2005) The origin of the coconut palm. Cook Islands Natural Heritage Trust, Rarotonga. http://cookislands.bishopmuseum.org/species.asp?id=5960. Accessed 2008

  • Meerow AW, Noblick L, Borrone JW, Couvreur TLP, Mauro-Herrera M, Hahn WJ, Kuhn DN, Nakamura K, Oleas NH, Schnell RJ (2009) Phylogenetic analysis of seven WRKY genes across the Palm Subtribe Attaleinae (Arecaceae) identifies Syagrus as Sister Group of the Coconut. PLoS One 4(10):e7353. https://doi.org/10.1371/journal.pone.0007353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon KPV, Pandalai KM (1958) The coconut, a monograph. Indian Central Coconut Committee, Ernakulam, p 384

    Google Scholar 

  • Menon KPV, Pandalai KM (1960) The coconut palm, a monograph. Indian Coconut Committee, Ernakulum, p 384

    Google Scholar 

  • Menon KS, Thommen KJ, Sukumaran AS (1981) Review of research on coconut roof (Wilt) disease. ICAR-CPCRI, Kayangulam, pp 78–82

    Google Scholar 

  • Merrow AW, Wisser RJ, Brown JS, Kuhn DN, Schnell RJ, Broschat TK (2003) Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar. Theor Appl Genet 106:715–726

    Article  Google Scholar 

  • Meunier J, Benoit G, Ghesquiere M, Jay M, Bourdeix R (1992) IBPGR workshop on coconut genetic resources, Cipanas, Indonesia, 8–11 Oct1992. International Crop Network Series 8, IBPGR, Rome, Italy, pp 59–62

    Google Scholar 

  • Miquel FAW (1855) Flora van Nederlandsch Indie. III. C. G. van der Post, Amsterdam, pp. 64–72

    Google Scholar 

  • Mohandas C, Annif PT, Pavithran K (1976) Anatomical studies on the bulbils of coconut. Curr Sci 45:310–311

    Google Scholar 

  • Montero-Cortés M, Rodríguez-Paredes F, Burgeff C, Pérez-Nuñez T, Córdova I, Oropeza C, Verdeil JL, Sáenz L (2010) Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Organ 102(2):251–258

    Article  CAS  Google Scholar 

  • Moore D, Alexander L (1990) Resistance of coconut in St. Lucia to attack by the coconut mite Eriophyes guererronis Keifer. Trop Agric 67:33–36

    Google Scholar 

  • Moran G (1991) Report of isozyme research of coconuts. CSIRO, Dívision of Forest Research Canberra, School of Botany, University of Melbourne, Australia (unpublished)

    Google Scholar 

  • Mpunami A, Schuiling M, Kaiza D (1992) The lethal disease of coconut palm. Tanzania Res Train Newsl (Dar es Salaam) 7(1–3):12–15

    Google Scholar 

  • Muthiah C, Bhaskaran R (2000) Major outbreak of eriophyid mite of coconut in India. Planter, Kuala Lumpur 76(889):243–246

    Google Scholar 

  • Nair CRP (2000) Status of coconut eriophyid mite, Aceria guerreronis K. in India. In: Proceedings of International workshop on coconut Eriohyid mite. CRI, Sri Lanka, pp 9–12

    Google Scholar 

  • Nair RV, Jacob PM, Thomas RJ, Pillai SP, Mathews C (2006) Performance of CGD × WCT hybrid in the root (wilt) disease prevalent tract. J Plant Crops 34(1):15–20

    Google Scholar 

  • Nair RV, Thomas RJ, Jacob PM, Thomas GV (2009) Kalparaksha, a new coconut variety resistant to root (wilt) disease. Indian Coconut J LII 1:14–16

    Google Scholar 

  • Nambiar SS (1988) Susceptibility of hybrid coconut varieties to Oryctes rhinoceros Linn. (Scarabaeidae) under rainfed conditions at Pilicode. In: Silas EG, Aravindakshan M, Jose AI (eds) Proceedings of national symposium on coconut breeding and management. Kerala Agricultural University, Thrissur, pp 17–18

    Google Scholar 

  • Nan ON, Hocher V, Verdeil JL, Konan JL, Ballo K, Mondeil F, Malaurie B (2008) Cryopreservation by encapsulation dehydration of plumules of coconut. Cryo-Letters 29:339–350

    Google Scholar 

  • Narayana GV, John CM (1949) Varieties and forms of coconut. Madras Agric J 36:349–366

    Google Scholar 

  • Naresh Kumar S, Champakam B, Rajagopal V (2000). Fatty acid composition of coconut oil among coconut cultivars: An insight into industrial application. Indian Coconut J 31(3):25–28

    Google Scholar 

  • Naresh Kumar S, Kasturi Bai KV, Rajagopal V, Aggarwal PK (2008) Simulating coconut growth, development and yield with the info crop-coconut model. Tree Physiol 28:1049–1058

    Article  PubMed  Google Scholar 

  • Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics 290(5):1899–1910

    Article  CAS  PubMed  Google Scholar 

  • Neto FM, Pereira TNS, Geronimo IGC, Azevedo AON, Ramos SRR, Pereira MG (2016) Coconut genome size determined by flow cytometry: tall versus dwarf types. Genet Mol Res 15(1). https://doi.org/10.4238/gmr.15017470

  • Niral V, Jerard BA (2017) Botany, growth and development. In: Chowdappa P, Niral V, Jerard BA, Samsudeen K (eds) Coconut. Daya Publishing House, New Delhi, pp 73–130

    Google Scholar 

  • Niral V, Jerard BA (2018) Botany, Origin and Genetic Resources of Coconut. In: Nampoothiri K, Krishnakumar V, Thampan P, Nair M (eds) The Coconut Palm (Cocos nucifera L.) - Research and Development Perspectives. Springer, Singapore. pp 57–111. https://doi.org/10.1007/978-981-13-2754-4_32

  • Niral V, Nair RV, Jerard BA, Samsudeen K, Ratnambal MJ (2009) Evaluation of coconut germplasm for fruit component traits and oil yield. J Oilseeds Res 26(Special issue):668–670

    Google Scholar 

  • Niral V, Samsudeen K, Nair RV (2010) Genetic resources of coconut. In: Thomas GV, Balasimha D, Krishnakumar V et al (eds) International conference on coconut biodiversity for prosperity. CPCRI, Kasaragod, pp 25–28

    Google Scholar 

  • Niral V, Devakumar K, Umamaheswari TS et al (2013) Morphological and molecular characterization of a large fruited unique coconut accession from Vaibhaawadi, Maharashtra, India. Indian J Genet 73(2):220–224

    Article  Google Scholar 

  • Niral V, Augustine Jerard B, Jayasekhar S, Chowdappa P (2014) Tender coconuts for nutritional security. Indian Hortic 59(6):25–27

    Google Scholar 

  • Odewale JO, Ataga CD, Agho C, Odiowaya G, Okoye MN, Okolo EC (2013) Genotype evaluation of coconut (Cocos nucifera L.) and mega environment investigation based on additive main effects and multiplicative interaction (AMMI) analysis. Res J Agric Environ Manag 2(1):001–010

    Google Scholar 

  • Omar ABH (1919) Races of the coconut palm. Gardens Bull. Straits Settlements 2(5):143

    Google Scholar 

  • Parthasarathy VA, Geethalakshmi P, Niral V (2004) Analysis of coconut cultivars and hybrids using isozyme polymorphism. Acta Bot Croat 63(1):69–74

    CAS  Google Scholar 

  • Patel JS (1937) Coconut breeding. Proc Assoc Econ Biol 5:1–16

    Google Scholar 

  • Patel JS (1938) The coconut: a monograph. Government Press, Madras

    Google Scholar 

  • Perera L (2010) Hybrid testing and variety identification of coconut (Cocos nucifera L.) in Sri Lanka using microsatellite markers. Cord 26(1):39

    Google Scholar 

  • Perera L, Russel JR, Provan J, McNicol JW, Powel W (1998) Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96:545–550

    Article  CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (1999) Identification and characterization of microsatellites in coconut (Cocos nucifera L.) and the analysis of coconut population in Sri Lanka. Mol Ecol 8:344–346

    CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (2000) Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.). Genome 43:15–21

    Article  CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (2001) Levels and distribution of genetic diversity of coconut (Cocos nucifera L, var. Typica form typica) from Sri Lanka assessed by microsatellite markers. Euphytica 122:381–389

    Article  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (2003) Studying genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica 132:121–128

    Article  CAS  Google Scholar 

  • Perera PIP, Hocher V, Verdeil JL, Bandupriya HDD, Yakandawala DMD, Weerakoon LK (2008) Androgenic potential in coconut (Cocos nucifera L.). Plant Cell Tissue Organ 92(3):293–302

    Article  CAS  Google Scholar 

  • Perera PIP, Yakandawala DMD, Hocher V, Verdeil JL, Weerakoon LK (2009) Effect of growth regulators on microspore embryogenesis in coconut anthers. Plant Cell Tissue Organ 96(2):171–180

    Article  CAS  Google Scholar 

  • Perez-Nunez MT, Chan JL, Saenz L, Gonzalez T, Verdeil JL, Oropeza C (2006) Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell Dev Biol-Plant 42(1):37–43

    Article  Google Scholar 

  • Pérez-Núñez MT, Souza R, Sáenz L, Chan JL, Zuniga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Pesik A, Efendi D, Novarianto H, Dinarti D, Sudarsono S (2017) Development of SNAP markers based on nucleotide variability of WRKY genes in coconut and their validation using multiplex PCR. Biodiversitas J Biol Diversity 18(2):465. https://doi.org/10.13057/biodiv/d180204

    Article  Google Scholar 

  • Preethi P, Rajesh MK, Naganeeswaran S, Rehaman S, Karun A (2014) Identification of EST-SSRs in coconut (Cocos nucifera L.) by deep transcriptome sequencing. In: Book of abstracts of national seminar on ‘new horizons and challenges in biotechnology and bioinformatics’, 9–10 Oct 2014. ICAR-CPCRI, Kasaragod, p 101

    Google Scholar 

  • Preethi P, Rajesh MK, Rahul CU, Jerard BA, Samsudeen K, Thomas RJ, Karun A (2016) Identification and utilization of informative EST-SSR markers for genetic purity testing of coconut hybrids. J Plant Crops 44(2):77–84

    Google Scholar 

  • Preethi P, Rahman S, Naganeeswaran S, Sabana AA, Gangaraj KP, Jerard BA, Niral V, Rajesh MK (2020) Development of EST-SSR markers for genetic diversity analysis in coconut (Cocos nucifera L.). Mol Biol Rep 47(12):9385–9397

    Article  CAS  PubMed  Google Scholar 

  • Puch-Hau C, Oropeza-Salín C, Peraza-Echeverría S, Gongora-Paredes M, Córdova-Lara I, Narvaez-Cab M, Zizumbo-Villareal D, Sáenz-Carbonell L (2015) Molecular cloning and characterization of disease-resistance gene candidates of the nucleotide binding site (NBS) type from Cocos nucifera L. Physiol Mol Plant Pathol 89:87–96

    Article  CAS  Google Scholar 

  • Quillec G, Renard JL (1975) Helminthosporiosis of the coconut palm. Preliminary studies. Oleagineux 30(5):209–213

    Google Scholar 

  • Rachana KE, Naganeeswaran SA, Fayas TP, Thomas RJ, Rajesh MK (2016) Cloning, characterization and expression analysis of NBS-LRR-type resistance gene analogues (RGAs) in coconut. Acta Bot Croat 75(1):1–10

    Article  CAS  Google Scholar 

  • Radhakrishnan TC, Balakrishnan PC (1991) Evaluation of intensity of stem bleeding disease of coconut. In: Silas EG, Aravindakshan M, Jose AI (eds) Proceedings of national symposium on coconut breeding and management. Kerala Agricultural University, Thrissur, pp 163–164

    Google Scholar 

  • Rajagopal V, Shivashankar S, Kasturi Bai KV, Voleti SR (1988) Leaf water potential as an index of drought tolerance in coconut (Cocos nucifera L.). Plant Physiol Biochem 15:80–86

    Google Scholar 

  • Rajagopal V, Kasturi Bai KV, Voleti SR (1990) Screening of coconut genotypes for drought tolerance. Oleagineux 45:215–223

    Google Scholar 

  • Rajagopal V, Shivashankar S, Kasturi BKV (1991) Physiological and biochemical basis of coconut production. Cord J VII(2):12–30

    Google Scholar 

  • Rajagopal V, Kasturi Bai KV, Naresh Kumar S, Niral V (2007) Genetic analysis of drought responsive physiological characters in coconut (Cocos nucifera L.). Ind J Hort 64(2):181–189

    Google Scholar 

  • Rajesh MK, Radha E, Sajini KK, Karun A, Parthasarathy VA (2005) Plant regeneration through organogenesis and somatic embryogenesis from plumular explant of coconut. J Plant Crops 33(1):9–17

    Google Scholar 

  • Rajesh MK, Nagarajan P, Jerard BA, Arunachalam V, Dhanapal R (2008a) Microsatellite variability of coconut accessions (Cocos nucifera L.) from Andaman and Nicobar Islands. Curr Sci 94:1627–1631

    Google Scholar 

  • Rajesh MK, Arunachalam V, Nagarajan P, Lebrun P, Samsudeen K, Thamban C (2008b) Genetic survey of ten Indian coconut landraces by simple sequence repeats (SSRs). Sci Hortic 118:282–297

    Article  CAS  Google Scholar 

  • Rajesh MK, Thomas RJ, Rijith J, Shareefa M, Jacob PM (2012) Genetic purity assessment of D x T hybrids in coconut with SSR markers. Indian J Genet Plant Breed 72(4):472–474

    CAS  Google Scholar 

  • Rajesh MK, Rachana KE, Babu M, Thomas RJ, Karun A (2013) Characterization of the global transcriptome responsive to root (wilt) disease in coconut using RNA-seq. In: National symposium on ‘pathogenomics for diagnosis and management of plant diseases’. ICAR-CTCRI, Thiruvananthapuram

    Google Scholar 

  • Rajesh MK, Radha E, Sajini KK, Karun A (2014a) Polyamine-induced somatic embryogenesis and plantlet regeneration in vitro from plumular explants of dwarf cultivars of coconut (Cocos nucifera). Indian J Agr Sci 84(4):527–530

    Google Scholar 

  • Rajesh MK, Samsudeen K, Rejusha P, Manjula C, Rahma S, Karun A (2014b) Characterization of Annur and Bedakam ecotypes of coconut from Kerala State, India, using microsatellite markers. Int J Biodivers. https://doi.org/10.1155/2014/260895

  • Rajesh MK, Samsudeen K, Jerard BA, Rejusha P, Karun A (2014c) Genetic and phylogenetic relationships of coconut populations from Amini and Kadmat Islands, Lakshadweep (India). Emir J Food Agric 26(10):898–906

    Article  Google Scholar 

  • Rajesh MK, Rachana KE, Naganeeswaran SA, Shafeeq R, Thomas RJ, Shareefa M, Merin B, Karun A (2015a) Identification of expressed resistance gene analog sequences in coconut leaf transcriptome and their evolutionary analysis. Turk J Agric For. https://doi.org/10.3906/tar-1409-75

  • Rajesh MK, Sabana AA, Rachana KE, Rahman S, Jerard BA, Karun A (2015b) Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through ScoT [Start Codon Targeted polymorphism] analysis. 3 Biotech. https://doi.org/10.1007/s13205-015-0304-7

  • Rajesh MK, Fayas TP, Naganeeswaran S, Rachana KE, Bhavyashree U, Sajini KK, Karun A (2016) De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing. Protoplasma 253(3):913–928

    Article  CAS  PubMed  Google Scholar 

  • Rajesh MK, Rachana KE, Kulkarni K, Sahu BB, Thomas RJ, Karun A (2018) Comparative transcriptome profiling of healthy and diseased Chowghat Green Dwarf coconut palms from root (wilt) disease hot spots. Eur J Plant Pathol 151(1):173–193. https://doi.org/10.1007/s10658-017-1365-8

  • Rajesh MK, Karun A, Parthasarathy VA (2019) Coconut biotechnology. In: KUK N, Krishnakumar V, Thampan PK, Nair MA (eds) The coconut palm (Cocos nucifera L.)-research and development perspectives. Springer, Singapore, pp 191–226

    Google Scholar 

  • Rajesh MK, Chowdappa P, Behera SK, Kasaragod S, Gangaraj KP, Kotimoole CN, Nekrakalaya B, Mohanty V, Sampgod RB, Banerjee G, Das AJ (2020) Assembly and annotation of the nuclear and organellar genomes of a dwarf coconut (Chowghat Green Dwarf) possessing enhanced disease resistance. OMICS 24(12):726–742

    Article  CAS  Google Scholar 

  • Raju CR (2006) Direct in vitro shoot development from immature rachilla explants of coconut (Cocos nucifera L.). CORD 22(1):51–58

    Google Scholar 

  • Ramanujam B, Nambiar KKN, Ratnambal MJ (1998) Screening of coconut cultivars/hybrids against Thielaviopsis paradoxa (de Seynes) Hohnel, using petiole inoculation technique. In: Mathew NM, Kuruvilla Jacob C (eds) Proceedings of PLACROSYM XII. Allied Publishers, New Delhi, pp 284–286

    Google Scholar 

  • Ramesh SV, Hebbar KB, Rajesh MK, Abhin Sukumar P, Gangaraj KP, Athul Bobby (2020) Transcriptome analysis of Cocos nucifera L. seedlings having contrasting water-use efficiency (WUE) under water-deficit stress: Molecular insights and genetic markers for drought tolerance. In: The first international electronic conference on plant science. https://doi.org/10.3390/IECPS2020-08853

  • Rasam DV, Gokhale NB, Sawardekar SV, Patil DM (2016) Molecular characterisation of coconut (Cocos nucifera L.) varieties using ISSR and SSR markers. J Hortic Sci Biotechnol 91:347–352

    Article  CAS  Google Scholar 

  • Ray SKD, Kaiser SAKM (1990) Observations on some elite genotypes (cultivars) of coconut palm for resistance to leaf blight (grey leaf spot) disease. J Mycopathol Res 28(1):9–11

    Google Scholar 

  • Rhode W, Kullaya A, Rodriguez J, Ritter E (1995) Genome analysis of Cocos nucifera L. by PCR amplification of spacer sequences separating a subset of copia-like EcoRI repetitive elements. J Genet Breed 49:179–186

    Google Scholar 

  • Riedel M, Riederer M, Becker D, Herran A, Kullaya A, Arana-López G, Peña-Rodríguez L, Billotte N, Sniady V, Rohde W, Ritter E (2009) Cuticular wax composition in Cocos nucifera L. physicochemical analysis of wax components and mapping of their QTLs onto the coconut molecular linkage map. Tree Genet Genomes 5(1):53–69

    Article  Google Scholar 

  • Rigby JF (1995) A fossil Cocos nucifera L. fruit from the latest Pliocene of Queensland, Australia. In: Pant DD (ed) Birbal Sahni centennial volume. Allahabad University, Allahabad, pp 379–381

    Google Scholar 

  • Ritto P, Jiji G, Rajesh MK, Jerard BA, Niral V (2008) Genetic diversity in yellow dwarf populations of coconut (Cocos nucifera L.) assessed using RAPD markers. Indian J Hortic Res 65:60–64

    Google Scholar 

  • Rivera R, Edwards KJ, Barker JHA, Arnold GM, Ayad G, Hodgkin T, Karp A (1999) Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42:668–675

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MJB, Estioko LP, Namia TI, Soniega JA (1997) Analysis of genetic diversity in coconut by RAPD. Philipp J Coconut Stud 22:1–7

    Google Scholar 

  • Rohde W, Salamani F, Ashburner R, Randles JW (1992) An Eco RI repetitive sequence family of the coconut palm (Cocos nucifera L.) shows sequence homology to copia-like elements. J Genet Breed 46:391–394

    CAS  Google Scholar 

  • Sadakathulla S, Ramachandran TK (1993) Field screening of coconut cultivars to red palm weevil at Tamil Nadu. Ann Plant Res Insects Newsl 19:43

    Google Scholar 

  • Saensuk C, Wanchana S, Choowongkomon K, Wongpornchai S, Kraithong T, Imsabai W, Chaichoompu E, Ruanjaichon V, Toojinda T, Vanavichit A, Arikit S (2016) De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Sci 252:324–334

    Article  CAS  PubMed  Google Scholar 

  • Sajini KK, Karun A, Amarnath CH, Engelmann F (2011) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos by vitrification. Cryo-Letters 32(4):317–328

    CAS  PubMed  Google Scholar 

  • Samsudeen K, Rajesh MK, Nagwaker DD, Reshmi R, Kumar PA, Devadas K, Anitha K (2013) Diversity in Mohachao Narel, a sweet endosperm coconut (Cocos nucifera L.) population from Maharashtra, India. Natl Acad Sci Lett 36(3):319–330.

    Google Scholar 

  • Samosir YMS (1999) Optimisation of somatic embryogenesis in coconut (Cocos nucifera L.). PhD Thesis, The University of Queensland, Australia

    Google Scholar 

  • Sangare A, de Taffin G, de Franqueville H, Arkhust ED, Pomier M (1992) Coconut lethal yellowing in Ghana. Initial results on planting material performance in the field. Oléagineux 47(12):699–704

    Google Scholar 

  • Sankaran M, Damodaran V, Jerard BA, Abirami K, Roy DS (2015) Multiple Spicata coconut (MSC): a rare type of coconut in Andaman Islands. Transcriptomics 3:123

    Google Scholar 

  • Satyabalan K (1997) Coconut varieties and cultivars – their classification. Asian Pacific Coconut Community, Jakarta, p 105

    Google Scholar 

  • Schuiling M, Mpunami A, Kaiza DA, Harries HC (1992) Lethal disease of coconut palm in Tanzania. III. Low resistance of imported germplasm. Oleagineux 47(12):693–698

    Google Scholar 

  • Serrano AV, Cortazar Ríos M, Ovando Cruz ME (2011) Donají: new coconut hybrid resistant to lethal yellowing in Mexico. Revista Mexicana de Ciencias Agrícolas 2(5):773–778

    Google Scholar 

  • Shalini KV, Manjunatha S, Lebrun P, Berger A, Baudouin L, Pirany N, Ranganath RM, Prasad DT (2007) Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.). Genome 50:35–42

    Article  CAS  PubMed  Google Scholar 

  • Shareefa M, Thomas RJ, Sreelekshmi JS, Rajesh MK, Karun A (2019) In vitro regeneration of coconut plantlets from immature inflorescence. Curr Sci 117(5):813–820

    Article  CAS  Google Scholar 

  • Sherman KE, Maramorosch K (1977) Present status of lethal yellowing disease of the coconut palm. J Plant Crops 5(2):75–83

    Google Scholar 

  • Sisunandar RA, Turquay P, Samosir Y, Adkins SW (2010a) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta 232:435–447

    Article  CAS  PubMed  Google Scholar 

  • Sisunandar RA, Sopade PA, Samosir YM, Rival A, Adkins SW (2010b) Dehydration improves cryopreservation of coconut (Cocos nucifera L.). Cryobiology 61(3):289–296

    Article  CAS  PubMed  Google Scholar 

  • Sumangala Nambiar S (1991) Susceptibility of hybrid coconut varieties to Oryctes rhinoceros under rain fed conditions at Pilicode. In: Silas EG, Aravindakshan M, Jose AI (eds) Coconut breeding and management. Kerala Agricultural University, Thrissur, pp 158–160

    Google Scholar 

  • Sun R, Ye R, Gao L, Zhang L, Wang R, Mao T, Zheng Y, Li D, Lin Y (2017) Characterization and ectopic expression of CoWRI1, an AP2/EREBP domain-containing transcription factor from coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.). Front Plant Sci 8:63. https://doi.org/10.3389/fpls.2017.0006

    Article  PubMed  PubMed Central  Google Scholar 

  • Suriachandraselvam M, Bhaskaran R, Ramachandran TK (2000) Evaluation of coconut hybrids/varieties against grey leaf spot diseases. Madras Agric J 87(7/9):497–498

    Google Scholar 

  • Teulat B, Aldam C, Trehin R, Lebrun P, Barker JHA, Arnold GM, Karp A, Baudouin L, Rognon F (2000) An analysis of genetic diversity in coconut (Cocos nucifera L.) population from across the geographical range using sequence tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 106:411–422

    Google Scholar 

  • Trimen H (1898) Handbook of the flora of Ceylon, Part IV. Dulan & Co., London, p 337

    Google Scholar 

  • Tripathi RP, Mishra SN, Sharma BD (1999) Cocos nucifera-like petrified fruit from the tertiary of Amarkantak MP, India. Paleobotanist 48:251–255

    Google Scholar 

  • Upadhyay A, Jayadev K, Manimekalai R, Parthasarathy VA (2004) Genetic relationship and diversity in Indian coconut accessions based on RAPD markers. Sci Hortic 99:353–362

    Article  CAS  Google Scholar 

  • Varghese MK (1934) Diseases of the coconut palm. Government Press, Trivandrum, p 105

    Google Scholar 

  • Verdeil JL, Huet C, Grosdemange F, Buffard Morel J (1994) Plant regeneration from cultured immature inflorescences coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep 13:218–221

    CAS  PubMed  Google Scholar 

  • Vidhanaarachch VR, Weerakoon LK, Fernando SC, Gamage CKA, Santha ES (1998) Status of research on coconut embryo culture and acclimatization techniques in Sri Lanka. In: Batugal PA, Engelmann F (eds) Coconut embryo in vitro culture. IPGRI, APO, Serdang, pp 85–88

    Google Scholar 

  • Warwick DRN, Bezerra APO, Renard JL (1991) Reaction of coconut hybrids to leaf blight (Botryodiplodia theobromae Pat.). 1. Field observations. Oléagineux 46(3):100–106

    Google Scholar 

  • Watt G (1889) Dictionary of the economic products of India. Coconut 2:418

    Google Scholar 

  • Wheeler REM, Ghosh A, Deva K (1946) Arikamedu: an Indo-Roman trading station on east coast of India. Ancient India 2:17–124

    Google Scholar 

  • Whitehead RA, Chapman GP (1962) Twinning and haploidy in Cocos nucifera. Nature 195:1228–1229

    Article  Google Scholar 

  • Xiao Y, Xu P, Fan H, Baudouin L, Xia W, Bocs S, Xu J, Li Q, Guo A, Zhou L, Li J (2017) The genome draft of coconut (Cocos nucifera). GigaScience 6(11):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Ye R, Zheng Y, Wang Z, Zhou P, Lin Y, Li D (2010) Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants. Plant Cell Rep 29:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Zizumbo Villarreal D, Cardena-Lopez R, Pinero D (2002) Diversity and phylogenetic analysis in Cocos nucifera L. in Mexico. Genet Resour Crop Evol 49(3):237–245

    Article  Google Scholar 

  • Zizumbo VD, Fernandez M, Torres N, Cardena R (1999) Lethal yellowing resistance in coconut germplasm from Mexico. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Karun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karun, A., Ramesh, S.V., Rajesh, M.K., Niral, V., Sudha, R., Muralikrishna, K.S. (2022). Conservation and Utilization of Genetic Diversity in Coconut (Cocos nucifera L.). In: Priyadarshan, P., Jain, S.M. (eds) Cash Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-74926-2_7

Download citation

Publish with us

Policies and ethics