Skip to main content

Progress in Quantum Dot Infrared Photodetectors

  • Chapter
  • First Online:
Quantum Dot Photodetectors

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 30))

Abstract

This chapter reviews the present status and possible future developments of QDIPs. An emphasis is put on potential developments of both epitaxial and colloidal quantum dot photodetectors. At the beginning, the design and fabrication of QDIPs is shortly described. Next, the detector characterization and fundaments of detection mechanisms for QDIPs are presented.

In the past decade, there has been significant progress in development of colloidal quantum dot (CQD) photodetectors. For their potential advantages can be included: cheap and easy fabrications, size-tunable across wide infrared spectral region, and direct coating on silicon electronics for imaging, what potentially reduces array cost and offers new modifications like flexible infrared detectors.

Investigation of the performance of QDIPs is compared to other types of infrared photodetectors. A model is based on fundamental performance limitations enabling a direct comparison between different infrared material technologies. The main evaluation is directed toward high operating temperature (HOT) photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arakawa, Y., Sakaki, H.: Multidimensional quantum-well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982)

    Article  CAS  Google Scholar 

  2. Asada, M., Miyamoto, Y., Suematsu, Y.: Gain and threshold of three dimensional quantum-box lasers. IEEE J. Quant. Electron. QE-22, 1915–1921 (1986)

    Article  CAS  Google Scholar 

  3. Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures. Wiley, Chichester (1999)

    Google Scholar 

  4. Leonard, D., Krishnamurthy, M., Reaves, C.M., Denbaars, S.P., Petroff, P.M.: Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surface. Appl. Phys. Lett. 63, 3203–3205 (1993)

    Article  CAS  Google Scholar 

  5. Sikorski, C., Merkt, U.: Spectroscopy of electronic states in InSb quantum dots. Phys. Rev. Lett. 62, 2164–2167 (1989)

    Article  CAS  Google Scholar 

  6. Demel, T., Heitmann, D., Grambow, P., Ploog, K.: Nonlocal dynamic response and level crossings in quantum-dot structures. Phys. Rev. Lett. 64, 788–791 (1990)

    Article  CAS  Google Scholar 

  7. Phillips, J., Kamath, K., Bhattacharya, P.: Far-infrared photoconductivity in self-organized InAs quantum wells. Appl. Phys. Lett. 72, 2020–2021 (1998)

    Article  CAS  Google Scholar 

  8. Bhattacharya, P., Mi, Z.: Quantum-dot optoelectronic devices. Proc. IEEE. 95, 1723–1740 (2007)

    Article  CAS  Google Scholar 

  9. Campbell, J.C., Madhukar, A.: Quantum-dot infrared photodetectors. Proc. IEEE. 95, 1815–1827 (2007)

    Article  CAS  Google Scholar 

  10. Bhattacharya, P., Stiff-Roberts, A.D., Chakrabarti, S.: Mid-infrared quantum dot photoconductors. In: Krier, A. (ed.) Mid-Infrared Semiconductor Optoelectronics, pp. 487–513. Springer Verlag, Berlin (2007)

    Google Scholar 

  11. Martyniuk, P., Rogalski, A.: Quantum-dot infrared photodetectors: status and outlook. Prog. Quant. Electron. 32, 89–120 (2008)

    Article  Google Scholar 

  12. Stiff-Roberts, D.: Quantum-dot infrared photodetectors: a review. J. Nanophotonics. 3, 031607 (2009)

    Article  CAS  Google Scholar 

  13. Konstantatos, G.: Colloidal quantum dot photodetectors. In: Konstantatos, G., Sargent, E.H. (eds.) Colloidal Quantum Dot Optoelectronics and Photovoltaics, pp. 173–198. Cambridge University Press, Cambridge (2013)

    Chapter  Google Scholar 

  14. Kazemi, A., Zamiri, M., Schuler-Sandy, T., Krishna, S.: Colloidal and epitaxial quantum dot infrared photodetectors: Growth, performance, and comparison. In: Webster, J.G. (ed.) Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley (2014)

    Google Scholar 

  15. Krishna, S., Gunapala, S.D., Bandara, S.V., Hill, C., Ting, D.Z.: Quantum dot based infrared focal plane arrays. Proc. IEEE. 95, 1838–1852 (2007)

    Article  CAS  Google Scholar 

  16. Klem, E.J.D., Gregory, C., Temple, D., Lewis, J.: PbS colloidal quantum dot photodiodes for low-cost SWIR sensing. Proc. SPIE. 9451, 945104-1–945104-5 (2015)

    Google Scholar 

  17. Malinowski, P.E., Georgitzikis, E., Maes, J., Vamvaka, I., Frazzica, F., Van Olmen, J., De Moor, P., Heremans, P., Hens, Z., Cheyns, D.: Thin-film quantum dot photodiode for monolithic infrared image sensors. Sensors. 17, 2867 (2017)

    Article  Google Scholar 

  18. Tang, X., Ackerman, M.M., Guyot-Sionnest, P.: Colloidal quantum dots based infrared electronic eyes for multispectral imaging. Proc. SPIE. 11088, 1108803-1–1108803-7 (2019)

    Google Scholar 

  19. Hafiz, S.B., Scimeca, M., Sahu, A., Ko, D.-K.: Colloidal quantum dots for thermal infrared sensing and imaging. Nano Convergence. 6, 7 (2019). https://doi.org/10.1186/s40580-019-0178-1

    Article  Google Scholar 

  20. Tang, X., Ackerman, M.M., Chen, M., Guyot-Sionnest, P.: Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics. 13, 277–282 (2019)

    Article  CAS  Google Scholar 

  21. Haoa, Q., Tang, X., Cheng, Y., Hu, Y.: Development of flexible and curved infrared detectors with HgTe colloidal quantum dots. Infrared Phys. Technol. 108, 103344 (2020)

    Article  CAS  Google Scholar 

  22. Zhang, S., Hu, Y., Hao, Q.: Advances of sensitive infrared detectors with HgTe colloidal quantum dots. Coatings. 10, 760 (2020). https://doi.org/10.3390/coatings10080760

    Article  CAS  Google Scholar 

  23. Sakaki, H.: Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures. J. Appl. Phys. 19, L735–L738 (1980)

    Article  CAS  Google Scholar 

  24. Liu, H.C.: Quantum dot infrared photodetector. Opto-Electron. Rev. 11, 1–5 (2003)

    Google Scholar 

  25. Stranski, I.N., Krastanow, L.: Zur theorie der orientierten ausscheidung von lonenkristallen aufeinander. Sitzungsberichte d. Akad. d. Wissenschaften in Wein. Abt. IIb. 146, 797–810 (1937)

    Google Scholar 

  26. Guyot-Sionnest, P.: Colloidal quantum dots. C. R. Physique. 9, 777–787 (2008)

    Article  CAS  Google Scholar 

  27. Seifert, W., Carlsson, N., Johansson, J., Pistol, M.-E., Samuelson, L.: In situ growth of nano-structures by metal-organic vapour phase epitaxy. J. Crystal Growth. 170, 39–46 (1997)

    Article  CAS  Google Scholar 

  28. Wang, S.Y., Lin, S.D., Wu, W., Lee, C.P.: Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer. Appl. Phys. Lett. 78, 1023–1025 (2001)

    Article  CAS  Google Scholar 

  29. Ryzhii, V.: Physical model and analysis of quantum dot infrared photodetectors with blocking layer. J. Appl. Phys. 89, 5117–5124 (2001)

    Article  CAS  Google Scholar 

  30. Lee, S.W., Hirakawa, K., Shimada, Y.: Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures. Appl. Phys. Lett. 75, 1428–1430 (1999)

    Article  CAS  Google Scholar 

  31. Gunapala, S.D., Bandara, S.V., Hill, C.J., Ting, D.Z., Liu, J.K., Rafol, S.B., Blazejewski, E.R., Mumolo, J.M., Keo, S.A., Krishna, S., Chang, Y.C., Shott, C.A.: Long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) focal plane array. Proc. SPIE. 6206, 62060J-1–62060J10 (2006)

    Article  CAS  Google Scholar 

  32. Krishna, S.: Quantum dots-in-a-well infrared photodetectors. J. Phys. D. Appl. Phys. 38, 2142–2150 (2005)

    Article  CAS  Google Scholar 

  33. Lu, H., Carroll, G.M., Neale, N.R., Beard, M.C.: Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano. 13, 939–953 (2019)

    CAS  Google Scholar 

  34. Wang, Y., Ding, G., Mao, J.-Y., Zhou, Y., Han, S.-T.: Recent advances in synthesis and application of perovskite quantum dot based composites for photonics, electronics and sensors. Sci. Technol. Adv. Mater. 21(1), 278–302 (2020)

    Article  CAS  Google Scholar 

  35. Garcia de Arquer, F.P., Armin, A., Meredith, P., Sargent, E.H.: Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mat. 2, 16100 (2017)

    Article  Google Scholar 

  36. Liu, Y., Gibbs, M., Perkins, C.L., Tolentino, J., Zarghami, M.H., Bustamante, J., Law, M.: Robust, functional nanocrystal solids by infilling with atomic layer deposition. Nano Lett. 11, 5349–5355 (2011)

    Article  CAS  Google Scholar 

  37. Semonin, O.E., Luther, J.M., Beard, M.C.: Quantum dots for next-generation photovoltaics. Mater. Today. 15(11), 508–515 (2012)

    Article  CAS  Google Scholar 

  38. McDonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J.D., Levina, L., Sargent, E.H.: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005)

    Article  CAS  Google Scholar 

  39. Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., Levina, L., Sargent, E.H.: Ultrasensitive solution-cast quantum dot photodetectors. Nature. 442, 180–183 (2006)

    Article  CAS  Google Scholar 

  40. Yakunin, S., Dirin, D.N., Protesescu, L., Sytnyk, M., Tollabimazraehno, S., Humer, M., Hackl, F., Fromherz, T., Bodnarchuk, M.I., Kovalenko, M.V., Heiss, W.: High infrared photoconductivity in films of arsenic-sulfide-encapsulated lead-sulfide nanocrystals. ACS Nano. 8, 12883–12894 (2014)

    Article  CAS  Google Scholar 

  41. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., Garcia de Arquer, F.P., Gatti, F., Koppens, F.H.L.: Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotech. 7, 363–368 (2012)

    Article  CAS  Google Scholar 

  42. Clifford, J.P., Konstantatos, G., Johnston, K.W., Hoogland, S., Levina, L., Sargent, E.H.: Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotech. 4, 40–44 (2009)

    Article  CAS  Google Scholar 

  43. Pal, B.N., Robel, I., Mohite, A., Laocharoensuk, R., Werder, D.J., Klimov, V.I.: High-sensitivity p-n junction photodiodes based on PbS nanocrystal quantum dots. Adv. Funct. Mater. 22, 1741–1748 (2012)

    Article  CAS  Google Scholar 

  44. Kim, J.Y., Adinolfi, V., Sutherland, B.R., Voznyy, O., Kwon, S.J., Kim, T.W., Kim, J., Ihee, H., Kemp, K., Adachi, M., Yuan, M., Kramer, I., Zhitomirsky, D., Hoogland, S., Sargent, E.H.: Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nat. Commun. 6, 7772 (2015)

    Article  Google Scholar 

  45. Lee, J.W., Kim, D.Y., So, F.: Unraveling the gain mechanism in high performance solution-processed PbS infrared PIN photodiodes. Adv. Funct. Mater. 25, 1233–1238 (2015)

    Article  CAS  Google Scholar 

  46. Manders, J.R., Lai, T.-H., An, Y., Xu, W., Lee, J., Kim, D.Y., Bosman, G., So, F.: Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors. Adv. Funct. Mater. 24, 7205–7210 (2014)

    CAS  Google Scholar 

  47. Mi, L., Chang, Y., Zhang, Y., Xu, E., Jian, Y.: Hybrid perovskite exchange of PbS quantum dots for fast and high-detectivity visible-near-infrared photodetectors. J. Mater. Chem. C. 8, 7812–7819 (2020)

    Article  CAS  Google Scholar 

  48. Saran, R., Curry, R.J.: Lead sulphide nanocrystal photodetector technologies. Nature Photonics. 10 (2016). https://doi.org/10.1038/nphoton.2015.280

  49. Kovalenko, M.V., Kaufmann, E., Pachinger, D., Roither, J., Huber, M., Stangl, J., Hesser, G., Schäfer, F., Heiss, W.: Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations. J. Am. Chem. Soc. 128, 3516–3517 (2006)

    Article  CAS  Google Scholar 

  50. Keuleyan, S., Lhuillier, E., Brajuskovic, V., Guyot-Sionnest, P.: Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics. 5, 489–493 (2011)

    Article  CAS  Google Scholar 

  51. Keuleyan, S., Lhuillier, E., Guyot-Sionnest, P.: Synthesis of colloidal HgTe quantum dots for narrow Mid-IR emission and detection. J. Am. Chem. Soc. 133, 16422–16424 (2011)

    Article  CAS  Google Scholar 

  52. Keuleyan, S.E., Guyot-Sionnest, P., Delerue, C., Allan, G.: Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano. 8, 8676–8682 (2014)

    Article  CAS  Google Scholar 

  53. Shen, G., Chen, M., Guyot-Sionnest, P.: Synthesis of nonaggregating HgTe colloidal quantum dots and the emergence of air-stable n-doping. J. Phys. Chem. Lett. 8, 2224–2228 (2017)

    Article  CAS  Google Scholar 

  54. Goubet, N., Jagtap, A., Livache, C., Martinez, B., Portalès, H., Xu, X.Z., Lobo, R.P.S.M., Dubertret, B., Lhuillier, E.: Terahertz HgTe nanocrystals: beyond confinement. J. Am. Chem. Soc. 140, 5033–5036 (2018)

    Article  CAS  Google Scholar 

  55. Deng, Z., Jeong, K.S., Guyot-Sionnest, P.: Colloidal quantum dots intra-band photodetectors. ACS Nano. 8, 11707–11714 (2014)

    Article  CAS  Google Scholar 

  56. Lhuillier, E., Scarafagio, M., Hease, P., Nadal, B., Aubin, H., Xu, X.Z., Lequeux, N., Patriarche, G., Ithurria, S., Dubertret, B.: Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett. 16, 1282–1286 (2016)

    Article  CAS  Google Scholar 

  57. Jeong, K.S., Deng, Z., Keuleyan, S., Liu, H., Guyot-Sionnest, P.: Air-stable n-doped colloidal HgS quantum dots. J. Phys. Chem. Lett. 5, 1139–1143 (2014)

    Article  CAS  Google Scholar 

  58. Shen, G., Guyot-Sionnest, P.: HgS and HgS/CdS colloidal quantum dots with infrared intraband transitions and emergence of a surface plasmon. J. Phys. Chem. C. 120, 11744–11753 (2016)

    Article  CAS  Google Scholar 

  59. Sahu, A., Qi, L., Kang, M.S., Deng, D., Norris, D.J.: Facile synthesis of silver chalcogenide (Ag2E; E=Se, S, Te) semiconductor nanocrystals. J. Am. Chem. Soc. 133, 6509–6512 (2011)

    Article  CAS  Google Scholar 

  60. Sahu, A., Khare, A., Deng, D.D., Norris, D.J.: Quantum confinement in silver selenide semiconductor nanocrystals. Chem. Commun. 48, 5458–5460 (2012)

    Article  CAS  Google Scholar 

  61. Tang, X., Wu, G., Lai, K.W.C.: Interband and intraband optical transitions in mercury chalcogenide colloidal quantum dots. In: Proceedings of the 17th IEEE International Conference on Nanotechnology, Pittsburgh, July 25–28, (2017)

    Google Scholar 

  62. Jagtap, A., Livache, C., Martinez, B., Qu, J., Chu, A., Gréboval, C., Goubet, N., Lhuillier, E.: Emergence of intraband transitions in colloidal nanocrystals [invited]. Opt. Mat. Exp. 8(5), 1174–1183 (2018)

    Article  CAS  Google Scholar 

  63. Greboval, C., Ferre, S., Noguier, V., Chu, A., Qu, J., Chee, S.-S., Vincent, G., Lhuillier, E.: Infrared narrow band gap nanocrystals: recent progresses relative to imaging and active detection. https://arxiv.org/ftp/arxiv/papers/2001/2001.11554.pdf

  64. Ackerman, M.M.: Bringing colloidal quantum dots to detector technologies. Informationdisplay. 36(6), 19–23 (2020). https://doi.org/10.1002/msid.1165

    Article  Google Scholar 

  65. Ramiro, I., Özdemir, O., Christodoulou, S., Gupta, S., Dalmases, M., Torre, I., Konstantatos, G.: Mid- and long-wave infrared optoelectronics via intraband transitions in PbS colloidal quantum dots. Nano Lett. 20(2), 1003–1008 (2020)

    Article  CAS  Google Scholar 

  66. Livache, C., Martinez, B., Goubet, N., Gréboval, C., Qu, J., Chu, A., Royer, S., Ithurria, S., Silly, M.G., Dubertret, B., Lhuillier, E.: A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 10, 2125 (2019). https://doi.org/10.1038/s41467-019-10170

    Article  Google Scholar 

  67. Bastard, G.: Theoretical investigations of super-lattice band-structure in the envelope-function approximation. Phys. Rev. B25(12), 7584–7597 (1982)

    Article  Google Scholar 

  68. Rogalski, A.: Infrared and Terahertz Detectors. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  69. Koppens, F.H.L., Mueller, T., Avouris, P., Ferrari, A.C., Vitiello, M.S., Polini, M.: Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014)

    Article  CAS  Google Scholar 

  70. Fang, H., Hu, W.: Photogating in low dimensional photodetectors. Adv. Sci. 4, 1700323 (2017)

    Article  CAS  Google Scholar 

  71. Wang, P., Xia, H., Li, Q., Wang, F., Zhang, L., Li, T., Martyniuk, P., Rogalski, A., Hu, W.: Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small. 46(13), 1904396 (2019)

    Article  CAS  Google Scholar 

  72. Vurgaftman, J.I., Lam, Y., Singh, J.: Carrier thermalization in sub-three-dimensional electronic systems: fundamental limits on modulation bandwidth in semiconductor lasers. Phys. Rev. B50, 14309–14326 (1994)

    Article  Google Scholar 

  73. Phillips, J.: Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590–4594 (2002)

    Article  CAS  Google Scholar 

  74. Towe, E., Pan, D.: Semiconductor quantum-dot nanostructures: their application in a new class of infrared photodetectors. IEEE J. Sel. Top. Quant. Electron. 6, 408–421 (2000)

    Article  CAS  Google Scholar 

  75. Ryzhii, V., Khmyrova, I., Pipa, V., Mitin, V., Willander, M.: Device model for quantum dot infrared photodetectors and their dark-current characteristics. Semicond. Sci. Technol. 16, 331–338 (2001)

    Article  CAS  Google Scholar 

  76. Ryzhii, V., Khmyrova, I., Mitin, V., Stroscio, M., Willander, M.: On the detectivity of quantum-dot infrared photodetectors. Appl. Phys. Lett. 78, 3523–3525 (2001)

    Article  CAS  Google Scholar 

  77. Singh, J.: Electronic and Optoelectronic Properties of Semiconductor Structures. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  78. Liu, H.C.: Quantum dot infrared photodetector. Opto-Electron. Rev. 11, 1–5 (2003)

    Google Scholar 

  79. Duboz, J.-Y., Liu, H.C., Wasilewski, Z.R., Byloss, M., Dudek, R.: Tunnel current in quantum dot infrared photodetectors. J. Appl. Phys. 93, 1320–1322 (2003)

    Article  CAS  Google Scholar 

  80. Stiff-Roberts, A.D., Su, X.H., Chakrabarti, S., Bhattacharya, P.: Contribution of field-assisted tunneling emission to dark current in InAs-GaAs quantum dot infrared photodetectors. IEEE Photon. Technol. Lett. 16, 867–869 (2004)

    Article  CAS  Google Scholar 

  81. Liu, H.C.: Noise gain and operating temperature of quantum well infrared photodetectors. Appl. Phys. Lett. 61, 2703–2705 (1992)

    Article  CAS  Google Scholar 

  82. Beck, W.A.: Photoconductive gain and generation-recombination noise in multiple-quantum-well-infrared detectors. Appl. Phys. Lett. 63, 3589–3591 (1993)

    Article  CAS  Google Scholar 

  83. Phillips, J., Bhattacharya, P., Kennerly, S.W., Beekman, D.W., Duta, M.: Self-assembled InAs-GaAs quantum-dot intersubband detectors. IEEE J. Quantum Electron. 35, 936–943 (1999)

    Article  CAS  Google Scholar 

  84. Ye, Z., Campbell, J.C., Chen, Z., Kim, E.T., Madhukar, A.: Noise and photoconductive gain in InAs quantum dot infrared photodetectors. Appl. Phys. Lett. 83, 1234–1236 (2003)

    Article  CAS  Google Scholar 

  85. Lu, X., Vaillancourt, J., Meisner, M.J.: Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector. Appl. Phys. Lett. 91, 051115 (2007)

    Article  CAS  Google Scholar 

  86. Lim, H., Tsao, S., Zhang, W., Razeghi, M.: High-performance InAs quantum-dot infrared photoconductors grown on InP substrate operating at room temperature. Appl. Phys. Lett. 90, 131112 (2007)

    Article  CAS  Google Scholar 

  87. Barve, A.V., Lee, S.J., Noh, S.K., Krishna, S.: Review of current progress in quantum dot infrared photodetectors. Laser Photonics Rev. 4(6), 738–750 (2010)

    Article  CAS  Google Scholar 

  88. Chuh, T.: Recent developments in infrared and visible imaging for astronomy, defense and homeland security. Proc. SPIE. 5563, 19–34 (2004)

    Article  Google Scholar 

  89. Jiang, J., Tsao, S., O’Sullivan, T., Zhang, W., Lim, H., Sills, T., Mi, K., Razeghi, M., Brown, G.J., Tidrow, M.Z.: High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 84, 2166–2168 (2004)

    Article  CAS  Google Scholar 

  90. Szafraniec, J., Tsao, S., Zhang, W., Lim, H., Taguchi, M., Quivy, A.A., Movaghar, B., Razeghi, M.: High-detectivity quantum-dot infrared photodetectors grown by metalorganic chemical-vapor deposition. Appl. Phys. Lett. 88, 121102 (2006)

    Article  CAS  Google Scholar 

  91. Kim, E.-T., Madhukar, A., Ye, Z., Campbell, J.C.: High detectivity InAs quantum dot infrared photodetectors. Appl. Phys. Lett. 84, 3277–3279 (2004)

    Article  CAS  Google Scholar 

  92. Chakrabarti, S., Su, X.H., Bhattacharya, P., Ariyawansa, G., Perera, A.G.U.: Characteristics of a multicolor InGaAs-GaAs quantum-dot infrared photodetector. IEEE Photon. Technol. Lett. 17, 178180 (2005)

    Article  CAS  Google Scholar 

  93. Attaluri, R.S., Annamalai, S., Posani, K.T., Stintz, A., Krishna, S.: Influence of Si doping on the performance of quantum dots-in-well photodetectors. J. Vac. Sci. Technol. B24, 1553–1555 (2006)

    Article  CAS  Google Scholar 

  94. Chakrabarti, S., Stiff-Roberts, A.D., Su, X.H., Bhttacharya, P., Ariyawansa, G., Perera, A.G.U.: High-performance mid-infrared quantum dot infrared photodetectors. J. Phys. D. Appl. Phys. 38, 2135–2141 (2005)

    Article  CAS  Google Scholar 

  95. Krishna, S., Forman, D., Annamalai, S., Dowd, P., Varangis, P., Tumolillo, T., Gray, A., Zilko, J., Sun, K., Liu, M., Campbell, J., Carothers, D.: Two-color focal plane arrays based on self assembled quantum dots in a well heterostructure. Phys. Status Solidi (c). 3, 439–443 (2006)

    Google Scholar 

  96. Grein, C.H., Cruz, H., Flatte, M.E., Ehrenreich, H.: Theoretical performance of very long wavelength InAs/InxGa1–xSb superlattice based infrared detectors. Appl. Phys. Lett. 65, 2530–2532 (1994)

    Article  CAS  Google Scholar 

  97. Piotrowski, J., Rogalski, A.: High-Operating Temperature Infrared Photodetectors. SPIE Press, Bellingham (2007)

    Book  Google Scholar 

  98. Martyniuk, P., Krishna, S., Rogalski, A.: Assessment of quantum dot infrared photodetectors for high temperature operation. J. Appl. Phys. 104, 034314 (2008)

    Article  CAS  Google Scholar 

  99. https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf

  100. Su, X.H., Chakrabarti, S., Bhattacharya, P., Ariyawansa, A., Perera, A.G.U.: A resonant tunneling quantum-dot infrared photodetector. IEEE J. Quant. Electr. 41, 974–979 (2005)

    Article  CAS  Google Scholar 

  101. Lu, X., Vaillancourt, J., Meisner, M.: A voltage-tunable multiband quantum dot infrared focal plane array with high photoconductivity. Proc. SPIE. 6542, 65420Q (2007)

    Article  CAS  Google Scholar 

  102. Krishna, S., Forman, D., Annamalai, S., Dowd, P., Varangis, P., Tumolillo, T., Gray, A., Zilko, J., Sun, K., Liu, M., Campbell, J., Carothers, D.: Demonstration of a 320×256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors. Appl. Phys. Lett. 86, 193501 (2005)

    Article  CAS  Google Scholar 

  103. Sakoglu, U., Tyo, J.S., Hayat, Μ.Μ., Raghavan, S., Krishna, S.: Spectrally adaptive infrared photodetectors with bias-tunable quantum dots. J. Optical Soc. Amer. B. 21, 7–17 (2004)

    Article  CAS  Google Scholar 

  104. Perera, A.G.U.: Quantum structures for multiband photon detection. Opto-Electron. Rev. 14, 99–108 (2006)

    Article  Google Scholar 

  105. Gunapala, S.D., Bandara, S.V., Hill, C.J., Ting, D.Z., Liu, J.K., Rafol, S.B., Blazejewski, E.R., Mumolo, J.M., Keo, S.A., Krishna, S., Chang, Y.C., Shott, C.A.: Long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) focal plane array. Proc. SPIE. 6206, 62060J-1-10 (2006)

    Google Scholar 

  106. Gunapala, S.D., Bandara, S.V., Hill, C.J., Ting, D.Z., Liu, J.K., Rafol, B., Blazejewski, E.R., Mumolo, J.M., Keo, S.A., Krishna, S., Chang, Y.-C., Shot, C.A.: 640 × 512 pixels long-wavelength infrared (LWIR) quantum-dot infrared photoconductor (QDIP) imaging focal plane array. IEEE J. Quant. Electron. 43, 230–237 (2007)

    Article  CAS  Google Scholar 

  107. Krishna, S.: The infrared retina. J. Phys. D. Appl. Phys. 42, 234005 (2009)

    Article  CAS  Google Scholar 

  108. Varley, E., Lenz, M., Lee, S.J., Brown, J.S., Ramirez, D.A., Stintz, A., Krishna, S.: Single bump, two-color quantum dot camera. Appl. Phys. Lett. 91, 081120 (2007)

    Article  CAS  Google Scholar 

  109. Iwert, O., Delabrea, B.: The challenge of highly curved monolithic imaging detectors. Proc. SPIE. 7742, 774227-1-9 (2010)

    Google Scholar 

  110. Jeong, K.-H., Kim, J., Lee, L.P.: Biologically inspired artificial compound eyes. Science. 312, 557–561 (2006)

    Article  CAS  Google Scholar 

  111. Song, Y.M., Xie, Y., Malyarchuk, V., Xiao, J., Jung, I., Choi, K.-J., Liu, Z., Park, H., Lu, C., Kim, R.H., Li, R., Crozier, K.B., Huang, Y., Rogers, J.A.: Digital cameras with designs inspired by the arthropod eye. Nature. 497(7447), 95–99 (2013)

    Article  CAS  Google Scholar 

  112. Steckel, J.S., Ho, J., Hamilton, C., Xi, J., Breen, C., Liu, W., Allen, P., Coe-Sullivan, S.: Quantum dots: the ultimate down-conversion material for LCD displays. J. Soc. Inf. Display. 23, 294–305 (2015)

    Article  CAS  Google Scholar 

  113. Rogalski, A.: 2D Materials for Infrared and Terahertz Detectors. CRC Press, Boca Raton (2020)

    Book  Google Scholar 

  114. Ilyas, N., Li, D., Song, Y., Zhong, H., Jiang, Y., Li, W.: Low-dimensional materials and state-of-the-art architectures for infrared photodetection. Sensors. 18, 4163 (2018)

    Article  CAS  Google Scholar 

  115. Lhuillier, E.: Optoelectronics of Confined Semiconductors: The Case of Colloidal Nanocrystals and Their Application to Photodetection, June 2017. https://doi.org/10.13140/RG.2.2.19435.34089

  116. Ackerman, M.M., Chen, M., Guyot-Sionnest, P.: HgTe colloidal quantum dot photodiodes for extended short-wave infrared detection. Appl. Phys. Lett. 116, 083502 (2020)

    Article  CAS  Google Scholar 

  117. Tang, X., Ackerman, M.M., Shen, G., Guyot-Sionnest, P.: Towards infrared electronic eyes: flexible colloidal quantum dot photovoltaic detectors enhanced by resonant cavity. Small. 15, 1804920 (2019)

    Article  CAS  Google Scholar 

  118. Tang, X., Ackerman, M.M., Guyot-Sionnest, P.: Acquisition of hyperspectral data with colloidal quantum dots. Laser Photonics Rev. 13, 1900165 (2019)

    Article  CAS  Google Scholar 

  119. Ahn, S., Chung, H., Chen, W., Moreno-Gonzalez, M.A., Vazquez-Mena, O.: Optoelectronic response of hybrid PbS-QD/graphene photodetectors. J. Chem. Phys. 151, 234705 (2019)

    Article  CAS  Google Scholar 

  120. Rogalski, A., Kopytko, M., Martyniuk, P.: 2D material infrared and terahertz detectors: status and outlook. Opto-Electron. Rev. 28, 107–154 (2020)

    Google Scholar 

  121. Nakotte, T., Luo, H., Pietryga, J.: PbE (E = S, Se) colloidal quantum dot-layered 2D material hybrid photodetectors. Nano. 10, 172 (2020)

    CAS  Google Scholar 

  122. Hao, Q., Tang, X., Cheng, Y., Hu, Y.: Development of flexible and curved infrared detectors with HgTe colloidal quantum dots. Infrared Phys. Technol. 108, 103344 (2020)

    Article  CAS  Google Scholar 

  123. De Iacovo, A., Venettacci, C., Colace, L., Scopa, L., Foglia, S.: PbS colloidal quantum dot photodetectors operating in the near infrared. Sci. Rep. 6, 37913 (2016)

    Article  CAS  Google Scholar 

  124. Thambidurai, M., Jjang, Y., Shapiro, A., Yuan, G., Xiaonan, H., Xuechao, Y., Wang, G.J., Lifshitz, E., Demir, H.V., Dang, C.: High performance infrared photodetectors up to 2.8 μm wavelength based on lead selenide colloidal quantum dots. Opt. Mat. Exp. 7(7), 2336 (2017)

    Article  Google Scholar 

  125. Grotevent, M.J., Hail, C.U., Yakunin, S., Dirin, D.N., Thodkar, K., Borin Barin, G., Guyot-Sionnest, P., Calame, M., Poulikakos, D., Kovalenko, M.V., Shorubalko, I.: Nanoprinted quantum dot–graphene photodetectors. Adv. Optical Mater., 1900019 (2019)

    Google Scholar 

  126. Hu, C., Dong, D., Yang, X., Qiao, K., Yang, D., Deng, H., Yuan, S., Khan, J., Lan, Y., Song, H., Tang, J.: Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv. Funct. Mater. 27, 1603605 (2017)

    Google Scholar 

  127. Özdemir, O., Ramiro, I., Gupta, S., Konstantatos, G.: High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm. ACS Photonics. 6, 2381–2386 (2019)

    Article  CAS  Google Scholar 

  128. Luo, P., Zhuge, F., Wang, F., Lian, L., Liu, K., Zhang, J., Zhai, T.: PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano. 13, 9028–9037 (2019)

    Article  CAS  Google Scholar 

  129. Chen, M., Lan, X., Tang, X., Wang, Y., Hudson, M.H., Talapin, D.V., Guyot-Sionnest, P.: High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors. ACS Photonics. 6, 2358–2365 (2019)

    Article  CAS  Google Scholar 

  130. Lhuillier, E., Keuleyan, S., Zolotavin, P., Guyot-Sionnest, P.: Mid-infrared HgTe/As2S3 field effect transistors and photodetectors. Adv. Mater. 25, 137–141 (2013)

    Article  CAS  Google Scholar 

  131. Chen, M., Lu, H., Abdelazim, N.M., Zhu, Y., Wang, Z., Ren, W., Kershaw, S.V., Rogach, A.L., Zhao, N.: Mercury telluride quantum dot based phototransistor enabling high-sensitivity room-temperature photodetection at 2000 nm. ACS Nano. 11, 5614–5622 (2017)

    Article  CAS  Google Scholar 

  132. Huo, N., Gupta, S., Konstantatos, G.: MoS2-HgTe quantum dot hybrid photodetectors beyond 2 μm. Adv. Mater. 29, 1606576 (2017)

    Article  CAS  Google Scholar 

  133. Guyot-Sionnest, P., Roberts, J.A.: Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots. Appl. Phys. Lett. 107, 091115 (2015)

    Article  CAS  Google Scholar 

  134. Ackerman, M.M., Tang, X., Guyot-Sionnest, P.: Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano. 12, 7264–7271 (2018)

    Article  CAS  Google Scholar 

  135. Tang, X., Ackerman, M.M., Guyot-Sionnest, P.: Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices. ACS Nano. 12, 7362–7370 (2018)

    Article  CAS  Google Scholar 

  136. Buurma, C., Pimpinellaa, R.E., Ciani, A.J., Feldman, J.S., Grein, C.H., Guyot-Sionnest, P.: MWIR imaging with low cost colloidal quantum dot films. Proc. SPIE. 9933, 993303 (2016)

    Article  Google Scholar 

  137. Buurma, C., Ciani, A.J., Pimpinella, R.E., Feldman, J.S., Grein, C.H., Guyot-Sionnes, P.: Advances in HgTe colloidal quantum dots for infrared detectors. J. Electron. Mater. 46(11), 6685–6688 (2017)

    Article  CAS  Google Scholar 

  138. Guyot-Sionnest, P., Ackerman, M.M., Tang, X.: Colloidal quantum dots for infrared detection beyond silicon. J. Chem. Phys. 151, 060901-1–060901-8 (2019)

    Article  CAS  Google Scholar 

  139. Goubet, N., Jagtap, A., Livache, C., Martinez, B., Portalès, H., Xu, X.Z., Lobo, R.P.S.M., Dubertret, B., Lhuillier, E.: Terahertz HgTe nanocrystals: beyond confinement. J. Am. Chem. Soc. 140(15), 5033–5036 (2018)

    Article  CAS  Google Scholar 

  140. Yifat, Y., Ackerman, M., Guyot-Sionnest, P.: Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas. Appl. Phys. Lett. 110, 41106 (2017)

    Article  CAS  Google Scholar 

  141. Rogalski, A., Antoszewski, J., Faraone, L.: Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009)

    Article  CAS  Google Scholar 

  142. Choi, J., Wang, H., Oh, S.J., Paik, T., Jo, P.S., Sung, J., Ye, X., Zhao, T., Diroll, B.T., Murray, C.B., Kagan, R.: Exploiting the colloidal nanocrystal library to construct electronic devices. Science. 352, 205–208 (2016)

    Article  CAS  Google Scholar 

  143. Tang, X., Chen, M., Kamath, A., Ackerman, C.M., Guyot-Sionnest, P.: Colloidal quantum-dots/graphene/silicon dual-channel detection of visible light and short-wave infrared. ACS Photonics. 7, 1117–1121 (2020)

    Article  CAS  Google Scholar 

  144. Kim, L., Anikeeva, P.O., Coe-Sullivan, S.A., Steckel, J.S., Bawendi, M.G., Bulovic, V.: Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008)

    Article  CAS  Google Scholar 

  145. Tang, X., Tang, X., Lai, K.W.C.: Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films. ACS Photonics. 3, 2396–2404 (2016)

    Article  CAS  Google Scholar 

  146. Böberl, M., Kovalenko, M.V., Gamerith, S., List, E.J.W., Heiss, W.: Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths. Adv. Mater. 19, 3574–3578 (2007)

    Article  CAS  Google Scholar 

  147. Bertino, M.F., Gadipalli, R.R., Story, J.G., Williams, C.G., Zhang, G., Sotiriou-Leventis, C., Tokuhiro, A.T., Guha, S., Leventis, N.: Laser writing of semiconductor nanoparticles and quantum dots. Appl. Phys. Lett. 85, 6007–6009 (2004)

    Article  CAS  Google Scholar 

  148. Rogalski, A., Martyniuk, P., Kopytko, M.: Challenges of small-pixel infrared detectors: a review. Rep. Prog. Phys. 79, 046501 (2016)

    Article  CAS  Google Scholar 

  149. Takase, M., Miyake, Y., Yamada, T., Tamaki, T., Murakami, M., Inoue, Y.: First demonstration of 0.9 μm pixel global shutter operation by novel charge control in organic photoconductive film. In: Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 7–9 December, (2015)

    Google Scholar 

  150. Klem, E.J., Lewis, J.S., Gregory, C.W., Temple, D.S.: Low cost SWIR sensors: Advancing the performance of ROIC-integrated colloidal quantum dot photodiode arrays. Proc. SPIE. 9070, 391–396 (2014)

    Google Scholar 

  151. Temple, D.S., Hilton, A., Klem, E.J.D.: Toward low-cost infrared imagers: How to leverage Si IC ecosystem. Proc. SPIE. 9989, 99890E-1 (2016)

    Article  Google Scholar 

  152. Klem, E.J., Lewis, J.S., Gregory, C.W., Cunningham, G.B., Temple, D.S., D’Souza, A.I., Robinson, E., Wijewarnasuriya, P., Dhar, N.K.: Room temperature SWIR sensing from colloidal quantum dot photodiode arrays. Proc. SPIE. 8704, 361–366 (2013)

    Google Scholar 

  153. SWIR Vision Systems, November 2018, https://ibv.vdma.org/documents/256550/27019077/2018-11-07_Stage1_1030_ SWIR+Vision+Systems.pdf/

  154. Tennant, W.E., Lee, D., Zandian, M., Piquette, E., Carmody, M.: MBE HgCdTe technology: a very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic. J. Elect. Mat. 37, 1406 (2008)

    Google Scholar 

  155. Lee, D., Dreiske, P., Ellsworth, J., Cottier, R., Chen, A., Tallarico, S., Yulius, A., Carmody, M., Piquette, E., Zandian, M., Douglas, S.: Law 19 – The ultimate photodiode performance metric. Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials, pp. 13–15, 2019.

    Google Scholar 

  156. Lee, D., Dreiske, P., Ellsworth, J., Cottier, R., Chen, A., Tallaricao, S., Yulius, A., Carmody, M., Piquette, E., Zandian, M., Douglas, S.: Law 19 – the ultimate photodiode performance metric. Proc. SPIE. 11407, 114070X-1–114070X12 (2020)

    Google Scholar 

  157. Kinch, M.A.: State-of-the-Art Infrared Detector Technology. SPIE Press, Bellingham (2014)

    Book  Google Scholar 

  158. Lee, D., Carmody, M., Piquette, E., Dreiske, P., Chen, A., Yulius, A., Edwall, D., Bhargava, S., Zandian, M., Tennant, W.E.: High-operating temperature HgCdTe: a vision for the near future. J. Electron. Mater. 45(9), 4587–4595 (2016)

    Article  CAS  Google Scholar 

  159. Rhiger, D.R.: Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe. J. Elect. Mater. 40, 1815–1822 (2011)

    Article  CAS  Google Scholar 

  160. Klipstein, P.C., Avnon, E., Azulai, D., Benny, Y., Fraenkel, R., Glozman, A., Hojman, E., Klin, O., Krasovitsky, L., Langof, L., Lukomsky, I., Nitzani, M., Shtrichman, I., Rappaport, N., Snapi, N., Weiss, E., Tuito, A.: Type II superlattice technology for LWIR detectors. Proc. SPIE. 9819, 98190T (2016)

    Article  Google Scholar 

  161. Huang, W., Rassela, S.M.S., Li, L., Massengale, J.A., Yang, R.Q., Mishima, T.D., Santos, M.B.: A unified figure of merit for interband and intersubband cascade devices. Infrared Phys. Technol. 96, 298–301 (2019)

    Article  CAS  Google Scholar 

  162. Rogalski, A., Ciupa, R.: Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes. J. Electron. Mater. 28(6), 630–636 (1999)

    Article  CAS  Google Scholar 

  163. Rogalski, A., Kopytko, M., Martyniuk, P., Hu, W.: Comparison of performance limits of the HOT HgCdTe photodiodes with colloidal quantum dot infrared detectors. Bull. Pol. Ac: Tech. 4, 845–855 (2020)

    Google Scholar 

  164. HOT MCT Detectors, http://www.teledynejudson.com/

  165. Rogalski, A., Martyniuk, P., Kopytko, M.: Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quant. Electron. 68, 100228 (2019)

    Article  Google Scholar 

  166. Konstantatos, G., Sargent, E.H.: Solution-processed quantum dot photodetectors. Proc. IEEE. 97(10), 1666–1683 (2009)

    Article  CAS  Google Scholar 

  167. Konstantatos, G.: Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 (2018)

    Article  CAS  Google Scholar 

  168. Lhuillier, E., Guyot-Sionnest, P.: Recent progress in mid infrared nanocrystal optoelectronics. IEEE J. Sel. Top. Quant. Electron. 23(5), 6000208 (2017)

    Article  Google Scholar 

  169. Livache, C., Martinez, B., Goubet, N., Ramade, J., Lhuillier, E.: Road map for nanocrystal based infrared photodetectors. Front. Chem. 6, 575 (2018)

    Article  CAS  Google Scholar 

  170. Xu, K., Zhou, W., Ning, Z.: Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small. 16, 2003397 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

In the course of writing this chapter, many people have assisted me and offered their support. I would like to express appreciation to the management of the Institute of Applied Physics, Military University of Technology, for providing the environment in which I worked on the chapter. The writing of the chapter has been partially done under financial support of the National Science Centre (Poland) – Grant nos. UMO-2018/30/M/ST7/00174 and UMO-2018/31/B/ST7/01541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Rogalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rogalski, A. (2021). Progress in Quantum Dot Infrared Photodetectors. In: Tong, X., Wu, J., Wang, Z.M. (eds) Quantum Dot Photodetectors. Lecture Notes in Nanoscale Science and Technology, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-74270-6_1

Download citation

Publish with us

Policies and ethics