Skip to main content

Energy-Efficient RF for UDNs

  • Chapter
  • First Online:
Enabling 6G Mobile Networks

Abstract

Multi-standard RF front-end is a critical part of legacy and future emerging mobile architectures, where the size, the efficiency, and the integration of the elements in the RF front-end will affect the network key performance indicators (KPIs). This chapter discusses power amplifier design for both handset and base station applications for 5G and beyond. Also, this chapter deals with filter-antenna design for 5G applications that include a synthesis-based approach, differentially driven reconfigurable planar filter-antenna, and an insensitive phased array antenna with air-filled slot-loop resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahl, I., & Blass, B. (2003). Microwave solid state circuit design. John Wiley & Sons.

    Google Scholar 

  2. Sechi, F., & Bujatti, M. (2009). Solid-state microwave high-power amplifiers. Artech House Inc.

    Google Scholar 

  3. Robertson, I., Somjit, N., & Chong, M. (2016). Microwave and millimeter-wave design for wireless communication. Wiley.

    Google Scholar 

  4. Haigh, D., Soin, G., & Wood, R. S. (2001). RF IC and MMIC design and technology, IET circuits, devices and system. Institution of Electrical Engineers.

    Google Scholar 

  5. Marsh, S. (2006). Practical MMIC design. Artech House Inc.

    Google Scholar 

  6. Walker, J. (2012). Handbook of RF and microwave power amplifiers. Cambridge University Press.

    Google Scholar 

  7. Sajedin, M. et al. (2020). A Doherty power amplifier based on the harmonic generating mechanism. In 14th European conference on antennas and propagation (EuCAP), Copenhagen, Denmark, 1–5, https://doi.org/10.23919/EuCAP48036.2020.9135416.

  8. Tsai, J., & Huang, T. (May 2007). A 38–46 GHz MMIC doherty power amplifier using post-distortion linearization. IEEE Microwave and Wireless Components Letters, 17(5), 388–390. https://doi.org/10.1109/LMWC.2007.895726

    Article  Google Scholar 

  9. Das, N., & Bertoni, H. (1999). Directions for the next generation of MMIC devices and systems. Plenum Press.

    Google Scholar 

  10. Sajedin, M. et al. (2020). Design of a broadband frequency response class-J power amplifier. International Multi-Disciplinary Conference Theme, Sustainable Development and Smart Planning.

    Google Scholar 

  11. Grebennikov, A., Kumar, N., Binboga, S., & Yarman, S. (2016). Broadband RF and microwave amplifiers. Taylor & Francis Group, LLC.

    Google Scholar 

  12. Carey, E., & Lidholm, S. (2005). Millimeter-wave integrated circuits. Springer.

    Google Scholar 

  13. Giannini, F., & Leuzzi, G. (2004). Nonlinear microwave circuit design. Wiley.

    Book  Google Scholar 

  14. Sajedin, M., Elfergani, I., Rodriguez, J., Abd-Alhameed, R., & Barciela, M. (2019). A survey on RF and microwave Doherty power amplifier for mobile handset applications. Electronics, 8(717), 1–15.

    Google Scholar 

  15. Kang, D., Kim, D., Moon, J., & Kim, B. (December 2010). Broadband HBT Doherty power amplifiers for handset applications. IEEE Transactions on Microwave Theory and Techniques, 58(12), 4031–4039. https://doi.org/10.1109/TMTT.2010.2086070

    Article  Google Scholar 

  16. Refai, W. Y., & Davis, W. A. (2015). A linear, highly-efficient, class-J handset power amplifier utilizing GaAs HBT technology. In 2015 IEEE 16th annual wireless and microwave technology conference (WAMICON), Cocoa Beach, FL (pp. 1–4). https://doi.org/10.1109/WAMICON.2015.7120353

    Chapter  Google Scholar 

  17. Cripps, S. (2006). RF power amplifiers for wireless communications. Artech House.

    Google Scholar 

  18. Sajedin, M., et al. (2020). A Doherty power amplifier based on the harmonic generating mechanism. In 2020 14th European conference on antennas and propagation (EuCAP), Copenhagen, Denmark (pp. 1–5). https://doi.org/10.23919/EuCAP48036.2020.9135416

    Chapter  Google Scholar 

  19. Kim, J., et al. (February 2008). Analysis of a fully matched saturated Doherty amplifier with excellent efficiency. IEEE Transactions on Microwave Theory and Techniques, 56(2), 328–338. https://doi.org/10.1109/TMTT.2007.914361

    Article  Google Scholar 

  20. Cho, Y., Kang, D., Moon, K., Jeong, D., & Kim, B. (September-October 2017). A handy dandy Doherty PA: A linear Doherty power amplifier for mobile handset application. IEEE Microwave Magazine, 18(6), 110–124. https://doi.org/10.1109/MMM.2017.2712040

    Article  Google Scholar 

  21. Cho, Y., Moon, K., Park, B., Kim, J., Jin, H., & Kim, B. (2015). Compact design of linear Doherty power amplifier with harmonic control for handset applications. In 2015 10th European microwave integrated circuits conference (EuMIC), Paris (pp. 37–40). https://doi.org/10.1109/EuMIC.2015.7345062

    Chapter  Google Scholar 

  22. Nguyen, D. P., Pham, B. L., & Pham, A. (2017). A compact 29% PAE at 6 dB power back-off E-mode GaAs pHEMT MMIC Doherty power amplifier at Ka-band. In 2017 IEEE MTT-S international microwave symposium (IMS), Honololu, HI (pp. 1683–1686). https://doi.org/10.1109/MWSYM.2017.8058964

    Chapter  Google Scholar 

  23. Cripps, S. C., Tasker, P. J., Clarke, A. L., Lees, J., & Benedikt, J. (October 2009). On the continuity of high efficiency modes in linear RF power amplifiers. IEEE Microwave and Wireless Components Letters, 19(10), 665–667. https://doi.org/10.1109/LMWC.2009.2029754

    Article  Google Scholar 

  24. Chen, W., Lv, G., Liu, X., Wang, D., & Ghannouchi, F. M. (May 2020). Doherty PAs for 5G massive MIMO: Energy-efficient integrated DPA MMICs for sub-6-GHz and mm-wave 5G massive MIMO systems. IEEE Microwave Magazine, 21(5), 78–93. https://doi.org/10.1109/MMM.2020.2971183

    Article  Google Scholar 

  25. Pedro, J. C., Carvalho, N., Fager, C., & Garcia, J. (2004). Linearity versus efficiency in mobile handset power amplifiers: A battle without a loser. In Microwave engineering Europe, EENEWS EUROPE (pp. 19–26).

    Google Scholar 

  26. Alizadeh, A., & Medi, A. (August 2017). Investigation of a class-J mode power amplifier in presence of a second-harmonic voltage at the gate node of the transistor. IEEE Transactions on Microwave Theory and Techniques, 65(8), 3024–3033. https://doi.org/10.1109/TMTT.2017.2666145

    Article  Google Scholar 

  27. Alizadeh, A., Hassanzadehyamchi, S., Medi, A., & Kiaei, S. (October 2020). An X-band class-J power amplifier with active load modulation to boost drain efficiency. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(10), 3364–3377. https://doi.org/10.1109/TCSI.2020.2991184

    Article  MathSciNet  MATH  Google Scholar 

  28. Pereira, A., Parker, A., Heimlich, M., Weste, N., Quay, R., & Carrubba, V. (2014). X-band high-efficiency GaAs MMIC PA. In Proceedings of WAMICON (pp. 1–4).

    Google Scholar 

  29. Lv, G., Chen, W., & Feng, Z. (2018). A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications. In 2018 IEEE/MTT-S international microwave symposium – IMS, Philadelphia, PA (pp. 808–811). https://doi.org/10.1109/MWSYM.2018.8439219

    Chapter  Google Scholar 

  30. Nguyen, D. P., Pham, B. L., & Pham, A. (January 2019). A compact Ka-band integrated Doherty amplifier with reconfigurable input network. IEEE Transactions on Microwave Theory and Techniques, 67(1), 205–215. https://doi.org/10.1109/TMTT.2018.2874249

    Article  Google Scholar 

  31. Nguyen, D. P., Pham, T., & Pham, A. (2017). A Ka-band asymmetrical stacked-FET MMIC Doherty power amplifier. In 2017 IEEE radio frequency integrated circuits symposium (RFIC), Honolulu, HI (pp. 398–401). https://doi.org/10.1109/RFIC.2017.7969102

    Chapter  Google Scholar 

  32. Quaglia, R., Camarchia, V., Jiang, T., Pirola, M., Donati Guerrieri, S., & Loran, B. (November 2014). K-band GaAs MMIC Doherty power amplifier for microwave radio with optimized driver. IEEE Transactions on Microwave Theory and Techniques, 62(11), 2518–2525. https://doi.org/10.1109/TMTT.2014.2360395

    Article  Google Scholar 

  33. Hu, S., Wang, F., & Wang, H. (2017). 2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications. In 2017 IEEE international solid-state circuits conference (ISSCC), San Francisco, CA (pp. 32–33). https://doi.org/10.1109/ISSCC.2017.7870246

    Chapter  Google Scholar 

  34. Chen, Y., Lin, Y., Lin, J., & Wang, H. (December 2018). A Ka-band transformer-based Doherty power amplifier for multi-Gb/s application in 90-nm CMOS. IEEE Microwave and Wireless Components Letters, 28(12), 1134–1136. https://doi.org/10.1109/LMWC.2018.2878133

    Article  Google Scholar 

  35. Wang, F., & Wang, H. (2020). 24.1 A 24-to-30GHz watt-level broadband linear Doherty power amplifier with multi-primary distributed-active-transformer power-combining supporting 5G NR FR2 64-QAM with >19dBm average pout and >19% average PAE. In 2020 IEEE international solid- state circuits conference – (ISSCC), San Francisco, CA, USA (pp. 362–364). https://doi.org/10.1109/ISSCC19947.2020.9063146

    Chapter  Google Scholar 

  36. Hu, S., Wang, F., & Wang, H. (June 2019). A 28-/37-/39-GHz linear Doherty power amplifier in silicon for 5G applications. IEEE Journal of Solid-State Circuits, 54(6), 1586–1599. https://doi.org/10.1109/JSSC.2019.2902307

    Article  Google Scholar 

  37. Abdulkhaleq, A. M., et al. (2020). Load-modulation technique without using quarter-wavelength transmission line. IET Microwaves, Antennas and Propagation, 14, 1209. https://doi.org/10.1049/iet-map.2019.0957

    Article  Google Scholar 

  38. Abdulkhaleq, A. M., et al. (2019). Recent developments of dual-band Doherty power amplifiers for upcoming mobile communications systems. Electronics, 8(6), 638. https://doi.org/10.3390/electronics8060638

    Article  Google Scholar 

  39. Abdulkhaleq, A. M., et al. (2019). A 70-W asymmetrical Doherty power amplifier for 5G base stations. In V. Sucasas, G. Mantas, & S. Althunibat (Eds.), Broadband communications, networks, and systems (pp. 446–454). Springer International Publishing.

    Chapter  Google Scholar 

  40. Abdulkhaleq, A. M. et al. (2020). A compact load-modulation amplifier for improved efficiency next generation mobile. Presented at the 50th The European Microwave Conference (EuMC), The Jaarbeurs, The Netherlands.

    Google Scholar 

  41. Abdulkhaleq, A. M., et al. (2020). Mutual coupling effect on three-way Doherty amplifier for green compact mobile communications. Presented at the EuCAP 2020, 15–20-March-2020.

    Google Scholar 

  42. Al-Yasir, Y. I. A., et al. (2020). A differential-fed dual-polarized high-gain filtering antenna based on SIW technology for 5G applications. In 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, IEEE (pp. 1–5).

    Google Scholar 

  43. Al-Yasir, Y. I. A., Ojaroudi Parchin, N., Abdulkhaleq, A., Hameed, K., Al-Sadoon, M., & Abd-Alhameed, R. (2019). Design, simulation and implementation of very compact dual-band microstrip bandpass filter for 4G and 5G applications. In 2019 16th international conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD), Lausanne, Switzerland. IEEE.

    Google Scholar 

  44. Feng, W., Che, W., & Xue, Q. (June 2015). The proper balance: Overview of microstrip wideband balance circuits with wideband common mode suppression. IEEE Microwave Magazine, 16(5), 55–68.

    Article  Google Scholar 

  45. Al-Yasir, Y. I. A., Ojaroudi Parchin, N., Abdulkhaleq, A. M., Bakr, M. S., & Abd-Alhameed, R. A. (2020). A survey of differential-fed microstrip bandpass filters: Recent techniques and challenges. Sensors, 20(8), 2356.

    Article  Google Scholar 

  46. Jin, H., Chin, K., Che, W., Chang, C., Li, H., & Xue, Q. (2014). Differential-fed patch antenna arrays with low cross polarization and wide bandwidths. IEEE Antennas and Wireless Propagation Letters, 13, 1069–1072.

    Article  Google Scholar 

  47. Chin, C. K., Xue, Q., & Wong, H. (September 2007). Broadband patch antenna with a folded plate pair as a differential feeding scheme. IEEE Transactions on Antennas and Propagation, 55(9), 2461–2467.

    Article  Google Scholar 

  48. Chin, C. h. k., Xue, Q., Wong, H., & Zhang, X. y. (February 2007). Broadband patch antenna with low cross-polarisation. Electronics Letters, 43(3), 137–138.

    Article  Google Scholar 

  49. Luo, Y., & Chu, Q. (November 2015). Oriental crown-shaped differentially fed dual-polarized multidipole antenna. IEEE Transactions on Antennas and Propagation, 63(11), 4678–4685.

    Article  MathSciNet  MATH  Google Scholar 

  50. White, C. R., & Rebeiz, G. M. (November 2010). A differential dual-polarized cavity-backed microstrip patch antenna with independent frequency tuning. IEEE Transactions on Antennas and Propagation, 58(11), 3490–3498.

    Article  Google Scholar 

  51. Cui, J., Zhang, A., & Yan, S. (2020, February). Co-design of a filtering antenna based on multilayer structure. International Journal of RF and Microwave Computer-Aided Engineering, 30(2), 1–6.

    Google Scholar 

  52. Hua, C., Liu, M., & Lu, Y. (February 2019). Planar integrated substrate integrated waveguide circularly polarized filtering antenna. International Journal of RF and Microwave Computer-Aided Engineering, 29(2), e21517.

    Article  Google Scholar 

  53. Al-Yasir, Y. I. A., et al. (2020). A new and compact wide-band microstrip filter-antenna design for 2.4 GHz ISM band and 4G applications. Electronics, 9(7), 1084.

    Article  Google Scholar 

  54. Majid, H. A., Rahim, M. K. A., Hamid, M. R., & Ismail, M. F. (2012). A compact frequency-reconfigurable narrowband microstrip slot antenna. IEEE Antennas and Wireless Propagation Letters, 11, 616–619.

    Article  Google Scholar 

  55. Yassin, M. E., Mohamed, H. A., Abdallah, E. A. F., & El-Hennawy, H. S. (2019). Circularly polarized wideband-to-narrowband switchable antenna. IEEE Access, 7, 36010–36018.

    Article  Google Scholar 

  56. Tu, Y., Al-Yasir, Y., Ojaroudi Parchin, N., Abdulkhaleq, A., & Abd-Alhameed, R. (2020, June). A survey on reconfigurable microstrip filter–antenna integration: Recent developments and challenges. Electronics, 9(8), 1–21.

    Article  Google Scholar 

  57. Caicedo, S., Oldoni, M., & Moscato, S. (2021). Challenges of using phased array antennas in a commercial backhaul equipment at 26 GHz. In Internet of things, infrastructures and Mobile applications. IMCL 2019 (Advances in intelligent systems and computing, vol 1192). Springer.

    Google Scholar 

  58. Mejillones, S. C., Oldoni, M., Moscato, S., Fonte, A., & D’Amico, M. (2020). Power consumption and radiation trade-offs in phased arrays for 5G wireless transport. In 2020 43rd international conference on telecommunications and signal processing (TSP), Milan, Italy (pp. 112–116). https://doi.org/10.1109/TSP49548.2020.9163445

    Chapter  Google Scholar 

  59. SIAE Microelettronica. ALFOplus2: Wireless backhaul/fronthaul equipment. https://www.siaemic.com/index.php/products-services/telecommunication-systems/microwave-product-portfolio/alfo-plus2. Accessed 12 Dic 2020.

  60. Mailloux, R. J. (2017). Phased array antenna handbook (3rd ed.). Artech House, Inc.

    Google Scholar 

  61. Shome, P. P., Khan, T., Koul, S., & Antar, Y. (2020). Filtenna designs for radio-frequency front-end systems: A structural-oriented review. IEEE Antennas and Propagation Magazine. https://doi.org/10.1109/MAP.2020.2988518

  62. Lee, J., Kidera, N., Pinel, S., Laskar, J., & Tentzeris, M. M. (2007). Fully integrated passive front-end solutions for a V-band LTCC wireless system. IEEE Antennas and Wireless Propagation Letters, 6, 285–288. https://doi.org/10.1109/LAWP.2007.891964

    Article  Google Scholar 

  63. Li, R., & Gao, P. (January 2016). Design of a UWB filtering antenna with defected ground structure. Progress in Electromagnetics Research Letters, 63, 65–70.

    Article  Google Scholar 

  64. Mishra, S., Sheeja, K., & Pathak, N. (December 2017). Split ring resonator inspired microstrip Filtenna for KU-band application. Journal Europeen des Systemes Automatises, 50, 391–403.

    Article  Google Scholar 

  65. Hu, K., Tang, M., Li, M., & Ziolkowski, R. W. (August 2018). Compact, low-profile, bandwidth-enhanced substrate integrated waveguide filtenna. IEEE Antennas and Wireless Propagation Letters, 17(8), 1552–1556. https://doi.org/10.1109/LAWP.2018.2854898

    Article  Google Scholar 

  66. Escobar, A. H., Tirado, J. A. V., Gomez, J. C. C., Mateu, J., Cantenys, E. R., & Gonzalez, J. L. (March 2014). Filtenna integration achieving ideal Chebyshev return losses. Radioengineering, 23, 362–368.

    Google Scholar 

  67. Cameron, R. J. (January 2003). Advanced coupling matrix synthesis techniques for microwave filters. IEEE Transactions on Microwave Theory and Techniques, 51(1), 1–10. https://doi.org/10.1109/TMTT.2002.806937

    Article  Google Scholar 

  68. Li, T., & Gong, X. (June 2018). Vertical integration of high-Q filter with circularly polarized patch antenna with enhanced impedance-axial ratio bandwidth. IEEE Transactions on Microwave Theory and Techniques, 66(6), 3119–3128. https://doi.org/10.1109/TMTT.2018.2832073

    Article  Google Scholar 

  69. Yusuf, Y., Cheng, H., & Gong, X. (November 2011). A seamless integration of 3-D vertical filters with highly efficient slot antennas. IEEE Transactions on Antennas and Propagation, 59(11), 4016–4022. https://doi.org/10.1109/TAP.2011.2164186

    Article  Google Scholar 

  70. Cassivi, Y., Perregrini, L., Arcioni, P., Bressan, M., Wu, K., & Conciauro, G. (September 2002). Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microwave and Wireless Components Letters, 12(9), 333–335. https://doi.org/10.1109/LMWC.2002.803188

    Article  Google Scholar 

  71. Jia-Sheng, & Lancaster, M. J. (2011). Microstrip filters for RF/microwave applications. Wiley.

    Google Scholar 

  72. Selvaraju, R., Jamaluddin, M. h., Kamarudin, M., Nasir, J., & Dahri, M. (January 2018). Complementary split ring resonator for isolation enhancement in 5g communication antenna array. Progress in Electromagnetics Research C, 83, 217.

    Article  Google Scholar 

  73. Oldoni, M., Macchiarella, G., Gentili, G. G., & Ernst, C. (May 2010). A new approach to the synthesis of microwave lossy filters. IEEE Transactions on Microwave Theory and Techniques, 58(5), 1222–1229. https://doi.org/10.1109/TMTT.2010.2045534

    Article  Google Scholar 

  74. Cameron, R. J. (April 1999). General coupling matrix synthesis methods for Chebyshev filtering functions. IEEE Transactions on Microwave Theory and Techniques, 47(4), 433–442. https://doi.org/10.1109/22.754877

    Article  Google Scholar 

  75. Bigelli, F., et al. (February 2016). Design and fabrication of a dielectricless substrate-integrated waveguide. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(2), 256–261. https://doi.org/10.1109/TCPMT.2015.2513077

    Article  Google Scholar 

  76. Osseiran, A., et al. (May 2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  77. Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.

    Article  Google Scholar 

  78. Rodriguez, J., et al. (2017). SECRET — Secure network coding for reduced energy next generation mobile small cells: A European training network in wireless communications and networking for 5G. In 2017 internet technologies and applications (ITA), Wrexham, IEEE (pp. 329–333).

    Chapter  Google Scholar 

  79. Parchin, N. O., Shen, M., & Pedersen, G. F. (2016). UWB MM-wave antenna array with quasi omnidirectional beams for 5G handheld devices. In 2016 IEEE international conference on ubiquitous wireless broadband (ICUWB), Nanjing, IEEE (pp. 1–4).

    Google Scholar 

  80. Ojaroudiparchin, N., Shen, M., & Pedersen, G. F. (2016). 8×8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations. In 2016 10th European conference on antennas and propagation (EuCAP), Davos, IEEE (pp. 1–5).

    Google Scholar 

  81. HMC933LP4E. Analog phase shifter. Hittite Microwave Company. http://www.hittite.com

  82. Hong, W., Baek, K., Lee, Y., & Kim, Y. G. (2014). Design and analysis of a low-profile 28 GHz beam steering antenna solution for future 5G cellular applications. In 2014 IEEE MTT-S international microwave symposium (IMS2014), Tampa, FL, IEEE (pp. 1–4).

    Google Scholar 

  83. Parchin, N. O., et al. (2019). MM-wave phased array quasi-yagi antenna for the upcoming 5G cellular communications. Applied Sciences, 9, 1–14.

    Google Scholar 

  84. Parchin, N. O., et al. (2019). Frequency reconfigurable antenna array for mm-wave 5G mobile handsets. In Broadband communications, networks, and systems, Faro, Portugal, 19–20 September 2018. Springer.

    Google Scholar 

  85. Tang, M., Ziolkowski, R. W., & Xiao, S. (June 2014). Compact hyper-band printed slot antenna with stable radiation properties. IEEE Transactions on Antennas and Propagation, 62(6), 2962–2969.

    Article  Google Scholar 

  86. Ojaroudi, N., & Ghadimi, N. (2014). Dual-band CPW-fed slot antenna for LTE and WiBro applications. Microwave and Optical Technology Letters, 56, 1013–1015.

    Article  Google Scholar 

  87. Parchin, N. O., et al. (2019). Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access, 7, 15612–15622.

    Article  Google Scholar 

  88. Salman, J., et al. (2006). Effects of the loss tangent, dielectric substrate permittivity and thickness on the performance of circular microstrip antennas. Journal of Engineering and Development, 10, 1–13.

    Google Scholar 

  89. Rajagopal, S., Abu-Surra, S., Pi, Z., & Khan, F. (2011). Antenna array design for multi-Gbps mmWave mobile broadband communication. In 2011 IEEE global telecommunications conference – GLOBECOM 2011, Houston, TX, USA, IEEE (pp. 1–6).

    Google Scholar 

  90. Ilvonen, J., Kivekas, O., Holopainen, J., Valkonen, R., Rasilainen, K., & Vainikainen, P. (2011). Mobile terminal antenna performance with the user’s hand: Effect of antenna dimensioning and location. IEEE Antennas and Wireless Propagation Letters, 10, 772–775.

    Article  Google Scholar 

Download references

Acknowledgments

This research work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Nos. 722424 (SECRET) and 722429 (5GSTEPFWD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdulkhaleq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdulkhaleq, A. et al. (2022). Energy-Efficient RF for UDNs. In: Rodriguez, J., Verikoukis, C., Vardakas, J.S., Passas, N. (eds) Enabling 6G Mobile Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-74648-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74648-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74647-6

  • Online ISBN: 978-3-030-74648-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics