Skip to main content

Robust Principal Tensor Component Analysis

  • Chapter
  • First Online:
Tensor Computation for Data Analysis

Abstract

As a fundamental and popular tool for data analysis and dimensionality reduction, principal component analysis (PCA) plays an important role in a wide range of disciplines. Due to PCA’s sensitivity to sparse noise, robust PCA formulates a data matrix as the superposition of a low-rank component and a sparse component. When dealing with the ubiquitous multidimensional data, matrix transformation operation is inevitable, which will cause the loss of structure information. Therefore, robust principal tensor component analysis (RPTCA) is proposed, which separates the low-rank and the sparse tensor from the whole tensor by exploring the multidimensional structure properties.

In this chapter, various RPTCA methods for different tensor ranks and sparse tensor constraints are outlined. Especially, approaches based on tensor singular value decomposition (t-SVD) and its extensions are mainly discussed. The classic alternating direction method of multipliers (ADMM) is used for solving the RPTCA problem easily and efficiently. Finally, we present several related practical applications such as background extraction, video rain streaks removal, and infrared small target detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://vision.ucsd.edu/content/yale-face-database.

  2. 2.

    http://trace.eas.asu.edu/yuv/.

References

  1. Abdel-Hakim, A.E.: A novel approach for rain removal from videos using low-rank recovery. In: 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, pp. 351–356. IEEE, Piscataway (2014)

    Google Scholar 

  2. Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Proc. 26(5), 2466–2479 (2017)

    Article  MathSciNet  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  4. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chen, L., Liu, Y., Zhu, C.: Iterative block tensor singular value thresholding for extraction of low rank component of image data. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1862–1866. IEEE, Piscataway (2017)

    Google Scholar 

  6. Chen, L., Liu, Y., Zhu, C.: Robust tensor principal component analysis in all modes. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE, Piscataway (2018)

    Google Scholar 

  7. Dai, Y., Wu, Y.: Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 10(8), 3752–3767 (2017)

    Article  Google Scholar 

  8. De La Torre, F., Black, M.J.: A framework for robust subspace learning. Int. J. Comput. Vision 54(1–3), 117–142 (2003)

    Article  Google Scholar 

  9. Driggs, D., Becker, S., Boyd-Graber, J.: Tensor robust principal component analysis: Better recovery with atomic norm regularization (2019). Preprint arXiv:1901.10991

    Google Scholar 

  10. Feng, J., Xu, H., Yan, S.: Online robust PCA via stochastic optimization. In: Advances in Neural Information Processing Systems, pp. 404–412 (2013)

    Google Scholar 

  11. Feng, L., Liu, Y., Chen, L., Zhang, X., Zhu, C.: Robust block tensor principal component analysis. Signal Process. 166, 107271 (2020)

    Article  Google Scholar 

  12. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  13. Gao, C., Zhang, T., Li, Q.: Small infrared target detection using sparse ring representation. IEEE Aerosp. Electron. Syst. Mag. 27(3), 21–30 (2012)

    Article  Google Scholar 

  14. Gao, C., Meng, D., Yang, Y., Wang, Y., Zhou, X., Hauptmann, A.G.: Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 22(12), 4996–5009 (2013)

    Article  MathSciNet  Google Scholar 

  15. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Analy. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  16. Gnanadesikan, R., Kettenring, J.: Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics 28, 81–124 (1972)

    Article  Google Scholar 

  17. Hu, W., Tao, D., Zhang, W., Xie, Y., Yang, Y.: The twist tensor nuclear norm for video completion. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2961–2973 (2016)

    Article  MathSciNet  Google Scholar 

  18. Huang, B., Mu, C., Goldfarb, D., Wright, J.: Provable low-rank tensor recovery. Optimization-Online 4252(2) (2014)

    Google Scholar 

  19. Huang, H., Liu, Y., Long, Z., Zhu, C.: Robust low-rank tensor ring completion. IEEE Trans. Comput. Imaging 6, 1117–1126 (2020)

    Article  MathSciNet  Google Scholar 

  20. Huber, P.J.: Robust statistics, vol. 523. John Wiley & Sons, New York (2004)

    Google Scholar 

  21. Jiang, T.X., Huang, T.Z., Zhao, X.L., Deng, L.J.: A novel nonconvex approach to recover the low-tubal-rank tensor data: when t-SVD meets PSSV (2017). Preprint arXiv:1712.05870

    Google Scholar 

  22. Jiang, T.X., Huang, T.Z., Zhao, X.L., Deng, L.J., Wang, Y.: A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2827 (2017). https://doi.org/10.1109/CVPR.2017.301

  23. Jiang, T.X., Huang, T.Z., Zhao, X.L., Deng, L.J., Wang, Y.: Fastderain: A novel video rain streak removal method using directional gradient priors. IEEE Trans. Image Process. 28(4), 2089–2102 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ke, Q., Kanade, T.: Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 739–746. IEEE, Piscataway (2005)

    Google Scholar 

  25. Kernfeld, E., Kilmer, M., Aeron, S.: Tensor–tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kim, J.H., Sim, J.Y., Kim, C.S.: Video deraining and desnowing using temporal correlation and low-rank matrix completion. IEEE Trans. Image Process. 24(9), 2658–2670 (2015)

    Article  MathSciNet  Google Scholar 

  27. Liu, X.Y., Wang, X.: Fourth-order tensors with multidimensional discrete transforms (2017). Preprint arXiv:1705.01576

    Google Scholar 

  28. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Analy. Mach. Intell. 35(1), 208–220 (2012)

    Article  Google Scholar 

  29. Liu, Y., Chen, L., Zhu, C.: Improved robust tensor principal component analysis via low-rank core matrix. IEEE J. Sel. Topics Signal Process. 12(6), 1378–1389 (2018)

    Article  Google Scholar 

  30. Liu, Y., Liu, T., Liu, J., Zhu, C.: Smooth robust tensor principal component analysis for compressed sensing of dynamic MRI. Pattern Recogn. 102, 107252 (2020)

    Article  Google Scholar 

  31. Lu, C., Zhou, P.: Exact recovery of tensor robust principal component analysis under linear transforms (2019). Preprint arXiv:1907.08288

    Google Scholar 

  32. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5249–5257 (2016)

    Google Scholar 

  33. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Analy. Mach. Intell. 42(4), 925–938 (2019)

    Article  Google Scholar 

  34. Maddalena, L., Petrosino, A.: Towards benchmarking scene background initialization. In: International Conference on Image Analysis and Processing, pp. 469–476. Springer, Berlin (2015)

    Google Scholar 

  35. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE, Piscataway (2001)

    Google Scholar 

  36. Oh, T.H., Kim, H., Tai, Y.W., Bazin, J.C., So Kweon, I.: Partial sum minimization of singular values in RPCA for low-level vision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 145–152 (2013)

    Google Scholar 

  37. Oh, T.H., Tai, Y.W., Bazin, J.C., Kim, H., Kweon, I.S.: Partial sum minimization of singular values in robust PCA: Algorithm and applications. IEEE Trans. Pattern Analy. Mach. Intell. 38(4), 744–758 (2015)

    Article  Google Scholar 

  38. Ong, F., Lustig, M.: Beyond low rank + sparse: Multiscale low rank matrix decomposition. IEEE J. Sel. Topics Signal Process. 10(4), 672–687 (2015)

    Article  Google Scholar 

  39. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Google Scholar 

  40. Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor SVD (2019). Preprint arXiv:1907.01113

    Google Scholar 

  41. Su, Y., Wu, X., Liu, G.: Nonconvex low tubal rank tensor minimization. IEEE Access 7, 170831–170843 (2019)

    Article  Google Scholar 

  42. Sun, W., Yang, G., Peng, J., Du, Q.: Lateral-slice sparse tensor robust principal component analysis for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17(1), 107–111 (2019)

    Article  Google Scholar 

  43. Wang, A., Song, X., Wu, X., Lai, Z., Jin, Z.: Robust low-tubal-rank tensor completion. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3432–3436. IEEE, Piscataway (2019)

    Google Scholar 

  44. Wang, X., Gu, L., Lee, H.w.J., Zhang, G.: Quantum tensor singular value decomposition with applications to recommendation systems (2019). Preprint arXiv:1910.01262

    Google Scholar 

  45. Wang, A., Li, C., Jin, Z., Zhao, Q.: Robust tensor decomposition via orientation invariant tubal nuclear norms. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, No. 04, pp. 6102–6109 (2020)

    Google Scholar 

  46. Wang, S., Liu, Y., Feng, L., Zhu, C.: Frequency-weighted robust tensor principal component analysis (2020). Preprint arXiv:2004.10068

    Google Scholar 

  47. Wijnen, M., et al.: Online tensor robust principal component analysis. Technical Report, The Australian National University (2018)

    Google Scholar 

  48. Xu, W.H., Zhao, X.L., Ng, M.: A fast algorithm for cosine transform based tensor singular value decomposition (2019). Preprint arXiv:1902.03070

    Google Scholar 

  49. Yang, J.H., Zhao, X.L., Ji, T.Y., Ma, T.H., Huang, T.Z.: Low-rank tensor train for tensor robust principal component analysis. Appl. Math. Comput. 367, 124783 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, L., Peng, Z.: Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 11(4), 382 (2019)

    Article  Google Scholar 

  51. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842–3849 (2014)

    Google Scholar 

  52. Zhang, Z., Liu, D., Aeron, S., Vetro, A.: An online tensor robust PCA algorithm for sequential 2D data. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2434–2438. IEEE, Piscataway (2016)

    Google Scholar 

  53. Zhang, Y., Han, Z., Tang, Y.: Color image denoising based on low-rank tensor train. In: Tenth International Conference on Graphics and Image Processing (ICGIP 2018), vol. 11069, p. 110692P. International Society for Optics and Photonics, Bellingham (2019)

    Google Scholar 

  54. Zhao, Q., Zhang, L., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Analy. Mach. Intell. 37(9), 1751–1763 (2015)

    Article  Google Scholar 

  55. Zheng, Y.B., Huang, T.Z., Zhao, X.L., Jiang, T.X., Ma, T.H., Ji, T.Y.: Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Trans. Geosci. Remote Sens. 58(1), 734–749 (2019)

    Article  Google Scholar 

  56. Zheng, Y.B., Huang, T.Z., Zhao, X.L., Jiang, T.X., Ji, T.Y., Ma, T.H.: Tensor N-tubal rank and its convex relaxation for low-rank tensor recovery. Inf. Sci. 532, 170–189 (2020)

    Article  MathSciNet  Google Scholar 

  57. Zhou, P., Feng, J.: Outlier-robust tensor PCA. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2263–2271 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Liu, J., Long, Z., Zhu, C. (2022). Robust Principal Tensor Component Analysis. In: Tensor Computation for Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-74386-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74386-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74385-7

  • Online ISBN: 978-3-030-74386-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics