Skip to main content

Porphyrin-Based Nanomaterials for Cancer Nanotheranostics

  • Chapter
  • First Online:
Cancer Nanotheranostics

Abstract

Porphyrins have been explored as emerging theranostic agents in the therapeutic intervention of cancer. It has been potentially implicated in the treatment of cancer radiotherapy, photodynamic therapy, chemical sonosensitizer, fluorescence magnetic resonance, and other biomedical imaging. Due to the hydrophobic property of porphyrin, it forms insoluble aggregate in aqueous medium and is not easy to work. However, several work has been taken place and isolated new porphyrin but due to the lack of tissue selectivity, high aggregation in skin only few of them has real clinical efficacy. Despite this, encapsulating porphyrin in nanoparticles through rational design make it promising because of transformation into suitable forms such as lipophilic, immune tolerance, prolonged tissue lifetime, and improved delivery features. Additionally the various surface modifying components (viz., ligands, targeting moiety/protein/peptides, and imaging agent) could be introduced into nanoparticulate platforms for cancer theranostics. This chapter briefly acquainted the insight into current porphyrin-based nanoparticles delivery in multimodal imaging and diagnosis of tumor and simultaneous therapeutic utility in pharmaceutical and biomedical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhter, M. H.. (2017). Multifunctional nanocargo in the treatment modalities in tumor microenvironment. Pharma Focus Asia [cited 2017 April]. Available from: https://www.pharmafocusasia. com/articles/multifunctional-nano-cargo-for-drugdelivery-to-tumor-cells.

  • Akhter, M. H., Alam, M. S., & Minhaj, M. A.. (2018). Smart nano-enabled drug carrier in combating tumor development and progress. Pharma Focus Asia [cited 2018b September]. Available from: https://www.pharmafocusasia.com/articles/smart-nanoenabled-drug-carrier-in-combating-tumor-development.

  • Akhter, M. H., & Amin, S. (2017). An investigative approach to the treatment modalities of squamous cell carcinoma. Current Drug Delivery, 14, 597–612.

    Article  CAS  PubMed  Google Scholar 

  • Akhter, M. H., Beg, S., Tarique, M., Malik, A., Afaq, S., & Choudhry, H. (2020). Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochimica et Biophysica Acta (BBA) – General Subjects, 1865(2), 129777. Available online 29 October 2020a.

    Article  CAS  Google Scholar 

  • Akhter, M. H., Madhav, N. S., & Ahmad, J. (2018). Epidermal growth factor based active targeting: A paradigm shift towards advance tumor therapy. Artif Cells Nanomed Biotech, 46(2), 1–11.

    Google Scholar 

  • Akhter, M. H., Nomani, S., & Kumar, S. (2020). Sonication tailored enhance cytotoxicity of naringenin nanoparticle in pancreatic cancer: Design, optimization, and in vitro studies. Drug Development and Industrial Pharmacy, 46(4), 1–14.

    Article  CAS  Google Scholar 

  • Akhter, M. H., et al. (2020). Molecular targets and nanoparticulate systems designed for the improved therapeutic intervention in glioblastoma multiforme. Drug Research, 71(3), 122–137. Accepted, 19 October, 2020b.

    PubMed  Google Scholar 

  • Benov, L. (2015). Photodynamic therapy: Current status and future directions. Medical Principles and Practice, 24, 14–28.

    Article  PubMed  Google Scholar 

  • Bera, K., Maiti, S., Maity, M., Mandal, C., & Maiti, N. C. (2018). Porphyrin–gold nanomaterial for efficient drug delivery to cancerous cells. ACS Omega, 3(4), 4602–4619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blau, R., Krivitsky, A., Epshtein, Y., & Satchi-Fainaro, R. (2016). Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resistance Updates, 27, 39–58.

    Article  PubMed  Google Scholar 

  • Boyer, J.-C., Vetrone, F., Cuccia, L. A., & Capobianco, J. A. (2006). Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. Journal of the American Chemical Society, 128, 7444.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Y., Wu, C., Liu, Y., Hu, L., Shang, W., Gao, Z., & Xia, N. (2020). Folate functionalized pH-sensitive photothermal therapy traceable hollow mesoporous silica nanoparticles as a targeted drug carrier to improve the antitumor effect of doxorubicin in the hepatoma cell line SMMC-7721. Drug Delivery, 27(1), 258–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, B., Pogue, B. W., & Hasan, T. (2005). Liposomal delivery of photosensitising agents. Expert Opinion on Drug Delivery, 2(3), 477–487.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Zhang, W., Zhu, G., Xie, J., & Chen, X. (2017). Rethinking cancer nanotheranostics. Nature Reviews Materials, 2, 17024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., & Zhang, J. (2006). Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 6(4), 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  • Hou, W., Lou, J. W. H., Bu, J., Chang, E., Ding, L., & Valic, M. (2019). Nanoemulsion with porphyrin shell for cancer theranostics. Angewandte Chemie, International Edition, 58(42), 14974–14978.

    Article  CAS  Google Scholar 

  • Hu, S., Trinchi, A., Atkin, P., & Cole, I. (2015). Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angewandte Chemie, International Edition, 54, 2970–2974.

    Article  CAS  Google Scholar 

  • Hua, K., Yangab, Z., Zhang, L., Xie, L., Wang, L., Xu, H., Lee Josephson, L., Liang, S. H., & Zhang, M.-R. (2020). Boron agents for neutron capture therapy. Coordination Chemistry Reviews, 405, 213139.

    Article  CAS  Google Scholar 

  • Imran, M., Ramzan, M., Qureshi, A. K., Khan, M. A., & Tariq, M. (2018). Emerging applications of porphyrins and Metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors (Basel), 8(4), 95. Published 2018 Oct 19.

    Article  CAS  Google Scholar 

  • Jia, H.-R., Jian, Y.-W., Zhua, Y.-X., Lia, Y.-H., Wang, H.-Y., Han, X., et al. (2017). Plasma membrane activatable polymeric nanotheranostics with self-enhanced light-triggered photosensitizer cellular influx for photodynamic cancer therapy. Journal of Controlled Release, 255, 231–241.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, F., Lilge, L., Grenier, J., Li, Y., Wilson, M. D., & Chopp, M. (1998). Photodynamic therapy of U87 human glioma in nude rat using liposome-delivered photofrin. Laser in Surgery and Medicine, 22(2), 74–80.

    Article  CAS  Google Scholar 

  • KepczyÅ„ski, M., Nawalany, K., Jachimska, B., Romek, M., & Nowakowska, M. (2006). Pegylated tetraarylporphyrin entrapped in liposomal membranes. A possible novel drug-carrier system for photodynamic therapy. Colloids and Surfaces. B, Biointerfaces, 49(1), 22–30.

    Article  PubMed  CAS  Google Scholar 

  • Kievit, F. M., & Zhang, M. (2011). Cancer nanotheranostics: Improving imaging and therapy by targeted delivery across biological barriers. Advanced Materials, 23, H217–H247.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. H., Kim, E.-J., Lee, H., Kim, H. M., Chang, M. J., Park, S. Y., Hong, K. S., Kim, J. S., & Sessler, J. L. (2016). Liposomal Texaphyrin Theranostics for metastatic liver cancer. Journal of the American Chemical Society, 138(50), 16380–16387.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Bai, G., Zeng, S., & Hao, J. (2019). Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and Photothermal therapy. ACS Applied Materials & Interfaces, 11(5), 4737–4744.

    Article  CAS  Google Scholar 

  • Liu, T. W., MacDonald, T. D., Shi, J., Wilson, B. C., & Zheng, G. (2012). Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angewandte Chemie, International Edition, 51, 13128.

    Article  CAS  Google Scholar 

  • Lovell, J. F., Jin, C. S., Huynh, E., Jin, H., Kim, C., Rubinstein, J. L., Chan, W. C. W., Cao, W., Wang, L. V., & Zheng, G. (2011). Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Materials, 10, 324–332.

    Article  CAS  PubMed  Google Scholar 

  • Nabil, G., Bhise, K., Sau, S., Atef, M., El-Banna, H. A., & Iyer, A. K. (2019). Nano-engineered delivery systems for cancer imaging and therapy: Recent advances, future direction and patent evaluation. Drug Discovery Today, 24, 462–491.

    Article  CAS  PubMed  Google Scholar 

  • Nawalany, K., Rusin, A., Kepczynski, M., Filipczak, P., Kumorek, M., Kozik, B., Weitman, H., Ehrenberg, B., Krawczyk, Z., & Nowakowska, M. (2012, July 1). Novel nanostructural photosensitizers for photodynamic therapy: In vitro studies. International Journal of Pharmaceutics, 430(1–2), 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Obaid, G., Chambrier, I., Cook, M. J., & Russell, D. A. (2015). Cancer targeting with biomolecules: A comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochemical & Photobiological Sciences, 14, 737–747.

    Article  CAS  Google Scholar 

  • Paszko, E., Ehrhardt, C., Senge, M. O., Kelleher, D. P., & Reynolds, J. V. (2011). Nanodrug applications in photodynamic therapy. Photodiagnosis and Photodynamic Ther, 8, 14–29.

    Article  CAS  Google Scholar 

  • Qu, S., Wang, X., Lu, Q., Liu, X., & Wang, L. (2012). A biocompatible fluorescent ink based on water-soluble luminescent carbon Nanodots. Angewandte Chemie, International Edition, 51, 12215–12218.

    Article  CAS  Google Scholar 

  • Qu, S., Zhou, D., Li, D., Ji, W., Jing, P., Han, D., Liu, L., Zeng, H., & Shen, D. (2016). Toward efficient orange emissive carbon Nanodots through conjugated sp2 -domain controlling and surface charges engineering. Advanced Materials, 28, 3516–3521.

    Article  CAS  PubMed  Google Scholar 

  • Renner, M. W., Miura, M., Easson, M. W., & Vicente, M. G. (2006). Recent progress in the syntheses and biological evaluation of boronated porphyrins for boron neutron-capture therapy. Anti-Cancer Agents in Medicinal Chemistry, 6(2), 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Rieffel, J., Chen, F., Kim, J., Chen, G., Shao, W., Shao, S., et al. (2015). Hexamodal imaging with porphyrin-phospholipid-coated Upconversion nanoparticles. Advanced Materials, 27(10), 1785–1790.

    Article  CAS  PubMed  Google Scholar 

  • Rizvi, I., Nath, S., Obaid, G., Ruhi, M. K., Moore, K., Bano, S., Kessel, D., & Hasan, T. (2019). A combination of Visudyne and a lipid-anchored liposomal formulation of benzoporphyrin derivative enhances photodynamic therapy efficacy in a 3D model for ovarian cancer. Photochemistry and Photobiology, 95(1), 419–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkranz, A. A., Jans, D. A., & Sobolev, A. S. (2000). Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Immunology and Cell Biology, 78, 452–464.

    Article  CAS  PubMed  Google Scholar 

  • Sadzuka, Y., Iwasaki, F., Sugiyama, I., Horiuchi, K., Hirano, T., Ozawa, H., Kanayama, N., & Sonobe, T. (2007). Study on liposomalization of zinc-coproporphyrin I as a novel drug in photodynamic therapy. International Journal of Pharmaceutics, 338(1–2), 306–309.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Erfurth, U., & Hasan, T. (2000). Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Survey of Ophthalmology, 45, 195–214.

    Article  CAS  PubMed  Google Scholar 

  • Soni, K., Mujtaba, A., Akhter, M. H., et al. (2020). Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. Journal of Microencapsulation, 37(2), 91–108.

    Article  CAS  PubMed  Google Scholar 

  • Takehara, Y., Sakahara, H., Masunaga, H., et al. (2002). Assessment of a potential tumor-seeking manganese metalloporphyrin contrast agent in a mouse model. Magnetic Resonance in Medicine, 47(3), 549–553.

    Article  CAS  PubMed  Google Scholar 

  • Tsolekile, N., Nelana, S., & Oluwafemi, O. S. (2019). Porphyrin as diagnostic and therapeutic agent. Molecules, 24(14), 2669.

    Article  CAS  PubMed Central  Google Scholar 

  • Wang, M., & Thanou, M. (2010). Targeting nanoparticles to cancer. Pharmacological Research, 62, 90–99.

    Article  CAS  PubMed  Google Scholar 

  • Wu, F., Su, H., Cai, Y., Wong, W.-K., Jiang, W., & Zhu, X. (2018). Porphyrin-implanted carbon Nanodots for photoacoustic imaging and in vivo breast Cancer ablation. ACS Applied Bio Materials, 1, 110–117.

    Article  CAS  Google Scholar 

  • Xue, X., Lindstrom, A., & Li, Y. (2019). Porphyrin-based nanomedicines for cancer treatment. Bioconjugate Chemistry, 30(6), 1585–1603.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y., Bo, R., Jing, D., Ma, Z., Wang, Z., Lin, T.-Y., Dong, L., Xue, X., Li, Y., & Vicente, M. G. (2001). Porphyrin-based sensitizers in the detection and treatment of cancer: Recent progress. Current Medicinal Chemistry – Anti-Cancer Agents, 1(2), 175–194.

    Article  Google Scholar 

  • Zhang, P., Hu, C., Ran, W., Meng, J., Yin, Q., & Li, Y. (2016). Recent progress in light-triggered Nanotheranostics for cancer treatment. Theranostics, 6(7), 948–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Lovejoy, K. S., Jasanoff, A., & Lippard, S. J. (2007). Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10780–10785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Liang, X., & Dai, Z. (2016). Porphyrin-loaded nanoparticles for cancer theranostic. Nanoscale, 8, 12394–12405.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Sun, H., Wang, H., & Yang, B. (2013). Highly Photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie, International Edition, 52, 3953–3957.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Habban Akhter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhter, M.H. et al. (2021). Porphyrin-Based Nanomaterials for Cancer Nanotheranostics. In: Saravanan, M., Barabadi, H. (eds) Cancer Nanotheranostics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-74330-7_9

Download citation

Publish with us

Policies and ethics