Skip to main content

Tensor-Based Gaussian Graphical Model

  • Chapter
  • First Online:
Tensor Computation for Data Analysis
  • 2422 Accesses

Abstract

Exploring the relationships between variables of data has attracted a lot of attentions in the fields like machine learning, signal processing, neuroscience, and social network. It enables us to better understand the data before choosing models for particular tasks. Gaussian graphical model provides a natural and straightforward way to reveal the relationships of variables in data, where the zero entries in precision matrices represent conditional independence between corresponding variables and vice versa. However, traditional vector- or matrix-variate-based methods are not suitable for higher-order data analysis due to the possible structural information loss, and this is where tensor-variate-based Gaussian graphical model comes in. In this chapter, we discuss the development of Gaussian graphical models from vector-variate-based methods, matrix-variate-based methods to tensor-variate-based methods and mainly focus on the last one. Detailed assumptions, probability density functions, optimization models based on maximum likelihood estimation, and some typical algorithms are given. In addition, we illustrate the applications of tensor Gaussian graphical models in environmental prediction and mice aging study and give some numerically experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ftp://ftp2.psl.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/surface/.

  2. 2.

    http://cmgm.stanford.edu/~kimlab/aging_mouse.

References

  1. Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J. Mach. Learn. Res. 9, 485–516 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Beal, M.J., Jojic, N., Attias, H.: A graphical model for audiovisual object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(7), 828–836 (2003)

    Article  Google Scholar 

  3. Brouard, C., de Givry, S., Schiex, T.: Pushing data into CP models using graphical model learning and solving. In: International Conference on Principles and Practice of Constraint Programming, pp. 811–827. Springer, Berlin (2020)

    Google Scholar 

  4. d’Aspremont, A., Banerjee, O., El Ghaoui, L.: First-order methods for sparse covariance selection. SIAM J. Matrix Anal. Appl. 30(1), 56–66 (2008)

    Article  MathSciNet  Google Scholar 

  5. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  6. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  7. He, S., Yin, J., Li, H., Wang, X.: Graphical model selection and estimation for high dimensional tensor data. J. Multivar. Anal. 128, 165–185 (2014)

    Article  MathSciNet  Google Scholar 

  8. Leng, C., Tang, C.Y.: Sparse matrix graphical models. J. Am. Stat. Assoc. 107(499), 1187–1200 (2012)

    Article  MathSciNet  Google Scholar 

  9. Lyu, X., Sun, W.W., Wang, Z., Liu, H., Yang, J., Cheng, G.: Tensor graphical model: non-convex optimization and statistical inference. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2024–2037 (2019)

    Article  Google Scholar 

  10. Ma, C., Lu, J., Liu, H.: Inter-subject analysis: a partial Gaussian graphical model approach. J. Am. Stat. Assoc. 116(534), 746–755 (2021)

    Article  MathSciNet  Google Scholar 

  11. Meinshausen, N., Bühlmann, P., et al.: High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34(3), 1436–1462 (2006)

    Article  MathSciNet  Google Scholar 

  12. Shahid, N., Grassi, F., Vandergheynst, P.: Multilinear low-rank tensors on graphs & applications (2016, preprint). arXiv:1611.04835

    Google Scholar 

  13. Shen, X., Pan, W., Zhu, Y.: Likelihood-based selection and sharp parameter estimation. J. Am. Stat. Assoc. 107(497), 223–232 (2012)

    Article  MathSciNet  Google Scholar 

  14. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Wu, W.B., Pourahmadi, M.: Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika 90(4), 831–844 (2003)

    Article  MathSciNet  Google Scholar 

  16. Xu, P., Zhang, T., Gu, Q.: Efficient algorithm for sparse tensor-variate gaussian graphical models via gradient descent. In: Artificial Intelligence and Statistics, pp. 923–932. PMLR, Westminster (2017)

    Google Scholar 

  17. Yin, J., Li, H.: Model selection and estimation in the matrix normal graphical model. J. Multivariate Anal. 107, 119–140 (2012)

    Article  MathSciNet  Google Scholar 

  18. Yuan, M.: High dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res. 11, 2261–2286 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Yuan, M., Lin, Y.: Model selection and estimation in the gaussian graphical model. Biometrika 94(1), 19–35 (2007)

    Article  MathSciNet  Google Scholar 

  20. Zhang, C.H., et al.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)

    Article  MathSciNet  Google Scholar 

  21. Zhou, S., et al.: Gemini: graph estimation with matrix variate normal instances. Ann. Stat. 42(2), 532–562 (2014)

    Article  MathSciNet  Google Scholar 

  22. Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Liu, J., Long, Z., Zhu, C. (2022). Tensor-Based Gaussian Graphical Model. In: Tensor Computation for Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-74386-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74386-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74385-7

  • Online ISBN: 978-3-030-74386-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics