
Computing Gripping Points in 2D Parallel
Surfaces Via Polygon Clipping

Ludwig Vogt, Yannick Zimmermann and Johannes Schilp

Abstract
To generate suitable grasping positions between tessellated handling objects and
specific planar grippers, we propose a 2D analytical approach which uses a polygon
clipping algorithm to generate detailed information about the intersection between both
objects. With the generated knowledge about the intersection we check whether its
shape fits to the set criteria of the operator and represents a valid grasping position.
Before the polygon clipping algorithm is applied, a preprocessing step is performed,
where appropriate surfaces from the handling object and the gripper are extracted.
After rotating all surfaces into a common plane, potential clipping positions are
detected and the clipping is performed to get an accurate intersection detection. The
validation shows comparable running times to a OBBTree algorithm (0.1 ms per
grasping position) while increasing the stability of the results from 30 to 100% for the
evaluated test objects.

Keywords
Handling � Polygon clipping � Gripping point determination

L. Vogt (&) � Y. Zimmermann � J. Schilp
Chair of Digital Manufacturing, Faculty of Applied Computer Science, Augsburg University,
Eichleitnerstr. 30, 86159 Augsburg, Germany
e-mail: Ludwig.Vogt@informatik.uni-augsburg.de

J. Schilp
Fraunhofer Research Institution for Casting, Composite and Processing Technology–IGCV,
Provinostr. 52, 86153 Augsburg, Germany

© The Author(s) 2022
T. Schüppstuhl et al. (eds.), Annals of Scientific Society for Assembly,
Handling and Industrial Robotics 2021,
https://doi.org/10.1007/978-3-030-74032-0_9

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74032-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74032-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74032-0_9&domain=pdf
mailto:Ludwig.Vogt@informatik.<HypSlash>uni-augsburg</HypSlash>.de
https://doi.org/10.1007/978-3-030-74032-0_9

1 Introduction

With a rising degree in automated process chains and a continuously demand of smaller lot
sizes the requirements for automated product handling are increasing. Additionally, additive
manufacturing enables the production of topology optimized parts which can have a very
complex and delicate shape or structure and are therefore difficult to handle [1].

The automated handling process and the determination of gripping points has been a
popular research field in recent times [2, 3]. For the determination of gripping points two
main approaches exist: an analytical approach, taking mechanical and physical properties
of the object into account and an empirical approach, trying to replicate the movement of
the human hand [2]. While the empirical grasping approach uses neural networks [4] or
fuzzy logic [5], the analytical grasping approach includes mathematical models to
determine the contact between the gripper and the object [6]. A central part of both
strategies is to find suitable grasping positions on the object. To form stable grasps, it is
aspired to generate a maximum overlap between the gripping surface and the object. For
some handling tasks, only partial overlapping is realizable without changing the grippers.
To control this, our main target is to generate a complete grasp set which contains all
planar grasps with information about the overlapping between gripper and handling
object. Therefore, it is necessary to accurately determine the shape of the contact area.
While the empirical approaches show a fast and computational efficient solution they need
extensive and high quality training data to generate accurate models for each gripper [7].
Trained models are also gripper specific and difficult to use for other gripper shapes. In
analytical methods a collision detection can be used to check for a correct gripper
alignment and intersection area, but often contacts are calculated via bounding boxes with
primitive shapes [8] and the contact shape is approximated or neglected.

To generate information about the intersection between the object and the gripper a 3D
collision detection based on a Oriented Bounding Box Tree (OBBTree) from the vtk
library was first used [9]. Although the collision detection was robust and performing well
for boundary contacts, the intersection determination was not suitable for our application.
Tests showed a good approximation for basic intersection shapes e.g. rectangle, triangle
and circle but unsatisfying or no output at all for concave shapes containing holes and
crooked intersection planes (cf. Fig. 1).

For this reason, a 2D analytical approach where we use a polygon clipping algorithm to
determine area gripping points is proposed.

102 L. Vogt et al.

2 State of the Art

Before giving an overview about the various methods to determination gripping points for
planar grippers and their intersections, we give a short introduction about the basic
concept of polygon clipping and detail the most used algorithms.

2.1 Polygon Clipping

Originally polygon clipping algorithms were developed for basic operations in creating
graphic output [10]. Polygon clipping is the calculation of the intersection of two given
polygons: a subject polygon and a clipping polygon (cf. Fig. 2] (Rappoport 11]. Because
the intersection output from the 3D collision is unsuitable for our application (cf. Chap. 1)
and Triangle-Triangle intersection algorithms are either case dependent [12] or perform
poorly for bigger applications [13], we develop an alternative algorithm. The usage of
polygon clipping algorithms [14] enables a stable and accurate intersection detection
between two polygons. In the Literature several algorithms have been proposed to solve
this problem, but in the following three of the more prominent ones are described.

Sutherland and Hodgman [15] propose an algorithm which is able to clip a convex
clipping polygon and a concave subject polygon against each other but not two concave
polygons. The Weiler-Atherton algorithm [14] is able to clip two non-self-intersecting

I III IV V

No output
at all

II

Fig. 1 Results from the intersection detection (red) with an OBBTree algorithm. Second row shows
the desired intersection shape, last row shows the computed output. Intersecting cases I-IV lay in the
XY plane and case V in a crooked plane

Computing Gripping Points in 2D Parallel Surfaces … 103

http://dx.doi.org/10.1007/978-3-030-74032-0_1

concave polygons against each other. They are even allowed to contain holes. The
algorithm is based on classifying each intersection between both polygons and creating
the total intersection from it with a runtime complexity of O(n2). The Vatti algorithm [16]
is also able to clip two concave polygons against each other. After the determination of the
left and right bound of each polygon the intersection is computed via the use of scanbeams
with a runtime complexity better than O(n2).

2.2 Gripping Point Determination and Intersection Detection

Because the developed approach is restricted to force closure with area contacts, this
paragraph focusses on the relevant literature in this subject area. Some Methods 17, 18]
focus on identifying contact points which fulfill the wrench equilibrium without deriving
shape information for the intersection. Li et al. [19] calculated a grasp synthesis by shape
matching the human hand with the form of the handling object based on a comparison of
self-created feature sets. While this approach is suitable to find positions for a full
overlapping, it is not applicable for partial overlappings. A triangular clustering is pro-
posed in Harada et al. [20] to determine the contact points of a two finger parallel gripper
with soft fingertips. Therefore, neighbor triangles of a surface are clustered via a com-
parison of their normal vectors and saved to a new rectangular grasping plane. In the next
step the gripper plane is matched with the grasping plane on the object but no intersection
between the two shapes is derived. Bonilla et al. [21] used bounding boxes to decompose
the handling object and find suitable grasps with the use of basic geometries. Their testing
showed a robust and flexible method with success rates of at least 77,61% but no shape
information for the contact is created and used. Lin et al. [22] decompose objects, rep-
resented via a an RGB image, into several ellipses and build a grasping rectangle for each
decomposition. The missing depth data prevents a calculation of the intersection area.
Spenrath and Pott [23] use a heuristic search to select grasping positions in bin picking
applications with the use of predefined contact regions. Trained neural networks [3, 4]
show a good performance with high success rates (up to 95%) but need a specific training
set for each gripper and do not determine specific shapes for the intersections between the
handling object and gripper. Therefore, our main goal is to get a stable and computational

Fig. 2 Initial situation for a
polygon clipping algorithm
(a) and the resulting solution
(b)

104 L. Vogt et al.

efficient intersection detection for grippers and handling objects even for complex inter-
section shapes.

3 Gripping Point Determination with an Intersection Detection

The algorithm is built in a Python 3 environment and can be divided in 6 sequences (cf.
Fig. 3). To find a stable, planar and accurate matching between the gripper surface and the
handling object, the algorithm takes CAD data from both objects as an input and calcu-
lates valid gripping points. This means that the intersection surface satisfies the set criteria
(cf. Chap. 4.2). Note that the results of the algorithm ignore the reachability and the 3D
collision between the gripper and the object. These steps will be implemented in future
work.

3.1 Preprocessing

First, the CAD-data of the handling object is imported in a.stl-format and all surface
triangles are stored in a (n � 9) matrix, where n denotes the number of triangles in the
mesh. Afterwards a similar approach as in Harada et al. [20] is used to cluster the triangles
in 2D surfaces, with the difference that all triangles lay in the spanned surface and don’t
cut the newly generated surface. From the surfaces in this data set, pairs of parallel
surfaces are calculated and stored via a comparison of their plane normal vectors. To take
rounding errors into account, or if it is desired to allow a small angle between the surfaces,
it is also possible to set a specific threshold. Additional restriction for this step is the
geometry of the gripper (max. & min. opening of the gripper). Finally, the contour of the
gripper surface is derived from the gripper model (.stl-format). The identification of the
gripper surface is done manually at the moment.

Gripping point determinationPreprocessing

Load .stl-
data Detect parallel

surfaces

Detect gripping
surface Import

surface data
Rotate

surfaces
Clip polygons

Gripping
points

Fig. 3 Workflow of the program to determine gripping points with a polygon clipping algorithm

Computing Gripping Points in 2D Parallel Surfaces … 105

http://dx.doi.org/10.1007/978-3-030-74032-0_4

3.2 Gripping Point Determination Via Polygon Clipping

These two generated data sets are handed over to the gripping point determination
algorithm. First, the surfaces are imported and afterwards their contours are extracted. For
this, the 3 connection vectors of all triangles n are calculated and saved. For each surface,
an empty set is created and afterwards an iteration over the created vector tuples is done. If
the vector is already existent in the data set, it is deleted from the set, otherwise it is
included. After this step the remaining vectors in the contour are strung together and
represent the contour of the surface. Next, is a rotation of all surfaces into the XY-plane.
For the following steps the algorithm uses default variables which can be set manually by
the operator and are further explained in Chap. 4.2. After the rotation, an iteration over the
contour area is done and then the clipping is performed (cf. Fig. 4).

To generate different grasping positions, distributed on the object surface, the gripper
surface is shifted along the grid from Fig. 4. At every (x, y) combination a rotation of the
gripper surface with a default_roation value is done. Afterwards the intersection between
both polygons is determined with a polygon clipping algorithm and if the following two
criteria are satisfied, a valid gripping point is detected:

• The overlapping area is greater or equal than the set default_roation.
• At the second object surface, a matching position which also satisfies the de-

fault_overlapping is found.

The implemented extension for the Weiler-Atherton algorithm enables the clipping of
polygons against each other with an arbitrary shape. As long as they are not
self-intersecting, the Vatti algorithm can be used directly from a clipper library. In the last
step the gripping_point data set is rotated back to its original orientation. The whole
algorithm is summarized in the following:

Plane I of handling object

Plane II of handling object

Limits of the solution space

Grid

Potential gripping points

x

y

Fig. 4 Determination of potential gripping points (circles) from the two surfaces on the handling
object (red, blue) with a superimposed grid in the XY-plane

106 L. Vogt et al.

http://dx.doi.org/10.1007/978-3-030-74032-0_4

Gripping point determination via a polygon clipping algorithm

p denotes the points of all triangles in a surface, vectors all the calculated connection
vectors and contour all the derived vectors of the surface outline. Also, gripping_surface
denotes all the contour vectors of the gripping surface and gripping_points denotes the set
of calculated grasping positions which satisfy the set criteria.

4 Evaluation

4.1 Test Objects and Evaluation Criteria

To evaluate the algorithm, three self-created handling objects (cf. Fig. 5) are combined
with a rectangular gripping surface. The surface of the gripper is 20 mm � 30 mm, while

Computing Gripping Points in 2D Parallel Surfaces … 107

the size of the handling objects is noticeably bigger to enable suitable grasps. The
boundary of the 2D surfaces on the handling objects have varying complexity and contain
different shapes and holes. To enable a comparison between our approach and existing
strategies, we implemented the Vatti algorithm and a custom extension of the
Weiler-Atherton algorithm and compared their performance against the Triangle-Triangle
intersection detection [13] and the 3D intersection detection from the OBBTree vtk
method. As mentioned in Chap. 1, the intersection detection from OBBTree is giving
unsatisfying results but is included to act as a reference for computational efficiency as it
represents a state-of-the-art 3D collision detection.

We computed the runtime of all algorithms for each test case 30 times and calculated
the average computation time per position. The runtime computation is restricted to the
core process because it is assumed that the preprocessing for every algorithm is more or
less the same. To measure the stability of the methods we check all intersections if they
are correct or not, so a score of 50% equals 5 correct outputs for 10 examples.

4.2 Restrictions

First tests of the algorithm without restrictions showed a solution set with an infinite
number of grasping positions. Therefore, it is possible to set the following constraints via
variables to reduce computational resources and the size of the solution set:

• Distance between two gripping points [mm]: In a radius with this value around a
detected gripping point no other gripping point is allowed. Otherwise the algorithm
would generate gripping points with an offset which is close to zero.

• Number of rotations at one gripping point [−]: Because a generated gripping point can
be the center of many grips if the gripper is rotated around that point, the number of
rotations are restricted for each position.

• Minimal overlapping of the gripper surface [%]: A successful grip is also possible if
less than 100% of the gripper surface are in contact with the handling object. To realize
that, a variable was introduced to set the minimal overlapping between the two sur-
faces on each gripping side.

• Maximum number of gripping points [−]: For each set of surface pairs a threshold for
the maximum number of gripping points can be set.

I IIIII

Fig. 5 Representation of the three (I, II, III) handling objects for the test scenario and the derived
parallel planes (red) for the gripping point determination

108 L. Vogt et al.

http://dx.doi.org/10.1007/978-3-030-74032-0_1

Table 1 shows the default_parameters used in the test cases.

5 Results

The results of the proposed algorithm are visualized in Fig. 6 for the three handling
objects. Table 2 contains the runtime evaluation for the four algorithms. For sake of a
clear visualization, only a fraction of the full solution set of handling object I, containing
2576 grasping positions with the given variables, is visualized.

Comparing the four algorithms, the Vatti- and OBBTree algorithm delivered the best
performance followed by the Triangle-Triangle and the customized Weiler-Atherton
algorithm. Considering the average clipping time per position, the results show a
dependency to the intersection complexity, more specifically the number of intersecting

Table 1 Set default_ parameters for the gripping point determination in the test cases

Default_distance
[mm]

Default_rotations
[−]

Default_overlapping
[%]

Default_#points
[−]

Value 5 6 every 60° 100 None

I IIIII

Fig. 6 Resulting grasping positions with the Vatti Algorithm on the three handling objects with the
marked intersections (red) between the gripper and handling object

Table 2 Performance of the intersection detection with the Weiler-Atherton, Vatti, OBBTree and
Triangle-Triangle algorithm. The proposed methods are marked bold

Handling
object

Potential
grasping
positions [−]

Suitable
grasping
positions [−]

Avg. clipping time per position [ms] (stability)

Weiler-Atherton Vatti OBBTree TriangleTriangle

Object I 4068 2576 1.02
(100%)

0.023
(100%)

0.0354
(30%)

0.742
(100%)

Object II 786 12 11.26
(100%)

0.063
(100%)

0.0364
(30%)

1.2961
(100%)

Object III 2484 130 30.83
(100%)

0.11
(100%)

0.0362
(31%)

2.78
(100%)

Computing Gripping Points in 2D Parallel Surfaces … 109

triangles for the two clipping algorithms and the Triangle-Triangle algorithm. The
OBBTree algorithm does not indicate that dependency. These results affirm the suspected
performances from Chap. 2. Due to the self-extension of the Weiler-Atherton algorithm,
it´s runtime complexity is bigger than (On4), in square the original runtime complexity
and in the Triangle-Triangle algorithm 6 inequalities have to be solved, which can be a
time-consuming process. Even for object I where a proportionately small number of
triangles intersect, the Vatti algorithm and OBBTree algorithm show by far the best
performance with computing times smaller than 4/100 ms while the other algorithms took
approximately 1 ms to compute one position. While the Vatti algorithm and OBBTree
algorithm show comparable running times, their stability shows a clear difference because
the OBBTree algorithm correctly detected just 30% of the intersections. The other 70% of
the classifications were false and looked comparable to the output in Fig. 1.

6 Conclusion

As shown, our algorithm represents an alternative way to accurately detect area grasping
positions and their intersection for tessellated based handling objects and planar grippers.
With the graphical representation of the grasping positions for three test cases we showed
the validity and robustness of our approach even for complex intersection shapes.
A performance comparison between existing approaches from the literature showed the
suitability of our algorithm concerning computational complexity as it showed a better
performance than a standard Triangle-Triangle intersection determination algorithm.
Although the results showed a runtime dependency to the number of intersecting triangles
for polygon clipping algorithms, the runtime complexity of the Vatti clipping was still
comparable to the OBBTree algorithm and resulting in a higher stability score.

While the algorithm was successfully tested, a few parts were identified for further
improvement. The algorithm uses settable default_ variables which are not optimized because
the solution size was sufficient for all test cases. To optimize these parameters, further test cases
have to be evaluated. Another point to expand the flexibility of the gripping point determination
is to extend the algorithm for grippers with different gripping surfaces at each finger and
implement parallel computing. At last, as part of a greater gripping point determination project
the algorithm will be implemented into a thorough gripping point determination routine. There,
an analysis of the reachability and security of the grips will be done.

References

1. Bonilla, M., Resasco, D., Gabiccini, M., et al.: Grasp planning with soft hands using Bounding
Box object decomposition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 518–523. IEEE (2015)

2. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree. In: Fujii, J. (ed.) Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques—SIGGRAPH ‘96,
pp. 171–180. ACM Press, New York, USA (1996)

110 L. Vogt et al.

http://dx.doi.org/10.1007/978-3-030-74032-0_2

3. Guigue, P., Devillers, O.: Fast and robust Triangle-Triangle overlap test using orientation
predicates. J. Graph. Tools 8, pp 25–32 (2003)

4. Harada, K., Tsuji, T., Nagata, K., et al.: Grasp planning for parallel grippers with flexibility on
its grasping surface. In: 2011 IEEE International Conference on Robotics and Biomimetics,
pp. 1540–1546. IEEE (2011)

5. Hsiao, K., Chitta, S., Ciocarlie, M., et al.: Contact-reactive grasping of objects with partial shape
information. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1228–1235. IEEE (2010)

6. Jiang, S., Zhao, X., Cai, Z., et al.: Single-grasp detection based on rotational region CNN. In:
Ju, Z., Yang, L., Yang, C., et al. (eds.) Advances in Computational Intelligence Systems, vol.
1043, pp. 131–141. Springer International Publishing, Cham (2020)

7. Kim, I., Inooka, H.: Determination of grasp forces for robot hands based on human capabilities.
Control Eng. Pract. 2, 415–420 (1994). https://doi.org/10.1016/0967-0661(94)90778-1

8. Lachmayer, R., Lippert, R.B., Kaierle, S.: Additive Serienfertigung. Springer, Berlin (2018)
9. Li, Y., Fu, J.L., Pollard, N.S.: Data-driven grasp synthesis using shape matching and task-based pruning.

IEEE Trans. Vis. Comput. Graph. 13, 732–747 (2007). https://doi.org/10.1109/TVCG.2007.1033
10. Liang, Y.-D., Barsky, B.A.: An analysis and algorithm for polygon clipping. Communications

of the ACM. Commun. ACM 26, 868–877 (1983). https://doi.org/10.1145/182.358439
11. Lin, H., Zhang, T., Chen, Z., et al.: Adaptive fuzzy gaussian mixture models for shape

approximation in robot grasping. Int. J. Fuzzy Syst. 21, 1026–1037 (2019). https://doi.org/10.
1007/s40815-018-00604-8

12. Mahler, J., Liang, J., Niyaz, S., et al.: Dex-Net 2.0: Deep Learning to Plan Robust Grasps with
Synthetic Point Clouds and Analytic Grasp Metrics (2017)

13. Nguyen, V.-D.: Constructing force-closure grasps. In: Proceedings, 1986 IEEE International
Conference on Robotics and Automation. Institute of Electrical and Electronics Engineers,
pp. 1368–1373 (1986)

14. Rakesh, V., Sharma, U., Murugan, S., et al.: Optimizing force closure grasps on 3D objects
using a modified genetic algorithm. Soft Comput. 22, 759–772 (2018). https://doi.org/10.1007/
s00500-016-2377-6

15. Rappoport, A.: An efficient algorithm for line and polygon clipping. Vis. Comput. 7, 19–28
(1991). https://doi.org/10.1007/BF01994114

16. Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Auton Robot. 38, 65–
88 (2015). https://doi.org/10.1007/s10514-014-9402-3

17. Sabharwal C.L., Leopold, J.L.: A Trianlge-Triangle intersection algorithm. In: Computer
Science & Information Technology (CS & IT). Academy & Industry Research Collaboration
Center (AIRCC), pp 27–35 (2015)

18. Sahbani, A., El-Khoury, S., Bidaud, P.: An overview of 3D object grasp synthesis algorithms.
Robot. Auton. Syst. 60, 326–336 (2012). https://doi.org/10.1016/j.robot.2011.07.016

19. Spenrath, F., Pott, A.: Gripping point determination for bin picking using heuristic search.
Procedia CIRP 62, 606–611 (2017). https://doi.org/10.1016/j.procir.2016.06.015

20. Su, K.-H., Huang, S.-J., Yang, C.-Y.: Development of robotic grasping gripper based on smart fuzzy
controller. Int. J. Fuzzy Syst. 17, 595–608 (2015). https://doi.org/10.1007/s40815-015-0042-3

21. Sutherland, I.E., Hodgman, G.W.: Reentrant polygon clipping. Commun. ACM 17, 32–42
(1974). https://doi.org/10.1145/360767.360802

22. Vatti, B.R.: A generic solution to polygon clipping. Commun. ACM 35, 56–63 (1992). https://
doi.org/10.1145/129902.129906

23. Weiler, K., Atherton, P.: Hidden surface removal using polygon area sorting. In: Unknown (ed.)
Proceedings of the 4th annual conference on Computer graphics and interactive techniques—
SIGGRAPH ‘77, pp. 214–222. ACM Press, New York, USA (1977)

Computing Gripping Points in 2D Parallel Surfaces … 111

http://dx.doi.org/10.1016/0967-0661(94)90778-1
http://dx.doi.org/10.1109/TVCG.2007.1033
http://dx.doi.org/10.1145/182.358439
http://dx.doi.org/10.1007/s40815-018-00604-8
http://dx.doi.org/10.1007/s40815-018-00604-8
http://dx.doi.org/10.1007/s00500-016-2377-6
http://dx.doi.org/10.1007/s00500-016-2377-6
http://dx.doi.org/10.1007/BF01994114
http://dx.doi.org/10.1007/s10514-014-9402-3
http://dx.doi.org/10.1016/j.robot.2011.07.016
http://dx.doi.org/10.1016/j.procir.2016.06.015
http://dx.doi.org/10.1007/s40815-015-0042-3
http://dx.doi.org/10.1145/360767.360802
http://dx.doi.org/10.1145/129902.129906
http://dx.doi.org/10.1145/129902.129906

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the
chapter's Creative Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

112 L. Vogt et al.

http://creativecommons.org/licenses/by/4.0/

	9 Computing Gripping Points in 2D Parallel Surfaces Via Polygon Clipping
	Abstract
	1 Introduction
	2 State of the Art
	2.1 Polygon Clipping
	2.2 Gripping Point Determination and Intersection Detection

	3 Gripping Point Determination with an Intersection Detection
	3.1 Preprocessing
	3.2 Gripping Point Determination Via Polygon Clipping

	4 Evaluation
	4.1 Test Objects and Evaluation Criteria
	4.2 Restrictions

	5 Results
	6 Conclusion
	References

