Skip to main content

Pancreas: Transabdominal Ultrasound-Based Elastography

  • Chapter
  • First Online:
Elastography of the Liver and Beyond

Abstract

The transabdominal assessment of pancreatic stiffness (PS) can be obtained by elastographic software installed in the ultrasound machine, to precisely target the pancreas under the US B-mode guidance. The presence of ascites, large cysts, or obesity may interfere with the stiffness measurement; however, this technique is mostly quick and easy to perform. PS has been investigated by strain elastography or ultrasound shear wave elastography in cohorts of patients with both benign and malignant diseases. Its application has an excellent degree of feasibility, and its role in the settings of chronic pancreatitis and alcohol-related diseases seems promising to stratify patients by severity and to early detect and monitor pancreatic damage. PS can also be useful in acute pancreatitis, to predict surgical complications, and with the pediatric population in cystic fibrosis or type 1 diabetes. Moreover, PS may help in the differential diagnosis of pancreatic lesions, both benign and malignant masses and among different types of pancreatic cancer. However, larger and further studies are needed to confirm these interesting findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dietrich CF, Hocke M. Elastography of the pancreas, current view. Clin Endosc. 2019;52(6):533–40. https://doi.org/10.5946/ce.2018.156.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gallotti A, D’Onofrio M, Pozzi MR. Acoustic radiation force impulse (ARFI) technique in ultrasound with virtual touch tissue quantification of the upper abdomen. Radiol Med. 2010;115:889–97. https://doi.org/10.1007/s11547-010-0504-5.

    Article  CAS  PubMed  Google Scholar 

  3. Kawada N, Tanaka S. Elastography for the pancreas: current status and future perspective. World J Gastroenterol. 2016;22(14):3712–24. https://doi.org/10.3748/wjg.v22.i14.3712.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Janssen J, Papavassiliou I. Effect of aging and diffuse chronic pancreatitis on pancreas elasticity evaluated using semiquantitative EUS elastography. Ultraschall Med. 2014;35:253–8. https://doi.org/10.1055/s-0033-1355767.

    Article  CAS  PubMed  Google Scholar 

  5. Yashima Y, Sasahira N, Isayama H, Kogure H, Ikeda H, Hirano K, et al. Acoustic radiation force impulse elastography for noninvasive assessment of chronic pancreatitis. J Gastroenterol. 2012;47:427–32. https://doi.org/10.1007/s00535-011-0491-x.

    Article  PubMed  Google Scholar 

  6. Pozzi R, Parzanese I, Baccarin A, Giunta M, Conti CB, Cantù P, et al. Point shear-wave elastography in chronic pancreatitis: a promising tool for staging disease severity. Pancreatology. 2017;17(6):905–10. https://doi.org/10.1016/j.pan.2017.10.003.

    Article  PubMed  Google Scholar 

  7. Kawada N, Tanaka S, Uehara H, Ohkawa K, Yamai T, Takada R, et al. Potential use of point shear wave elastography for the pancreas: a single center prospective study. Eur J Radiol. 2014;83:620–4. https://doi.org/10.1016/j.ejrad.2013.11.029.

    Article  PubMed  Google Scholar 

  8. Conti CB, Weiler N, Casazza G, Schrecker C, Schneider M, Mücke MM, et al. Feasibility and reproducibility of liver and pancreatic stiffness in patients with alcohol-related liver disease. Dig Liver Dis. 2019;51(7):1023–9. https://doi.org/10.1016/j.dld.2018.12.017.

    Article  PubMed  Google Scholar 

  9. Xie J, Zou L, Yao M, Xu G, Zhao L, Xu H, et al. A preliminary investigation of normal pancreas and acute pancreatitis elasticity using virtual touch tissue quantification (VTQ) imaging. Med Sci Monit. 2015;21:1693–9. https://doi.org/10.12659/MSM.892239.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mateen MA, Muheet KA, Mohan RJ, Rao P, Majaz H, Rao GV, et al. Evaluation of ultrasound based acoustic radiation force impulse (ARFI) and eSie touch sonoelastography for diagnosis of inflammatory pancreatic diseases. JOP. 2012;13:36–44. PMID: 22233945.

    PubMed  Google Scholar 

  11. Göya C, Hamidi C, Hattapoğlu S, Cetinçakmak MG, Teke M, Degirmenci MS, et al. Use of acoustic radiation force impulse elastography to diagnose acute pancreatitis at hospital admission: comparison with sonography and computed tomography. J Ultrasound Med. 2014;33:1453–60. https://doi.org/10.7863/ultra.33.8.1453.

    Article  PubMed  Google Scholar 

  12. Sanjeevi R, John RA, Kurien RT, Dutta AK, Simon EG, David D, et al. Acoustic radiation force impulse imaging of pancreas in patients with early onset idiopathic recurrent acute pancreatitis. Eur J Gastroenterol Hepatol. 2020;32:950. https://doi.org/10.1097/MEG.0000000000001732.

    Article  CAS  PubMed  Google Scholar 

  13. Săftoiu A, Gilja OH, Sidhu PS, Dietrich CF, Cantisani V, Amy D, et al. The EFSUMB guidelines and recommendations for the clinical practice of elastography in non-hepatic applications: update 2018. Ultraschall Med. 2019;40(4):425–53. https://doi.org/10.1055/a-0838-9937.

    Article  PubMed  Google Scholar 

  14. Harada N, Yoshizumi T, Maeda T, Kayashima H, Ikegami T, Harimoto N, et al. Preoperative pancreatic stiffness by real-time tissue elastography to predict pancreatic fistula after pancreaticoduodenectomy. Anticancer Res. 2017;37(4):1909–15. https://doi.org/10.21873/anticanres.11529.

    Article  PubMed  Google Scholar 

  15. Hatano M, Watanabe J, Kushihata F, Tohyama T, Kuroda T, Koizumi M, et al. Quantification of pancreatic stiffness on intraoperative ultrasound elastography and evaluation of its relationship with postoperative pancreatic fistula. Int Surg. 2015;100(3):497–502. https://doi.org/10.9738/INTSURG-D-14-00040.1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee TK, Kang CM, Park MS, Choi SH, Chung YE, Choi JY, et al. Prediction of postoperative pancreatic fistulas after pancreatectomy: assessment with acoustic radiation force impulse elastography. J Ultrasound Med. 2014;33(5):781–6. https://doi.org/10.7863/ultra.33.5.781.

    Article  PubMed  Google Scholar 

  17. Friedrich-Rust M, Schlueter N, Smaczny C, Eickmeier O, Rosewich M, Feifel K, et al. Non-invasive measurement of liver and pancreas fibrosis in patients with cystic fibrosis. Cyst Fibros. 2013;12(5):431–9. https://doi.org/10.1016/j.jcf.2012.12.013.

    Article  Google Scholar 

  18. Pfahler MHC, Kratzer W, Leichsenring M, Graeter T, Schmidt SA, Wendlik I, et al. Point shear wave elastography of the pancreas in patients with cystic fibrosis: a comparison with healthy controls. Abdom Radiol (NY). 2018;43(9):2384–90. https://doi.org/10.1007/s00261-018-1479-2.

    Article  Google Scholar 

  19. Sağlam D, Demirbaş F, Bilgici MC, Yücel S, Çaltepe G, Eren E. Can point shear wave elastography be used as an early indicator of involvement?: evaluation of the pancreas and liver in children with cystic fibrosis. J Ultrasound Med. 2020;39:1769. https://doi.org/10.1002/jum.15281.

    Article  PubMed  Google Scholar 

  20. He Y, Jin Y, Li X, Wu L, Jin C. Quantification of pancreatic elasticity in type 2 diabetes: a new potential imaging marker for evaluation of microangiopathy. Eur J Radiol. 2020;124:108827. https://doi.org/10.1016/j.ejrad.2020.108827.

    Article  PubMed  Google Scholar 

  21. He Y, Wang H, Li XP, Zheng JJ, Jin CX. Pancreatic elastography from acoustic radiation force impulse imaging for evaluation of diabetic microangiopathy. Am J Roentgenol. 2017;209(4):775–80. https://doi.org/10.2214/AJR.16.17626.

    Article  Google Scholar 

  22. Püttmann S, Koch J, Steinacker JP, Schmidt SA, Seufferlein T, Kratzer W, et al. Ultrasound point shear wave elastography of the pancreas: comparison of patients with type 1diabetes and healthy volunteers - results from a pilot study. BMC Med Imaging. 2018;18(1):52. https://doi.org/10.1186/s12880-018-0295-z.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sağlam D, Bilgici MC, Kara C, Yılmaz GC, Çamlıdağ İ. Acoustic radiation force impulse elastography in determining the effects of type 1 diabetes on pancreas and kidney elasticity in children. Am J Roentgenol. 2017;209(5):1143–9. https://doi.org/10.2214/AJR.17.18170.

    Article  Google Scholar 

  24. Öztürk M, Yildirim R. Evaluation of pancreas with strain elastography in children with type 1 diabetes mellitus. Pol J Radiol. 2017;82:767–72. https://doi.org/10.12659/PJR.904118.

    Article  PubMed  PubMed Central  Google Scholar 

  25. D’Onofrio M, De Robertis R, Crosara S, Poli C, Canestrini S, Demozzi E, et al. Acoustic radiation force impulse with shear wave speed quantification of pancreatic masses: a prospective study. Pancreatology. 2016;16(1):106–9. https://doi.org/10.1016/j.pan.2015.12.003.

    Article  PubMed  Google Scholar 

  26. Park MK, Jo J, Kwon H, Cho JH, Oh JY, Noh MH, et al. Usefulness of acoustic radiation force impulse elastography in the differential diagnosis of benign and malignant solid pancreatic lesions. Ultrasonography. 2014;33(1):26–33. https://doi.org/10.14366/usg.13017.

    Article  PubMed  Google Scholar 

  27. Uchida H, Hirooka Y, Itoh A, Kawashima H, Hara K, Nonogaki K, et al. Feasibility of tissue elastography using transcutaneous ultrasonography for the diagnosis of pancreatic diseases. Pancreas. 2009;38(1):17–22. https://doi.org/10.1097/MPA.0b013e318184db78.

    Article  PubMed  Google Scholar 

  28. D’Onofrio M, Crosara S, Canestrini S, Demozzi E, De Robertis R, Salvia R, et al. Virtual analysis of pancreatic cystic lesion fluid content by ultrasound acoustic radiation force impulse quantification. J Ultrasound Med. 2013;32(4):647–51. https://doi.org/10.7863/jum.2013.32.4.647.

    Article  PubMed  Google Scholar 

  29. D’Onofrio M, Gallotti A, Martone E, Pozzi MR. Solid appearance of pancreatic serous cystadenoma diagnosed as cystic at ultrasound acoustic radiation force impulse imaging. JOP. 2009;10(5):543–6.

    PubMed  Google Scholar 

  30. D’Onofrio M, Gallotti A, Mucelli RP. Pancreatic mucinous cystadenoma at ultrasound acoustic radiation force impulse (ARFI) imaging. Pancreas. 2010;39(5):684–5. https://doi.org/10.1097/MPA.0b013e3181c34d19.

    Article  PubMed  Google Scholar 

  31. D’Onofrio M, Gallotti A, Falconi M, Capelli P, Mucelli RP. Acoustic radiation force impulse ultrasound imaging of pancreatic cystic lesions: preliminary results. Pancreas. 2010;39(6):939–40. https://doi.org/10.1097/MPA.0b013e3181d36244.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conti, C.B., Pozzi, R. (2021). Pancreas: Transabdominal Ultrasound-Based Elastography. In: Fraquelli, M. (eds) Elastography of the Liver and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-030-74132-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74132-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74131-0

  • Online ISBN: 978-3-030-74132-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics