Skip to main content

Aeroelastic Models Design/Experiment and Correlation with New Theory

  • Chapter
  • First Online:
A Modern Course in Aeroelasticity

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 264))

  • 1682 Accesses

Abstract

Several examples of experimental model designs, wind tunnel tests and correlationĀ  with new theory are presented in this chapter. The goal is not only to evaluate a new theory, new computational method or new aeroelastic phonomenon, but also to provide new insights into nonlinear aeroelastic phenomena, flutter, limit cycle oscillation (LCO), gust response and energy harvestingĀ from a large flapping flag response. The experiments are conducted in a standard low speed wind tunnel. Similar experiments in a high speed wind tunnel would be very valuable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that the buffet frequency is given in Fig.Ā 9c as a function of flow velocity for the various angles of attack.

References

  1. Tang DM, Dowell EH (2001) Experimental and theoretical study on aeroelastic response of high-aspect ratio wings. AIAA J 39(8):1430ā€“1441

    ArticleĀ  Google ScholarĀ 

  2. Tang DM, Dowell EH (2002) Limit cycle hysteresis response for a high-aspect ratio wing model. J Aircr 39(5):885ā€“888

    ArticleĀ  Google ScholarĀ 

  3. Tang DM, Dowell EH (2002) Experimental and theoretical study of gust response for a high-aspect ratio wing. 40(3):419ā€“429

    Google ScholarĀ 

  4. Tang DM, Grasch A, Dowell EH (2010) Gust response for flexibly suspended high-aspect ratio wing. AIAA J 48(10):2430ā€“2444

    ArticleĀ  Google ScholarĀ 

  5. Tang DM, Dowell EH (2009) Flutter/LCO suppression of high aspect ratio wings. J R Aeron Soc 113(1144):409ā€“416

    ArticleĀ  Google ScholarĀ 

  6. Tang DM, Henry JK, Dowell EH (1999) Limit cycle oscillations of delta wing models in low subsonic flow. AIAA J 37(11):1355ā€“1362

    ArticleĀ  Google ScholarĀ 

  7. Tang DM, Dowell EH (2001) Effects of angle of attack on nonlinear flutter of a delta wing. AIAA J 39(1):15ā€“21

    ArticleĀ  Google ScholarĀ 

  8. Tang DM, Attar PJ, Dowell EH (2006) Flutter/LCO analysis and experiment for a wing-store model. AIAA J 44(7):1662ā€“1675

    ArticleĀ  Google ScholarĀ 

  9. Tang DM, Dowell EH (2006) Flutter and limit cycle oscillations for a wing-store model with freeplay. J Aircr 43(2):487ā€“503

    ArticleĀ  Google ScholarĀ 

  10. Attar PJ, Dowell EH, Tang DMI (2005) Modeling the LCO of a delta wing model with an external store using a high fidelity structural model. In: AIAA SDM conference, April, AIAA paper 2005-1913

    Google ScholarĀ 

  11. Tang DM, Yamamoto H, Dowell EH (2003) Experimental and theoretical study on limit cycle oscillations of two-dimensional panels in axial flow. J Fluids Struct 17(2):225ā€“242

    ArticleĀ  Google ScholarĀ 

  12. Gibbs C, Sethna A, Wang I, Tang DM, Dowell EH (2014) Aeroelastic stability of a cantilevered plate in yawed subsonic flow. J Fluids Struct 49:450ā€“462

    ArticleĀ  Google ScholarĀ 

  13. Tang DM, Gibbs C, Dowell EH (2015) Nonlinear aeroelastic analysis with inextensible plate theory including correlation with experiment. AIAA J 53(5):1299ā€“1308

    ArticleĀ  Google ScholarĀ 

  14. Attar PJ, Dowell EH, Tang DM (2003) A theoretical and experimental investigation of the effects of a steady angle of attack on the nonlinear flutter of a delta wing plate model. J Fluids Struct 17(2):243ā€“259

    ArticleĀ  Google ScholarĀ 

  15. Tang DM, Dowell EH (2008) Theoretical and experimental aeroelastic study for folding wing structures. J Aircr 45(4):1136ā€“1147

    ArticleĀ  Google ScholarĀ 

  16. Peter JA, Tang DM, Dowell EH (2010) Nonlinear aeroelastic study for folding wing structures. AIAA J 48(10):2187ā€“2195

    ArticleĀ  Google ScholarĀ 

  17. Tang DM, Henry JK, Dowell EH (2000) Nonlinear aeroelastic response of a delta wing to periodic gust. J Aircreft 37(1):155ā€“164

    ArticleĀ  Google ScholarĀ 

  18. Tang DM, Henry JK, Dowell EH (2002) Effects of steady angle of attack on nonlinear gust response of a delta wing model. J Fluids Struct 16(8):1093ā€“1110

    ArticleĀ  Google ScholarĀ 

  19. Tang DM, Dowell EH (2006) Experimental and theoretical study of gust response for a wing-store model with freeplay. J Sound Vib 295:659ā€“684

    ArticleĀ  Google ScholarĀ 

  20. Conner MC, Tang DM, Dowell EH, Virgin LN (1997) Nonlinear behavior of a typical airfoil section with control surface freeplay: a numerical and experimental study. J Fluids Struct 11:89ā€“112

    ArticleĀ  Google ScholarĀ 

  21. Tang DM, Dowell EH, Virgin LN (1998) Limit cycle behavior of an airfoil with a control surface. J Fluids Struct 12(7):839ā€“858

    ArticleĀ  Google ScholarĀ 

  22. Tang DM, Kholodar D, Dowell EH (2000) Nonlinear aeroelastic response of a airfoil section with control surface freeplay to gust loads. AIAA J 38(9):1543ā€“1557

    ArticleĀ  Google ScholarĀ 

  23. Tang DM, Dowell EH (2010) Aeroelastic airfoil with free play at angle of attack with gust excition. AIAA J 48(2)(Feb.):427ā€“442

    Google ScholarĀ 

  24. Tang DM, Gavin HP, Dowell EH (2004) Study of airfoil gust response alleviation using an electro-magnetic dry friction damper - Part 2: experiment. J Sound Vib 267:875ā€“897

    ArticleĀ  Google ScholarĀ 

  25. Dong-Hwan L, Chen PC, Tang DM, Dowell EH (2010) Nonlinear gust response of a control surface with freeplay AIAA 2010ā€“3116. In: 51st AIAA/ASME/AHS/ASC structures, structural dynamics and materials conference, 12ā€“15 April. Oriando, Floriad

    Google ScholarĀ 

  26. Tang DM, Dowell EH (2011) Aeroelastic response induced by freeplay: Part II, theoretical/experimental correlation analysis. AIAA J 49(11):2543ā€“2554

    ArticleĀ  Google ScholarĀ 

  27. Tang DM, Dowell EH (2013) Computational/experimental aeroelastic study for a horizontal tail model with freeplay. AIAA J 51(2):341ā€“352

    ArticleĀ  Google ScholarĀ 

  28. Tang DM, Dowell EH (2014) Effects of a free-to-roll fuselage on wing flutter: theory and experiment. AIAA J 52(12):2625ā€“2632

    ArticleĀ  Google ScholarĀ 

  29. Tang DM, Dowell EH (2014) Experimental aerodynamic response for an oscillating airfoil in buffeting flow. AIAA J 52(6):1170

    Google ScholarĀ 

  30. Tang DM, Dowell EH (2013) Experimental aeroelastic response for a freeplay control surface in buffeting flow. AIAA J 51(12):2852ā€“2861

    ArticleĀ  Google ScholarĀ 

  31. Hodges DH, Dowell EH (1974) Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades, NASA TN D-7818

    Google ScholarĀ 

  32. Tran CT, Petot D (1981) Semi-empirical model for the dynamic stall of airfoils in view to the application to the calculation of responses of a helicopter blade in forward flight. Vertica 5(1):35ā€“53

    Google ScholarĀ 

  33. Simmonds JG, Libal A (1979) Exact equations for the inextensional deformation of cantilevered plates. J Appl Mech 46:631ā€“636

    ArticleĀ  Google ScholarĀ 

  34. Simmonds JG, Libal A (1979) Alternate exact equations for the inextensional deformation of arbitrary. Quadrilateral, and triangular plates. J Appl Mech 46:895ā€“900

    ArticleĀ  Google ScholarĀ 

  35. Simmonds JG (1981) Exact equations for the large inextensional motion of plates. J Appl Mech 48:109ā€“112

    ArticleĀ  Google ScholarĀ 

  36. Darmon P, Benson RG (1986) Numerical solution to an inextensible plate theory with experimental results. J Appl Mech 53:886ā€“890

    ArticleĀ  Google ScholarĀ 

  37. Tang DM, Zhao M, Dowell EH (2014) Inextensible beam and plate theory: computational analysis and comparison with experiment. J Appl Mech 81(6)

    Google ScholarĀ 

  38. Molyneux WG (1950) The flutter of swept and unswept wing with fixed-root conditions. Aeronautical Research Council Reports and Memoranda No. 2796

    Google ScholarĀ 

  39. Yates EC (1985) AGARD standard aeroelastic configurations for dynamic response I-Wing 445.6, AGARD Report, No. 765

    Google ScholarĀ 

  40. Weatin MF, Goes LC, Ramos RL, Silva RG (2009) Aeroservoelastic modeling of a flexible wing for wind tunnel flutter test. In: Proceedings of 20th international congress of mechanical engineering (p. 9), Gramado, RS

    Google ScholarĀ 

  41. Edwards JW, Schuster DM, Spain CV, Keller DF, Moses RM (2014) MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test, NASA/TM-2001-210877. Langley Reseach Center, Hampton, Virginia. AIAA J 52(12):2625ā€“2632

    Google ScholarĀ 

  42. Peters DA, Cao WM (1995) Finite state induced flow models, part i: two-dimensional thin airfoil. J Aircr 32(2):313ā€“322

    ArticleĀ  Google ScholarĀ 

  43. Niles RH, Spielberg IN (1954) Subsonic flutter tests of an unswept all-movable horizontal tail, WADC TR-54-53, AD 39949

    Google ScholarĀ 

  44. Niles RH (1955) Subsonic flutter model tests of an all-movable stabilizer with \(35^0\) Sweepback. WADC technical Note 55-623, AD 91593

    Google ScholarĀ 

  45. Cooley DE, Murphy JA (1958) Subsonic flutter model tests of a low aspect ratio unswept all-movable tail, WADC-TR-58-31, AD 142337

    Google ScholarĀ 

  46. Raveh Daniella E (2009) Numerical study of an oscillating airfoil in transonic buffeting flows. AIAA J 47(3):505ā€“515

    ArticleĀ  Google ScholarĀ 

  47. Raveh DE, Dowell EH (2011) Frequency lock-in phenomenon for oscillating airfoils in buffeting flows. J Fluids Struct 27(1):89ā€“104

    Google ScholarĀ 

  48. Dowell EH, Hall KC, Thomas JP, Kielb RE, Spiker MA, Denegri Jr CM (2007) A new solution method for unsteady flows around oscillating bluff bodies. In: IUTAM symposium on fluid-structure interaction in ocean engineering: Proceeding of the IUTAM symposium held in Hamburg, Germany, Springer, p. 37

    Google ScholarĀ 

  49. Chen J, Fang YC (1998) Lock-on of vortex shedding due to rotational oscillations of a flat plane in a uniform stream. J Fluid Struct 12(6):779ā€“798

    ArticleĀ  Google ScholarĀ 

  50. Hall KC, Thomas JP, Clark WS (2002) Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J 40(5):879ā€“886

    ArticleĀ  Google ScholarĀ 

  51. Besem F, Kamrass JD, Thomas JP, Tang DM, Kielb RE (2016) Vortex-induced vibration and frequency lock-in of an airfoil at high angles of attack. J Fluids Eng Trans ASME 138(1)

    Google ScholarĀ 

  52. Gilman J Jr, Bennett RM (1966) A wind tunnel technique for measuring frequency response functions for gust load analyses. J Aircr 3(6):535ā€“540

    ArticleĀ  Google ScholarĀ 

  53. Buell DA (1969) An experimental investigation of the velocity fluctuations behind oscillating vanes, NASA TN D-5542

    Google ScholarĀ 

  54. Bicknell J, Parker AG (1972) A wind-tunnel stream oscillating apparatus. J Aircr 9(6):446ā€“447

    ArticleĀ  Google ScholarĀ 

  55. Poisson-Quinton P (1972) Note on a new V/STOL rig in the SI modane sonic tunnel. Third AGARD Meeting on V/STOL Tunnels, INERA, Amsterdam

    Google ScholarĀ 

  56. Ham ND, Bauer PH, Lawrence TL (1974) Wind tunnel generation of sinusoidal lateral and longitudinal gust by circulation control of twin parallel airfoils, NASA CR 137547. Aeroelastic and Structures Research Lab, TR 174ā€“3

    Google ScholarĀ 

  57. Reed WH, III (1991) Conceptual design of a wind tunnel gust generator and rotor blade with feedback control. Dynamic Engineering Inc, Document D-409. Newport News, VA

    Google ScholarĀ 

  58. Yates ECJr, Fox AG (1963) Steady-state characteristics of a differential-pressure system for evaluating angle of attack and sideslip of ranger IV vehicle, NASA TN D-1966

    Google ScholarĀ 

  59. Tang DM, Cizmas Paul GA, Dowell EH (1996) Experiments and analysis for a gust generator in a wind tunnel. J Aircraft 33(1):139ā€“148

    Google ScholarĀ 

  60. Cizmas PGA, Tang DM, Dowell EH (1996) Flow about a slotted cylinder-airfoil combination in a wind tunnel. J Aircraft 33(4):716ā€“721

    Google ScholarĀ 

  61. Tang L, Paidoussis MP, Jiang J (2009) Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter-mill. J Sound Vib 326:263ā€“276

    ArticleĀ  Google ScholarĀ 

  62. Michelin S, Doare O (2013) Energy harvesting efficiency of piezoelectric flaps. J Fluid Mech 714:489ā€“504

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  63. Dunnmon JA, Stanton SC, Mann BP, Dowell EH (2011) Power extraction from aeroelastic limit cycle oscillations. J Fluids Struct 27(8):1182ā€“1198

    ArticleĀ  Google ScholarĀ 

  64. Tang Deman, Dowell EH (2018) Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate. J Fluids Struct 76:14ā€“36

    ArticleĀ  Google ScholarĀ 

  65. Tang Deman, Levin Dani, Dowell EH (2019) Experimental and theoretical correlations for energy harvesting from a large flapping flag response. J Fluids Struct 86:290ā€“315

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors would like to thank all those colleagues who have contributed to these studies over the years including the following: Peter Attar, Fanny Besem, PC Chen, Paul G. A., Cixmas, Mark Connor, Levin, Dani, Chuck Denegri, Henri Gavin, Chad Gibbs, Adam Grasch, James Henry, Denis Kholodar, Bob Kielb, D-H Lee, Daniella Raveh, Anosh Sethna, Meredith Spiker, Jeff Thomas, Steve Trickey, Lawrie Virgin, Ivan Wang, Hiroshi Yamamoto, Minghui Zhao

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl H. Dowell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, D., Dowell, E.H. (2022). Aeroelastic Models Design/Experiment and Correlation with New Theory. In: Dowell, E.H. (eds) A Modern Course in Aeroelasticity. Solid Mechanics and Its Applications, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-030-74236-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74236-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74235-5

  • Online ISBN: 978-3-030-74236-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics