Skip to main content

Tensor Subspace Cluster

  • Chapter
  • First Online:
Tensor Computation for Data Analysis

Abstract

As a typical unsupervised learning technique, subspace clustering learns the subspaces of data and assigns data into their respective subspaces, which is important for a number of data processing applications. Traditional subspace clustering is based on matrix computation, and it is inevitable to lose some structural information when dealing with multidimensional data. To alleviate performance degeneration from matricization or vectorization, tensor subspace clustering is used to learn directly in tensor subspace. In this chapter, we mainly introduce two tensor-based cluster models, including K-means and self-representation, respectively. In particular, different subspace clustering models based on different tensor decompositions and corresponding algorithms are outlined in details, such as Tucker decomposition and t-SVD. To demonstrate the performance in practical applications, we apply tensor subspace clustering in clustering for heterogeneous information networks, multichannel ECG signal clustering, and multi-view data clustering. Experimental results show the tensor subspace clustering has superior performance than its matrix counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, E., Dunlavy, D.M., Kolda, T.G.: A scalable optimization approach for fitting canonical tensor decompositions. J. Chemometrics 25(2), 67–86 (2011)

    Article  Google Scholar 

  2. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  3. Bauckhage, C.: K-means clustering is matrix factorization (2015, preprint). arXiv:1512.07548

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity-induced multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–594 (2015)

    Google Scholar 

  6. Chen, Y., Xiao, X., Zhou, Y.: Jointly learning kernel representation tensor and affinity matrix for multi-view clustering. IEEE Trans. Multimedia 22(8), 1985–1997 (2019)

    Article  Google Scholar 

  7. Cheng, M., Jing, L., Ng, M.K.: Tensor-based low-dimensional representation learning for multi-view clustering. IEEE Trans. Image Process. 28(5), 2399–2414 (2018)

    Article  MathSciNet  Google Scholar 

  8. Costeira, J.P., Kanade, T.: A multibody factorization method for independently moving objects. Int. J. Comput. Visi. 29(3), 159–179 (1998)

    Article  Google Scholar 

  9. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2797. IEEE, Piscataway (2009)

    Google Scholar 

  10. Elhamifar, E., Vidal, R.: Clustering disjoint subspaces via sparse representation. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1926–1929. IEEE, Piscataway (2010)

    Google Scholar 

  11. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  12. Favaro, P., Vidal, R., Ravichandran, A.: A closed form solution to robust subspace estimation and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011), pp. 1801–1807. IEEE, Piscataway (2011)

    Google Scholar 

  13. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 524–531. IEEE, Piscataway (2005)

    Google Scholar 

  14. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. Gear, C.W.: Multibody grouping from motion images. Int. J. Comput. Vision 29(2), 133–150 (1998)

    Article  Google Scholar 

  16. Goh, A., Vidal, R.: Segmenting motions of different types by unsupervised manifold clustering. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6. IEEE, Piscataway (2007)

    Google Scholar 

  17. He, H., Tan, Y., Xing, J.: Unsupervised classification of 12-lead ECG signals using wavelet tensor decomposition and two-dimensional gaussian spectral clustering. Knowl.-Based Syst. 163, 392–403 (2019)

    Article  Google Scholar 

  18. Huang, H., Ding, C., Luo, D., Li, T.: Simultaneous tensor subspace selection and clustering: the equivalence of high order SVD and k-means clustering. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 327–335 (2008)

    Google Scholar 

  19. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  20. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1413–1421 (2011)

    Google Scholar 

  22. Leginus, M., Dolog, P., Žemaitis, V.: Improving tensor based recommenders with clustering. In: International Conference on User Modeling, Adaptation, and Personalization, pp. 151–163. Springer, Berlin (2012)

    Google Scholar 

  23. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: Advances in Neural Information Processing Systems, pp. 612–620 (2011)

    Google Scholar 

  24. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 663–670 (2010)

    Google Scholar 

  25. Liu, J., Liu, J., Wonka, P., Ye, J.: Sparse non-negative tensor factorization using columnwise coordinate descent. Pattern Recognit. 45(1), 649–656 (2012)

    Article  Google Scholar 

  26. Lu, C.Y., Min, H., Zhao, Z.Q., Zhu, L., Huang, D.S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: European Conference on Computer Vision, pp. 347–360. Springer, Berlin (2012)

    Google Scholar 

  27. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2012)

    Article  Google Scholar 

  28. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: MPCA: multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 19(1), 18–39 (2008)

    Article  Google Scholar 

  29. Ma, Y., Yang, A.Y., Derksen, H., Fossum, R.: Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev. 50(3), 413–458 (2008)

    Article  MathSciNet  Google Scholar 

  30. Paatero, P.: A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis. Chemom. Intell. Lab. Syst. 38(2), 223–242 (1997)

    Article  Google Scholar 

  31. Peng, W., Li, T.: Tensor clustering via adaptive subspace iteration. Intell. Data Anal. 15(5), 695–713 (2011)

    Article  Google Scholar 

  32. Peng, H., Hu, Y., Chen, J., Haiyan, W., Li, Y., Cai, H.: Integrating tensor similarity to enhance clustering performance. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.3040306

  33. Poullis, C.: Large-scale urban reconstruction with tensor clustering and global boundary refinement. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1132–1145 (2019)

    Article  Google Scholar 

  34. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1832–1845 (2009)

    Article  Google Scholar 

  35. Ren, Z., Mukherjee, M., Bennis, M., Lloret, J.: Multikernel clustering via non-negative matrix factorization tailored graph tensor over distributed networks. IEEE J. Sel. Areas Commun. 39(7), 1946–1956 (2021)

    Article  Google Scholar 

  36. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  37. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  38. Sui, Y., Zhao, X., Zhang, S., Yu, X., Zhao, S., Zhang, L.: Self-expressive tracking. Pattern Recognit. 48(9), 2872–2884 (2015)

    Article  Google Scholar 

  39. Sui, Y., Wang, G., Zhang, L.: Sparse subspace clustering via low-rank structure propagation. Pattern Recognit. 95, 261–271 (2019)

    Article  Google Scholar 

  40. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: Rankclus: integrating clustering with ranking for heterogeneous information network analysis. In: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, pp. 565–576 (2009)

    Google Scholar 

  41. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  42. Tseng, P.: Nearest q-flat to m points. J. Optim. Theory Appl. 105(1), 249–252 (2000)

    Article  MathSciNet  Google Scholar 

  43. Vidal, R.: Subspace clustering. IEEE Signal Process. Mag. 28(2), 52–68 (2011)

    Article  Google Scholar 

  44. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005)

    Article  Google Scholar 

  45. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  46. Wu, J., Wang, Z., Wu, Y., Liu, L., Deng, S., Huang, H.: A tensor CP decomposition method for clustering heterogeneous information networks via stochastic gradient descent algorithms. Sci. Program. 2017, 2803091 (2017)

    Google Scholar 

  47. Wu, T., Bajwa, W.U.: A low tensor-rank representation approach for clustering of imaging data. IEEE Signal Process. Lett. 25(8), 1196–1200 (2018)

    Article  Google Scholar 

  48. Wu, J., Lin, Z., Zha, H.: Essential tensor learning for multi-view spectral clustering. IEEE Trans. Image Proces. 28(12), 5910–5922 (2019)

    Article  MathSciNet  Google Scholar 

  49. Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2149–2155 (2014)

    Google Scholar 

  50. Xie, Y., Tao, D., Zhang, W., Liu, Y., Zhang, L., Qu, Y.: On unifying multi-view self-representations for clustering by tensor multi-rank minimization. Int. J. Comput. Vis. 126(11), 1157–1179 (2018)

    Article  MathSciNet  Google Scholar 

  51. Xie, Y., Zhang, W., Qu, Y., Dai, L., Tao, D.: Hyper-laplacian regularized multilinear multiview self-representations for clustering and semisupervised learning. IEEE Trans. Cybern. 50(2), 572–586 (2018)

    Article  Google Scholar 

  52. Yan, J., Pollefeys, M.: A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: European Conference on Computer Vision, pp. 94–106. Springer, Berlin (2006)

    Google Scholar 

  53. Yang, B., Fu, X., Sidiropoulos, n.d.: Learning from hidden traits: joint factor analysis and latent clustering. IEEE Trans. Signal Process. 65(1), 256–269 (2016)

    Google Scholar 

  54. Yu, K., He, L., Philip, S.Y., Zhang, W., Liu, Y.: Coupled tensor decomposition for user clustering in mobile internet traffic interaction pattern. IEEE Access. 7, 18113–18124 (2019)

    Article  Google Scholar 

  55. Zhang, T., Szlam, A., Lerman, G.: Median k-flats for hybrid linear modeling with many outliers. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 234–241. IEEE, Piscataway (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Liu, J., Long, Z., Zhu, C. (2022). Tensor Subspace Cluster. In: Tensor Computation for Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-74386-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74386-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74385-7

  • Online ISBN: 978-3-030-74386-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics