Skip to main content

Heat Transfer Analysis in Solar Thermal Collectors

  • Chapter
  • First Online:
Advances in Sustainable Energy

Abstract

Solar energy gained momentum due to energy security threats and climate change issues and pulled the attention of policymakers and researchers. Solar thermal collectors have been widely studied, and various new designs were reported. To improve the performance of these solar devices, it is essential to understand the heat transfer behavior of the systems. Because the heat transfer concepts help the researcher and designer to have a proper understanding of the losses associated and their identification. In this work, heat transfer mechanisms involved in solar thermal devices, such as flat plate collector, evacuated tube collector, solar concentrating collectors, solar pond, solar distillation, solar dryer, and solar refrigeration are discussed and important observations made by various researchers are also presented. Furthermore, this chapter also incorporates different aspects of heat transfer that are important for the improvement of solar collector designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holm-nielsen JB, Ehimen EA (2016) Biomass supply chains for bioenergy and biorefining

    Google Scholar 

  2. Sampaio PGV, González MOA (2017) Photovoltaic solar energy: conceptual framework. Renew Sustain Energy Rev 74:590–601. https://doi.org/10.1016/j.rser.2017.02.081

    Article  Google Scholar 

  3. Kalogirou SA (2004) Solar thermal collectors and applications

    Google Scholar 

  4. Belessiotis V, Delyannis E (2000) The history of renewable energies for water desalination. Desalination 128:147–159. https://doi.org/10.1016/S0011-9164(00)00030-8

    Article  Google Scholar 

  5. Das D, Kalita P, Roy O (2018) Flat plate hybrid photovoltaic- thermal (PV/T) system: a review on design and development. Renew Sustain Energy Rev 84:111–130. https://doi.org/10.1016/j.rser.2018.01.002

    Article  Google Scholar 

  6. Upadhyay V, Rashmi, Himanshu Khadloya P et al (2017) Experimental studies on solar flat plate collector with internally grooved tubes using aqueous ethylene glycol. Appl Sol Energy 53:222–228. https://doi.org/10.3103/S0003701X17030112

    Article  Google Scholar 

  7. Pandey KM, Chaurasiya R (2017) A review on analysis and development of solar flat plate collector. Renew Sustain Energy Rev 67:641–650. https://doi.org/10.1016/j.rser.2016.09.078

    Article  Google Scholar 

  8. Ozsoy A, Demirer S, Adam NM (2014) An experimental study on double-glazed flat plate solar water heating system in Turkey. Appl Mech Mater 564:204–209. https://doi.org/10.4028/www.scientific.net/AMM.564.204

    Article  Google Scholar 

  9. Kumar PV, Kaviti AK, Prakash O, Reddy KS (2012) Optimization of design and operating parameters on the year-round performance of a multi-stage evacuated solar desalination system using transient mathematical analysis. Int J Energy Environ 3:409–434

    Google Scholar 

  10. Das D, Kalita P (2018) Performance improvement of a novel flat plate photovoltaic thermal (pv/t) system using copper oxide nanoparticle – water as coolant, pp 97–104. https://doi.org/10.1007/978-3-319-63085-4_14

  11. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  12. Das D, Bordoloi U, Kamble AD et al (2021) Performance investigation of a rectangular spiral flow PV/T collector with a novel form-stable composite material. Appl Therm Eng 182:116035. https://doi.org/10.1016/j.applthermaleng.2020.116035

    Article  Google Scholar 

  13. Das D, Bordoloi U, Muigai HH, Kalita P (2020) A novel form-stable PCM based bio-composite material for solar thermal energy storage applications. J Energy Storage 30:101403. https://doi.org/10.1016/j.est.2020.101403

    Article  Google Scholar 

  14. Chen Z, Gu M, Peng D (2010) Heat transfer performance analysis of a solar flat-plate collector with an integrated metal foam porous structure filled with paraffin. Appl Therm Eng 30:1967–1973. https://doi.org/10.1016/j.applthermaleng.2010.04.031

    Article  Google Scholar 

  15. Mortazavi A, Ameri M (2018) Conventional and advanced exergy analysis of solar flat plate air collectors. Energy 142:277–288. https://doi.org/10.1016/j.energy.2017.10.035

    Article  Google Scholar 

  16. Zhang D, Li J, Gao Z et al (2016) Thermal performance investigation of modified flat plate solar collector with dual-function. Appl Therm Eng 108:1126–1135. https://doi.org/10.1016/j.applthermaleng.2016.07.200

    Article  Google Scholar 

  17. Li Q, Tehrani SSM, Taylor RA (2017) Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage. Energy 121:220–237. https://doi.org/10.1016/j.energy.2017.01.023

    Article  Google Scholar 

  18. Suman S, Khan MK, Pathak M (2015) Performance enhancement of solar collectors – a review. Renew Sustain Energy Rev 49:192–210. https://doi.org/10.1016/j.rser.2015.04.087

    Article  Google Scholar 

  19. Daniel P, Joshi Y, Das AK (2011) Numerical investigation of parabolic trough receiver performance with outer vacuum shell. Sol Energy 85:1910–1914. https://doi.org/10.1016/j.solener.2011.04.032

    Article  Google Scholar 

  20. Martínez-Rodríguez G, Fuentes-Silva AL, Picón-Núñez M (2016) Solar thermal networks operating with evacuated-tube collectors. Energy. https://doi.org/10.1016/j.energy.2017.04.165

  21. Sukhatme SPP, Nayak JK, Naik JK (2014) Solar energy principles of thermal collection and storage, 3rd edn. Tata McGraw-Hill, New Delhi

    Google Scholar 

  22. Mullick SC, Nanda SK (1982) Heat loss factor for linear solar concentrators. Appl Energy 11:1–13. https://doi.org/10.1016/0306-2619(82)90044-7

    Article  Google Scholar 

  23. Ghadirijafarbeigloo S, Zamzamian AH, Yaghoubi M (2014) 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Procedia 49:373–380. https://doi.org/10.1016/j.egypro.2014.03.040

    Article  Google Scholar 

  24. Das D, Bordoloi U, Kalita P et al (2020) Solar still distillate enhancement techniques and recent developments. Ground Sustain Dev 10:100360. https://doi.org/10.1016/j.gsd.2020.100360

    Article  Google Scholar 

  25. Velmurugan V, Gopalakrishnan M, Raghu R, Srithar K (2008) Single basin solar still with fin for enhancing productivity. Energy Convers Manag 49:2602–2608. https://doi.org/10.1016/j.enconman.2008.05.010

    Article  Google Scholar 

  26. Srivastava PK, Agrawal SK (2013) Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertias floating porous absorbers. Desalination 311:198–205. https://doi.org/10.1016/j.desal.2012.11.035

    Article  Google Scholar 

  27. Kalita P, Borah S, Das D (2017) Design and performance evaluation of a novel solar distillation unit. Desalination 416:65–75. https://doi.org/10.1016/j.desal.2017.04.025

    Article  Google Scholar 

  28. Agrawal A, Rana RS, Srivastava PK (2017) Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: experimental and theoretical comparison. Resour Technol 3:466–482. https://doi.org/10.1016/j.reffit.2017.05.003

    Article  Google Scholar 

  29. Abu-Hijleh BAK, Abu-Qudias M, Al-Khateeb S (2001) Experimental study of a solar still with screens in basin. Int J Sol Energy 21:257–266. https://doi.org/10.1080/01425910108914374

    Article  Google Scholar 

  30. Omara ZM, Eltawil MA, ElNashar EA (2013) A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination 325:56–64. https://doi.org/10.1016/j.desal.2013.06.024

    Article  Google Scholar 

  31. Eltawil MA, Omara ZM (2014) Enhancing the solar still performance using solar photovoltaic, flat plate collector, and hot air. Desalination 349:1–9. https://doi.org/10.1016/j.desal.2014.06.021

    Article  Google Scholar 

  32. Naim MM, Abd El Kawi MA (2003) Non-conventional solar stills. Part 2. Non-conventional solar stills with the energy storage element. Desalination 153:71–80. https://doi.org/10.1016/S0011-9164(02)01095-0

    Article  Google Scholar 

  33. El-Sebaii AA, Ramadan MRI, Aboul-Enein S, Khallaf AM (2011) History of the solar ponds: A review study. Renew Sustain Energy Rev 15:3319–3325. https://doi.org/10.1016/j.rser.2011.04.008

    Article  Google Scholar 

  34. Leblanc J, Akbarzadeh A, Andrews J et al (2011) Heat extraction methods from salinity-gradient solar ponds and introduction of a novel system of heat extraction for improved efficiency. Sol Energy 85:3103–3142. https://doi.org/10.1016/j.solener.2010.06.005

    Article  Google Scholar 

  35. Sayer AH, Al-Hussaini H, Campbell AN (2016) New theoretical modeling of heat transfer in solar ponds. Sol Energy 125:207–218. https://doi.org/10.1016/j.solener.2015.12.015

    Article  Google Scholar 

  36. Sayer AH (2017) An experimental and theoretical investigation of novel configurations of solar ponds for use in Iraq by. Dr thesis, Univ Surrey

    Google Scholar 

  37. Suárez F, Childress AE, Tyler SW (2010) Temperature evolution of an experimental salt-gradient solar pond. J Water Clim Chang 1:246–250. https://doi.org/10.2166/wcc.2010.101

    Article  Google Scholar 

  38. Lu H, Swift AHP, Hein HD, Walton JC (2004) Advancements in salinity gradient solar pond technology based on sixteen years of operational experience. J Sol Energy Eng 126:759. https://doi.org/10.1115/1.1667977

    Article  Google Scholar 

  39. Bryant HC, Colbeck I (1977) A solar pond for London? Sol Energy 19:321–322. https://doi.org/10.1016/0038-092X(77)90079-2

    Article  Google Scholar 

  40. Bansal PK, Kaushik ND (1981) Salt gradient stabilized solar pond collector. Energy Convers Manag 21:81–95. https://doi.org/10.1016/0196-8904(81)90010-8

    Article  Google Scholar 

  41. El Khadraoui A, Bouadila S, Kooli S et al (2017) Thermal behavior of indirect solar dryer : Nocturnal usage of solar air collector with PCM. J Clean Prod 148:37–48. https://doi.org/10.1016/j.jclepro.2017.01.149

    Article  Google Scholar 

  42. Smitabhindu R, Janjai S, Chankong V (2008) Optimization of a solar-assisted drying system for drying bananas. Renew Energy 33:1523–1531. https://doi.org/10.1016/j.renene.2007.09.021

    Article  Google Scholar 

  43. Adelaja AO, Babatope BI (2013) Analysis and testing of a natural convection solar dryer for the tropics. J Energy 2013:1–8. https://doi.org/10.1155/2013/479894

    Article  Google Scholar 

  44. Vásquez J, Reyes A, Pailahueque N (2019) Modeling, simulation, and experimental validation of a solar dryer for agro-products with a thermal energy storage system. Renew Energy 139:1375–1390. https://doi.org/10.1016/j.renene.2019.02.085

    Article  Google Scholar 

  45. Ullah KR, Saidur R, Ping HW et al (2013) A review of solar thermal refrigeration and cooling methods. Renew Sustain Energy Rev 24:499–513. https://doi.org/10.1016/j.rser.2013.03.024

    Article  Google Scholar 

  46. Yeo THC, Tan IAW, Abdullah MO (2012) Development of adsorption air-conditioning technology using modified activated carbon – a review. Renew Sustain Energy Rev 16:3355–3363. https://doi.org/10.1016/j.rser.2012.02.073

    Article  Google Scholar 

  47. Cooling India (2017) Solar refrigeration. http://www.coolingindia.in/blog/post/id/13698/solar-refrigeration. Accessed 14 Jan 2018

Download references

Acknowledgments

The authors of the work would like to thank the Indian Institute of Technology Guwahati, India, for providing the necessary facilities in formulating and completing this book chapter.

Authors Contribution

The outline of the chapter was formulated and based on the strength and working area of the authors, all the topics have been distributed. The contribution of the authors is provided below.

The chapter is conceptualized based on collective discussions among the authors. Specifically, Mr. Dudul Das has worked on the introduction of the chapter, solar flat plate collectors, and solar distillation. Mr. Samar Das has contributed the topics evacuated tube collectors and solar pond. Mr. Rabindra Kangsha Banik has covered the topic named solar concentrating collectors. Ms. Urbashi Bordoloi has worked on the solar dryer and solar refrigeration system. Dr. Pankaj Kalita was involved in the formulation and review of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kalita .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

A abs :

The area for solar energy absorption or absorber area, m2

A b :

Basin area of the solar still, m2

A c :

Aperture area, m2

C p :

Specific heat capacity, J/kgK

d :

The inner diameter of the tube, m

Gz :

Graetz number

f :

Friction factor

L ev :

Latent heat of vaporization, kJ/kg

T a :

Ambient temperature, K

T g :

Glass cover temperature, K

T f :

Fluid film temperature, K

T ab :

The temperature of an absorber , K

T con :

The temperature of condenser , K

T eva :

The temperature of the evaporator, K

T gen :

The temperature of the generator , K

T in :

Fluid inlet temperature, K

T out :

The outlet temperature of the tube, K

T w :

Water temperature, K

T wall :

Wall temperature, K

U L :

The overall heat transfer coefficient of losses to ambient, W/m2K

ε g :

The emissivity of a glass cover

ε p :

Emissivity of absorber

ε c :

Emissivity of cover

σ :

Stephan-Boltzmann constant

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalita, P., Das, D., Das, S., Banik, R.K., Bordoloi, U. (2021). Heat Transfer Analysis in Solar Thermal Collectors. In: Gao, Yj., Song, W., Liu, J.L., Bashir, S. (eds) Advances in Sustainable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-74406-9_9

Download citation

Publish with us

Policies and ethics