Skip to main content

Tensor Decomposition in Deep Networks

  • Chapter
  • First Online:
Tensor Computation for Data Analysis
  • 2527 Accesses

Abstract

With the help of available big data and powerful computing units, deep learning has achieved remarkable performance in a series of data processing applications, such as speech recognition, computer vision, and natural language processing. Most of the existing neural networks take a lot of matrix computation operators in their architecture, which requires that the multidimensional input or output must be transformed into matrix form and the multilinear structure information may inevitably be lost. In order to avoid the performance degeneration from the structure loss, tensor computation operators have been introduced to extend the matrix-based neural networks. In this chapter, we first give a brief introduction of classical deep neural networks. Tensor computation is used to extend deep neural networks mainly from three ways in existing works. The first one extends the matrix product in each neural layer to tensor counterparts, inspired by different tensor decompositions, including t-product connected deep neural network, mode-n product-based tensorized neural network, etc. In the second way, different tensor decompositions have been used to compress the whole network parameters by low-rank tensor approximation. The third way builds up the connection between tensor decompositions and neural networks, which helps to theoretically analyze deep learning. To demonstrate the effectiveness of tensor analysis for deep neural networks, experimental results on low-rank tensor approximation for network compression show that the computational complexity and storage requirement can be largely reduced, while the image classification accuracy can be maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvi, G.G., Moniri, A., Mahfouz, M., Zhao, Q., Mandic, D.P.: Compression and interpretability of deep neural networks via Tucker tensor layer: from first principles to tensor valued back-propagation (2019, eprints). arXiv–1903

    Google Scholar 

  2. Cao, X., Rabusseau, G.: Tensor regression networks with various low-rank tensor approximations (2017, preprint). arXiv:1712.09520

    Google Scholar 

  3. Chien, J.T., Bao, Y.T.: Tensor-factorized neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 1998–2011 (2017). https://doi.org/10.1109/TNNLS.2017.2690379

    Article  MathSciNet  Google Scholar 

  4. Cohen, N., Sharir, O., Levine, Y., Tamari, R., Yakira, D., Shashua, A.: Analysis and design of convolutional networks via hierarchical tensor decompositions (2017, eprints). arXiv–1705

    Google Scholar 

  5. Garipov, T., Podoprikhin, D., Novikov, A., Vetrov, D.: Ultimate tensorization: compressing convolutional and FC layers alike (2016, eprints). arXiv–1611

    Google Scholar 

  6. Goldberg, Y.: A primer on neural network models for natural language processing. J. Artif. Intell. Res. 57, 345–420 (2016)

    Article  MathSciNet  Google Scholar 

  7. Guo, J., Li, Y., Lin, W., Chen, Y., Li, J.: Network decoupling: from regular to depthwise separable convolutions (2018, eprints). arXiv–1808

    Google Scholar 

  8. Hawkins, C., Zhang, Z.: End-to-end variational bayesian training of tensorized neural networks with automatic rank determination (2020, eprints). arXiv–2010

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. In: Proceedings of the British Machine Vision Conference. BMVA Press, Saint-Ouen-l’Aumône (2014)

    Book  Google Scholar 

  11. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics, Doha, Qatar (2014). https://doi.org/10.3115/v1/D14-1181. https://www.aclweb.org/anthology/D14-1181

  12. Kossaifi, J., Khanna, A., Lipton, Z., Furlanello, T., Anandkumar, A.: Tensor contraction layers for parsimonious deep nets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 26–32 (2017)

    Google Scholar 

  13. Kossaifi, J., Bulat, A., Tzimiropoulos, G., Pantic, M.: T-net: Parametrizing fully convolutional nets with a single high-order tensor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7822–7831 (2019)

    Google Scholar 

  14. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I.V., Lempitsky, V.S.: Speeding-up convolutional neural networks using fine-tuned CP-Decomposition. In: International Conference on Learning Representations ICLR (Poster) (2015)

    Google Scholar 

  15. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Makantasis, K., Voulodimos, A., Doulamis, A., Bakalos, N., Doulamis, N.: Space-time domain tensor neural networks: an application on human pose recognition (2020, e-prints). arXiv–2004

    Google Scholar 

  18. Mhaskar, H., Liao, Q., Poggio, T.: Learning functions: when is deep better than shallow. preprint arXiv:1603.00988

    Google Scholar 

  19. Newman, E., Horesh, L., Avron, H., Kilmer, M.: Stable tensor neural networks for rapid deep learning (2018, e-prints). arXiv–1811

    Google Scholar 

  20. Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Red Hook (2015). https://proceedings.neurips.cc/paper/2015/file/6855456e2fe46a9d49d3d3af4f57443d-Paper.pdf

  21. Qi, J., Hu, H., Wang, Y., Yang, C.H.H., Siniscalchi, S.M., Lee, C.H.: Tensor-to-vector regression for multi-channel speech enhancement based on tensor-train network. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7504–7508. IEEE, Piscataway (2020)

    Google Scholar 

  22. Selvan, R., Dam, E.B.: Tensor networks for medical image classification. In: Medical Imaging with Deep Learning, pp. 721–732. PMLR, Westminster (2020)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  24. Tachioka, Y., Ishii, J.: Long short-term memory recurrent-neural-network-based bandwidth extension for automatic speech recognition. Acoust. Sci. Technol. 37(6), 319–321 (2016)

    Article  Google Scholar 

  25. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566 (2015)

    Google Scholar 

  26. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  27. Wang, W., Sun, Y., Eriksson, B., Wang, W., Aggarwal, V.: Wide compression: tensor ring nets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9329–9338 (2018)

    Google Scholar 

  28. Xu, Y., Li, Y., Zhang, S., Wen, W., Wang, B., Dai, W., Qi, Y., Chen, Y., Lin, W., Xiong, H.: Trained rank pruning for efficient deep neural networks (2019, e-prints). arXiv–1910

    Google Scholar 

  29. Yang, Y., Krompass, D., Tresp, V.: Tensor-train recurrent neural networks for video classification. In: International Conference on Machine Learning, pp. 3891–3900. PMLR, Westminster (2017)

    Google Scholar 

  30. Ye, J., Li, G., Chen, D., Yang, H., Zhe, S., Xu, Z.: Block-term tensor neural networks. Neural Netw. 130, 11–21 (2020)

    Article  Google Scholar 

  31. Yin, M., Liao, S., Liu, X.Y., Wang, X., Yuan, B.: Compressing recurrent neural networks using hierarchical tucker tensor decomposition (2020, e-prints). arXiv–2005

    Google Scholar 

  32. Yu, D., Deng, L., Seide, F.: The deep tensor neural network with applications to large vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 21(2), 388–396 (2012)

    Article  Google Scholar 

  33. Zhang, X., Zou, J., He, K., Sun, J.: Accelerating ery deep convolutional networks for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1943–1955 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Liu, J., Long, Z., Zhu, C. (2022). Tensor Decomposition in Deep Networks. In: Tensor Computation for Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-74386-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74386-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74385-7

  • Online ISBN: 978-3-030-74386-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics