Skip to main content

Direct Catalytic Low-Temperature Conversion of CO2 and Methane to Oxygenates

  • Chapter
  • First Online:
Advances in Sustainable Energy

Abstract

The growing demand for the conversion of natural gas into value-added chemicals has been the focus of a significant amount of research. Specifically, the direct conversion of methane and CO2 to higher value oxygenates has serious industrial value. Due to the thermodynamic stability of CO2 and methane molecules, direct conversion to high-value products is commercially limited. This study focuses on understanding the thermodynamics of methane activation with CO2 as an oxidant in the presence of metal catalysts at moderate temperatures. Direct activation approaches suggested in the literature have been investigated to find commercially viable alternative routes that remove any intermediate steps, such as syngas, and selectively produce high-value oxygenates. The role of different oxidative agents for methane activation has been investigated while understanding the effects of metal-based catalysts for this reaction. Deactivation studies indicated potential ways of catalytic activity loss along with possible regeneration methods. Based on the literature reviews and thermodynamic analysis, prospective catalytic reaction mechanisms are discussed including the application of bimetallic and plasma catalysis to overcome the thermodynamic energy constraints for CO2 and methane activation at low temperature with selective production of target oxygenates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ab. Rahim MH, Forde M, Jenkins R, Hammond C, He Q, Dimitratos N, Lopez-Sanchez J, Carley A, Taylor S, Willock D, Murphy D, Kiely C, Hutchings G (2013) Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angew Chem Int Ed Engl 52:1280–1284

    Article  Google Scholar 

  2. Abas N, Kalair A, Khan N (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49

    Article  Google Scholar 

  3. Abedin MA, Bhattar S, Spivey JJ (2020a) Direct conversion of methane to C2 hydrocarbons using W supported on sulfated zirconia solid acid catalyst. SN Appl Sci 2(12):2012

    Article  Google Scholar 

  4. Abedin MA, Kanitkar S, Bhattar S, Spivey JJ (2020b) Promotional effect of Cr in sulfated zirconia-based mo catalyst for methane dehydroaromatization. Energ Technol 8:1900555

    Article  Google Scholar 

  5. Abedin MA, Kanitkar S, Bhattar S, Spivey JJ (2020c) Methane dehydroaromatization using Mo supported on sulfated zirconia catalyst: effect of promoters. Catalysis Today

    Google Scholar 

  6. Abedin MA, Kanitkar S, Bhattar S, Spivey JJ (2020d) Sulfated hafnia as a support for mo oxide: a novel catalyst for methane dehydroaromatization. Catal Today 343:8–17

    Article  Google Scholar 

  7. Adebajo M, Frost R (2012) Recent advances in catalytic/biocatalytic conversion of greenhouse methane and carbon dioxide to methanol and other oxygenates

    Google Scholar 

  8. Agarwal N, Freakley SJ, McVicker RU, Althahban SM, Dimitratos N, He Q, Morgan DJ, Jenkins RL, Willock DJ, Taylor SH, Kiely CJ, Hutchings GJ (2017) Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358(6360):223

    Article  Google Scholar 

  9. Alotibi MF, Stahl UDW (2012) Methane conversion into oxygenates, Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen

    Google Scholar 

  10. Alshammari A, Kalevaru VN, Martin A (2016) Bimetallic catalysts containing gold and palladium for environmentally important reactions. Catalysts 6(7):97

    Article  Google Scholar 

  11. Argyle M, Bartholomew C (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5(1):145

    Article  Google Scholar 

  12. Avraam C, Chu D, Siddiqui S (2020) Natural gas infrastructure development in North America under integrated markets. Energy Policy 147:111757

    Article  Google Scholar 

  13. Aziz MAA, Setiabudi HD, Teh LP, Asmadi M, Matmin J, Wongsakulphasatch S (2020) High-performance bimetallic catalysts for low-temperature carbon dioxide reforming of methane. Chem Eng Technol 43(4):661–671

    Article  Google Scholar 

  14. Baletto F (2013) Modelling janus nanoparticles. In: Metal clusters and nanoalloys: from modeling to applications. Springer, New York, pp 243–273

    Chapter  Google Scholar 

  15. Bañares MA (1999) Supported metal oxide and other catalysts for ethane conversion: a review. Catal Today 51:319–348

    Article  Google Scholar 

  16. Barbero JA, Alvarez MC, Bañares MA, Peña MA, Fierro JLG (2002) Breakthrough in the direct conversion of methane into c1-oxygenates. Chem Commun 11:1184–1185

    Article  Google Scholar 

  17. Bessonette PW, Schleyer CH, Duffy KP, Hardy WL, Liechty MP (2007) Effects of fuel property changes on heavy-duty HCCI combustion. SAE Trans:242–254

    Google Scholar 

  18. Bhattar S, Abedin MA, Shekhawat D, Haynes DJ, Spivey JJ (2020) The effect of La substitution by Sr- and Ca- in Ni substituted Lanthanum Zirconate pyrochlore catalysts for dry reforming of methane. Appl Catal A Gen 602:117721

    Article  Google Scholar 

  19. Cai X, Hu YH (2019) Advances in catalytic conversion of methane and carbon dioxide to highly valuable products. Energy Sci Eng 7(1):4–29

    Article  Google Scholar 

  20. Cavani F, Ballarini N, Luciani S (2009) Catalysis for society: towards improved process efficiency in catalytic selective oxidations. Top Catal 52(8):935–947

    Article  Google Scholar 

  21. Chen H, Wang J, Shuai S, Chen W (2008) Study of oxygenated biomass fuel blends on a diesel engine. Fuel 87(15–16):3462–3468

    Article  Google Scholar 

  22. Ding Y-H, Huang W, Wang Y-G (2007) Direct synthesis of acetic acid from CH4 and CO2 by a step-wise route over Pd/SiO2 and Rh/SiO2 catalysts. Fuel Process Technol 88(4):319–324

    Article  Google Scholar 

  23. Dudley B (2018) BP statistical review of world energy. BP Statistical Review, London. Accessed 6 Aug 2018

    Google Scholar 

  24. Faramawy S, Zaki T, Sakr AAE (2016) Natural gas origin, composition, and processing: a review. J Nat Gas Sci Eng 34:34–54

    Article  Google Scholar 

  25. Gabrienko AA, Arzumanov SS, Toktarev AV, Danilova IG, Prosvirin IP, Kriventsov VV, Zaikovskii VI, Freude D, Stepanov AG (2017) Different efficiency of Zn2+ and ZnO species for methane activation on Zn-modified zeolite. ACS Catal 7:1818–1830

    Article  Google Scholar 

  26. Gelves JF, Dorkis L, Fourre E, Batiot-Dupeyrat C (2018) Synthesis of oxygenated compounds from methane, carbon dioxide, and liquid water using non-thermal plasma. Int J Eng Appl Sci 5(2)

    Google Scholar 

  27. Goeppert A, Czaun M, Jones J-P, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43(23):7995–8048

    Article  Google Scholar 

  28. González DMA, Piel W, Asmus T, Clark W, Garbak J, Liney E, Natarajan M, Naegeli DW, Yost D, Frame EA, Wallace JP (2001) Oxygenates screening for advanced petroleum-based diesel fuels: part 2. The effect of oxygenate blending compounds on exhaust emissions. SAE Trans 110:2246–2255

    Google Scholar 

  29. Hammond C, Conrad S, Hermans I (2012a) Oxidative methane upgrading. ChemSusChem 5(9):1668–1686

    Article  Google Scholar 

  30. Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM (2012b) Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew Chem 124(21):5219–5223

    Article  Google Scholar 

  31. He Y, Luan C, Fang Y, Feng X, Peng X, Yang G, Tsubaki N (2020) Low-temperature direct conversion of methane to methanol over carbon materials supported Pd-Au nanoparticles. Catal Today 339:48–53

    Article  Google Scholar 

  32. Karakaya C, Kee RJ (2016) Progress in the direct catalytic conversion of methane to fuels and chemicals. Prog Energy Combust Sci 55:60–97

    Article  Google Scholar 

  33. Khalife E, Tabatabaei M, Demirbas A, Aghbashlo M (2017) Impacts of additives on performance and emission characteristics of diesel engines during steady-state operation. Prog Energy Combust Sci 59:32–78

    Article  Google Scholar 

  34. Kumar N, Wang Z, Kanitkar S, Spivey JJ (2016) Methane reforming over Ni-based pyrochlore catalyst: deactivation studies for different reactions. Appl Petrochem Res 6(3):201–207

    Article  Google Scholar 

  35. Langfeld K, Frank B, Strempel VE, Berger-Karin C, Weinberg G, Kondratenko EV, Schomäcker R (2012) Comparison of oxidizing agents for the oxidative coupling of methane over state-of-the-art catalysts. Appl Catal A Gen 417:145–152

    Article  Google Scholar 

  36. Lee S, Seo J, Jung W (2016) Sintering-resistant Pt@CeO2 nanoparticles for high-temperature oxidation catalysis. Nanoscale 8(19):10219–10228

    Article  Google Scholar 

  37. Li Y, Liu C-J, Eliasson B, Wang Y (2002) Synthesis of oxygenates and higher hydrocarbons directly from methane and carbon dioxide using dielectric-barrier discharges: product distribution. Energy Fuel 16(4):864–870

    Article  Google Scholar 

  38. Li D, Li X, Gong J (2016) Catalytic reforming of oxygenates: state of the art and prospects. Chem Rev 116(19):11529–11653

    Article  Google Scholar 

  39. Liang Z (2017) Low-temperature activation of methane on the IrO2 (110) surface. Science 356:299–303

    Article  Google Scholar 

  40. Marafi M, Stanislaus A, Furimsky E (2010) Chapter 4 – catalyst deactivation. In: Marafi M, Stanislaus A, Furimsky E (eds) Handbook of spent hydroprocessing catalysts. Elsevier, Amsterdam, pp 51–92

    Chapter  Google Scholar 

  41. Mebrahtu C, Krebs F, Abate S, Perathoner S, Centi G, Palkovits R (2019) Chapter 5 – CO2 methanation: principles and challenges. In: Albonetti S, Perathoner S, Quadrelli EA (eds) Studies in surface science and catalysis, vol 178. Elsevier, Amsterdam, pp 85–103

    Google Scholar 

  42. Morales-Guio CG, Cave ER, Nitopi SA, Feaster JT, Wang L, Kuhl KP, Jackson A, Johnson NC, Abram DN, Hatsukade T, Hahn C, Jaramillo TF (2018) Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat Catal 1(10):764–771

    Article  Google Scholar 

  43. Mustain WE (2018) Final report: room temperature electrochemical upgrading of methane to oxygenate fuels. University of Connecticut, Storrs, CT, USA: Medium: ED; Size: 19 p

    Google Scholar 

  44. Nagiev TM, Gasanova LM, Mamedov EM, Nagieva IT, Ramasanova ZY, Abbasov AA (2004) Selective oxidation of methane to C1-products using hydrogen peroxide. In: Bao X, Xu Y (eds) Studies in surface science and catalysis, vol 147. Elsevier, Amsterdam, pp 637–641

    Google Scholar 

  45. Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y (2016) Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent Sci 2(6):424–429

    Article  Google Scholar 

  46. Nedolivko VV, Zasypalov GO, Vutolkina AV, Gushchin PA, Vinokurov VA, Kulikov LA, Egazar’yants SV, Karakhanov EA, Maksimov AL, Glotov AP (2020) Carbon dioxide reforming of methane. Russ J Appl Chem 93(6):765–787

    Article  Google Scholar 

  47. Newell RG, Raimi D (2020) Global energy outlook comparison methods: 2020 update

    Google Scholar 

  48. Nishi K, Endo M, Satsuma A, Hattori T, Murakami Y (1996) Effect of carbon dioxide on aromatization of ethane over metal-loaded HZSM-5 catalysts. Sekiyu Gakkaishi 39:260–266

    Article  Google Scholar 

  49. Nylund N-O, Aakko P, Niemi S, Paanu T, Berg R (2005) Alcohols/ethers as oxygenates in diesel fuel: properties of blended fuels and evaluation of practical experiences. In: IEA advanced motor fuels, annex XXVI final report TEC 3

    Google Scholar 

  50. Olah GA, Molnár Á (2003) Alkylation. In: Hydrocarbon chemistry. Wiley, Hoboken, pp 215–283

    Chapter  Google Scholar 

  51. Olah GA, Goeppert A, Czaun M, Prakash GKS (2013) Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO–2H2) for methanol and hydrocarbon synthesis. J Am Chem Soc 135(2):648–650

    Article  Google Scholar 

  52. Olivos-Suarez AI, Szécsényi AG, Hensen EJ, Ruiz-Martinez J, Pidko EA, Gascon J (2016) Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS Catal 6(5):2965–2981

    Article  Google Scholar 

  53. Ostrovski O, Zhang G (2006) Reduction and carburization of metal oxides by methane-containing gas. AICHE J 52(1):300–310

    Article  Google Scholar 

  54. Palmer C, Upham DC, Smart S, Gordon MJ, Metiu H, McFarland EW (2020) Dry reforming of methane catalyzed by molten metal alloys. Nat Catal 3(1):83–89

    Article  Google Scholar 

  55. Panjan W, Sirijaraensre J, Warakulwit C, Pantu P, Limtrakul J (2012) The conversion of CO2 and CH4 to acetic acid over the Au-exchanged ZSM-5 catalyst: a density functional theory study. Phys Chem Chem Phys 14(48):16588–16594

    Article  Google Scholar 

  56. Pecci G (1991) Oxygenated diesel fuels part 1-structure and properties correlation. In: Proceedings of the 9th ISAF

    Google Scholar 

  57. Puliyalil H, Lašič Jurković D, Dasireddy VDBC, Likozar B (2018) A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels. RSC Adv 8(48):27481–27508

    Article  Google Scholar 

  58. Reñones P, Collado L, Iglesias-Juez A, Oropeza FE, Fresno F, de la Peña O’Shea VA (2020) Silver–gold bimetal-loaded TiO2 photocatalysts for CO2 reduction. Ind Eng Chem Res 59(20):9440–9450

    Article  Google Scholar 

  59. Samanta A, Bai X, Robinson B, Chen H, Hu J (2017) Conversion of light alkane to value-added chemicals over ZSM-5/metal promoted catalysts. Industrial & Engineering Chemistry Research

    Google Scholar 

  60. Shan J (2017) Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551:605–608

    Article  Google Scholar 

  61. Shan J, Li M, Allard L, Lee S, Flytzani-Stephanopoulos M (2017) Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551:605–608

    Article  Google Scholar 

  62. Shaton K, Hervik A, Hjelle HM (2019) The environmental footprint of natural gas transportation: LNG vs. pipeline. Econ Energy Environ Policy 8(2)

    Google Scholar 

  63. Shi C, Sun Q, Hu H, Herman RG, Klier K, Wachs IE (1996) Direct conversion of methane to methanol and formaldehyde over a double-layered catalyst bed in the presence of steam. Chem Commun 5:663–664

    Article  Google Scholar 

  64. Shylesh S, Gokhale AA, Ho CR, Bell AT (2017) Novel strategies for the production of fuels, lubricants, and chemicals from biomass. Acc Chem Res 50(10):2589–2597

    Article  Google Scholar 

  65. Siegelman RL, Milner PJ, Kim EJ, Weston SC, Long JR (2019) Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions. Energy Environ Sci 12(7):2161–2173

    Article  Google Scholar 

  66. Sim Y, Kwon D, An S, Ha J-M, Oh T-S, Jung JC (2020) Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane. Mol Catal 489:110925

    Article  Google Scholar 

  67. Spivey JJ, Hutchings G (2014) Catalytic aromatization of methane. Chem Soc Rev 43(3):792–803

    Article  Google Scholar 

  68. Spivey JJ, Wilcox EM, Roberts GW (2008) Direct utilization of carbon dioxide in chemical synthesis: vinyl acetate via methane carboxylation. Catal Commun 9(5):685–689

    Article  Google Scholar 

  69. Stanmore BR, Brilhac J-F, Gilot P (2001) The oxidation of soot: a review of experiments, mechanisms, and models. Carbon 39(15):2247–2268

    Article  Google Scholar 

  70. Strukul G (2013) Catalytic oxidations with hydrogen peroxide as oxidant. Springer, London

    Google Scholar 

  71. Tabata K, Teng Y, Takemoto T, Suzuki E, Banares M, Pena M, Fierro JG (2002) Activation of methane by oxygen and nitrogen oxides. Catal Rev 44(1):1–58

    Article  Google Scholar 

  72. Wang Y (2006) Selective oxidation of hydrocarbons catalyzed by iron-containing heterogeneous catalysts. Res Chem Intermed 32(3–4):235–251

    Article  Google Scholar 

  73. Wang D, Villa A, Porta F, Prati L, Su D (2008) Bimetallic gold/palladium catalysts: correlation between nanostructure and synergistic effects. J Phys Chem C 112(23):8617–8622

    Article  Google Scholar 

  74. Wang Y, An D, Zhang Q (2010) Catalytic selective oxidation or oxidative functionalization of methane and ethane to organic oxygenates. Sci China Chem 53(2):337–350

    Article  Google Scholar 

  75. Wang L, Yi Y, Wu C, Guo H, Tu X (2017) One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angew Chem Int Ed 56(44):13679–13683

    Article  Google Scholar 

  76. Wang S, Guo S, Luo Y, Qin Z, Chen Y, Dong M, Li J, Fan W, Wang J (2019) Direct synthesis of acetic acid from carbon dioxide and methane over Cu-modulated BEA, MFI, MOR, and TON zeolites: a density functional theory study. Cat Sci Technol 9(23):6613–6626

    Article  Google Scholar 

  77. Whang HS, Lim J, Choi MS, Lee J, Lee H (2019) Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. BMC Chem Eng 1(1):9

    Article  Google Scholar 

  78. Wilcox EM, Roberts GW, Spivey JJ (2003) Direct catalytic formation of acetic acid from CO2 and methane. Catal Today 88(1):83–90

    Article  Google Scholar 

  79. Wu J-F, Yu S-M, Wang WD, Fan Y-X, Bai S, Zhang C-W, Gao Q, Huang J, Wang W (2013) Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H–ZSM-5 zeolite. J Am Chem Soc 135(36):13567–13573

    Article  Google Scholar 

  80. Yabe T, Sekine Y (2018) Methane conversion using carbon dioxide as an oxidizing agent: a review. Fuel Process Technol 181:187–198

    Article  Google Scholar 

  81. Yeh L, Rickeard D, Duff J, Bateman J, Schlosberg R, Caers R (2001) Oxygenates: an evaluation of their effects on diesel emissions. SAE Trans:1482–1498

    Google Scholar 

  82. Yuan S, Fan Y, Zhang Y, Tong M, Liao P (2011) Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-Fenton degradation of rhodamine B. Environ Sci Technol 45(19):8514–8520

    Article  Google Scholar 

  83. Zhao Y, Cui C, Han J, Wang H, Zhu X, Ge Q (2016) Direct C–C coupling of CO2 and the methyl group from CH4 activation through facile insertion of CO2 into Zn–CH3 σ-bond. J Am Chem Soc 138(32):10191–10198

    Article  Google Scholar 

  84. Zou J-J, Zhang Y-p, Liu C-J, Li Y, Eliasson B (2003a) Starch-enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharges. Plasma Chem Plasma Process 23(1):69–82

    Article  Google Scholar 

  85. Zou J-J, Zhang Y-p, Liu C-J, Li Y, Eliasson B (2003b) Starch-enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharges. Plasma Chem Plasma Process 23:69–82

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the project entitled “University Coalition for Fossil Energy Research (UCFER)” awarded by the U.S. Department of Energy under grant #GR-00004649 (Subaward #5958-LSU-DOE-6825). The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the quality of this work.

Author Contribution

We declare the following credits to the authors of this work: Conceptualization: Ashraf Abedin; Validation: James J. Spivey; Formal Analysis: Ashraf Abedin; Investigation: Ashraf Abedin; Resources: James J. Spivey; Writing-Original Draft Preparation: Ashraf Abedin; Writing-Review and Editing; Ashraf Abedin and James J. Spivey; Revision: Ashraf Abedin and James J. Spivey; Visualization: Ashraf Abedin; Supervision: James J. Spivey; Project Administration: James J. Spivey; Funding Acquisition: James J. Spivey. The authors declare that this work has never been submitted before for consideration of publication. The authors further acknowledge that there is no financial relationship with the editors or publisher and have contributed original work in this chapter, other than what was acknowledged or appropriately cited with copyright permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Spivey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abedin, A., Spivey, J.J. (2021). Direct Catalytic Low-Temperature Conversion of CO2 and Methane to Oxygenates. In: Gao, Yj., Song, W., Liu, J.L., Bashir, S. (eds) Advances in Sustainable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-74406-9_8

Download citation

Publish with us

Policies and ethics