Skip to main content

Partially Monotonic Learning for Neural Networks

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XIX (IDA 2021)

Abstract

In the past decade, we have witnessed the widespread adoption of Deep Neural Networks (DNNs) in several Machine Learning tasks. However, in many critical domains, such as healthcare, finance, or law enforcement, transparency is crucial. In particular, the lack of ability to conform with prior knowledge greatly affects the trustworthiness of predictive models. This paper contributes to the trustworthiness of DNNs by promoting monotonicity. We develop a multi-layer learning architecture that handles a subset of features in a dataset that, according to prior knowledge, have a monotonic relation with the response variable. We use two alternative approaches: (i) imposing constraints on the model’s parameters, and (ii) applying an additional component to the loss function that penalises non-monotonic gradients. Our method is evaluated on classification and regression tasks using two datasets. Our model is able to conform to known monotonic relations, improving trustworthiness in decision making, while simultaneously maintaining small and controllable degradation in predictive ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://kaggle.com/austinreese/craigslist-carstrucks-data.

  2. 2.

    https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html.

  3. 3.

    In most real-world problems, including the ones illustrated in this paper, domain expertise is essential to distinguish between true and spurious monotonic relations.

References

  1. Archer, N.P., Wang, S.: Application of the back propagation neural network algorithm with monotonicity constraints for two-group classification problems. Decis. Sci. 24(1), 60–75 (1993)

    Article  Google Scholar 

  2. Bartolj, T.: Testing monotonicity of variables. Master’s thesis, Faculty of Economics and Business Administration, Tilburg University (2010)

    Google Scholar 

  3. Cano, J.R., Gutiérrez, P.A., Krawczyk, B., Woźniak, M., García, S.: Monotonic classification: an overview on algorithms, performance measures and data sets. Neurocomputing 341, 168–182 (2019)

    Article  Google Scholar 

  4. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019)

    Article  Google Scholar 

  5. Daniels, H., Velikova, M.: Monotone and partially monotone neural networks. IEEE Trans. Neural Netw. 21(6), 906–917 (2010)

    Article  Google Scholar 

  6. Gupta, A., Shukla, N., Marla, L., Kolbeinsson, A., Yellepeddi, K.: How to incorporate monotonicity in deep networks while preserving flexibility? arXiv preprint arXiv:1909.10662 (2019)

  7. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

    Article  Google Scholar 

  8. Márquez-Neila, P., Salzmann, M., Fua, P.: Imposing hard constraints on deep networks: promises and limitations. arXiv preprint arXiv:1706.02025 (2017)

  9. Nguyen, A.P., Martínez, M.R.: Mononet: towards interpretable models by learning monotonic features. arXiv preprint arXiv:1909.13611 (2019)

  10. Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1796–1804 (2015)

    Google Scholar 

  11. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  12. Sill, J.: Monotonic networks. Adv. Neural Inf. Process. Syst. 10, 661–667 (1997)

    Google Scholar 

  13. Silva, W., Fernandes, K., Cardoso, M.J., Cardoso, J.S.: Towards complementary explanations using deep neural networks. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC -2018. LNCS, vol. 11038, pp. 133–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_15

    Chapter  Google Scholar 

  14. Toreini, E., Aitken, M., Coopamootoo, K., Elliott, K., Zelaya, C.G., van Moorsel, A.: The relationship between trust in AI and trustworthy machine learning technologies. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 272–283 (2020)

    Google Scholar 

  15. You, S., Ding, D., Canini, K., Pfeifer, J., Gupta, M.: Deep lattice networks and partial monotonic functions. In: Advances in Neural Information Processing Systems, pp. 2981–2989 (2017)

    Google Scholar 

  16. Zhu, H., Tsang, E.C., Wang, X.Z., Ashfaq, R.A.R.: Monotonic classification extreme learning machine. Neurocomputing 225, 205–213 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially developed within project AIDA - Adaptive, Intelligent and Distributed Assurance Platform (reference POCI-01-0247-FEDER-045907) co-financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 and by the Portuguese Foundation for Science and Technology – FCT, under CMU Portugal.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trindade, J., Vinagre, J., Fernandes, K., Paiva, N., Jorge, A. (2021). Partially Monotonic Learning for Neural Networks. In: Abreu, P.H., Rodrigues, P.P., Fernández, A., Gama, J. (eds) Advances in Intelligent Data Analysis XIX. IDA 2021. Lecture Notes in Computer Science(), vol 12695. Springer, Cham. https://doi.org/10.1007/978-3-030-74251-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74251-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74250-8

  • Online ISBN: 978-3-030-74251-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics