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Abstract
Visual sensor data of manual assembly operations offers rich information that can be
extracted in order to analyze and digitalize the assembly. The worker’s interaction with
tools and objects, as well as the spatial–temporal nature of assembly operations, makes
the recognition and classification of assembly operations a complex task. Therefore,
classical methods of computer vision do not provide a sufficient solution. This paper
presents a recurrent neural network for the classification of manual assembly operations
using visual sensor data and addresses the question as to what extent such a solution is
feasible in terms of robustness and reliability. Since complex assembly operations are a
combination of basic movements, four main assembly operations of the Methods
Time-Measurement base operations are classified using a machine learning approach.
A dataset of these four assembly operations, reach, grasp, move and release, containing
RGB-, infrared-, and depth-data is used. A Convolutional Neural Network—Long
Short Term Memory architecture is investigated regarding its applicability due to the
spatial–temporal nature of the data.
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1 Introduction

Globally acting, manufacturing companies must have efficient and versatile production
structures in order to be able to meet customer demands for individually tailored products
of high quality. These changing demands and shortened product lifecycles force modern
production to be highly flexible [1]. This flexibility can be provided by human robot
collaboration, by assigning exhausting and non-ergonomic tasks to the robot [2].

In order to enable such collaborations, it is of utmost importance to implement a visual
sensor system that allows the robot to classify and analyze the assembly steps conducted
by the human in real time. Industrial collaborative robots are able to detect collisions with
humans or other objects and execute an emergency stop as soon as a collision is detected.
While this safety mechanism forms the baseline for a safe collaboration it still requires the
human to observe the robot at all times to avoid collisions, therefore burdening the human
with an additional assignment. Thus, true collaboration along with a decrease in stress
levels for humans can only be achieve by transferring that burden to the robot.

In this context, the presented paper addresses the question if and how assembly opera-
tions can be classified using methods of machine learning based on visual sensor data.
Existing solutions generally do not classify assembly operations directly. Instead, these
methods track activities in certain regions of the assembly area to draw conclusions
regarding the assembly process [3, 4]. A key challenge in the classification of assembly
operations using methods of machine learning is the interaction with tools and objects. Due
to this interaction, conventional implementations fail, since this interaction is not repre-
sented in the used datasets [5]. In order to classify manual assembly operations efficiently, it
is explored how they can be delimited and defined to enable a meaningful classification.

The assembly station and dataset proposed by Rückert et al. [6] is used for the
implementation of the algorithm. Finally, the results are evaluated and interpreted in order
to clarify the implementations strengths and weaknesses.

This paper contributes an outlook on the possibilities of classifying manual assembly
operations using recurrent neural networks and an extension of the algorithm proposed by
Rückert et al. [6].

2 Classification of Manual Assembly Operations

Existing implementations often rely on the assumption that the product is being assembled
when the hands of the worker reside inside a predefined area in the work space [3, 4].
Other approaches draw bounding boxes around hands and objects and assume that the
objects were interacted with, when the bounding boxes intersect [7].

While these implementations do not classify actual assembly operations, they offer
insights on the challenges of the detection and classification of manual assembly opera-
tions. Therefore, it is evident that manual assembly operations need to be analyzed in
detail.
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The two most widely used methods to analyze manual assembly operations in such
detail are REFA and Methods-Time Measurement (MTM) [8]. The time data collection
according to REFA measures the actual time needed to perform certain assembly tasks and
calculates the target times based on this information Verband and für Arbeitsstudien und
Betriebsorganisation e.V.: Methodenlehre des Arbeitsstudiums: Teil 2Datenermittlung,
Hanser, MünchenVerband and für Arbeitsstudien und Betriebsorganisation e.V.: Metho-
denlehre des Arbeitsstudiums: Teil 2Datenermittlung, Hanser, München [9].
Method-Time Measurement divides every manual assembly operation into several basic
movements. For the finger-, hard-, and arm-system, these movements are reach, grasp,
move, position and release [8]. These basic movements are defined beforehand an can be
combined to represent 85% of all manual assembly operations [11].

Reaching is the movement of the fingers or hands to a specific place. Grasping involves
bringing an object under control by closing the fingers. Moving an object from its initial
position to its new destination describes the basic operation move. The operation position
involves bringing an object into its final position at the end of its transport path. Releasing
is defined as lifting control of an object by opening the fingers [10].

During the basic operations move and reach, the hand and arm are in motion. This is
not the case with grasp and release, since these assembly operations primarily concern the
motion of the fingers. Therefore, it is to be expected that the classification algorithm will
mainly misclassify the motions move and reach as well as grasp and release, which results
in a chess-like pattern of the confusion matrix. The key difference between reaching and
bringing is the presence of an object in the hand. Unlike grasping, releasing is charac-
terized by removing the fingers from an object.

Since MTM enables the detection of different motion sequences by identifying its
typical characteristics and offers the prospect of deriving weaknesses in the work pro-
cesses, it is more suited for the underlying approach than REFA Deuse et al. [8].

3 Machine Learning Algorithms for Activity Recognition

The recognition of hand gestures made significant breakthroughs in the last years due to
methods of machine learning. While static gestures can be easily classified without
machine learning, dynamic gestures prove to be more challenging, since they contain
spatial–temporal information.

Recurrent Neural Networks (RNN), due to their ability to save states and thus handle
spatial–temporal information, are suited for tasks where this property is needed [12]. This
is enabled by the special neural connections of RNN architectures. Compared to normal
feed-forward networks, where one neuron can only be connected to neurons in the next
layer, a recurrent neuron can be connected to itself, neurons in the same layer and neurons
in the next and previous layer, thus enabling it to store states, providing a vast number of
trainable parameters [13]. Vanilla RNN-architectures are prone to the vanishing or
exploding gradient problems, which are caused by the temporal links between the different
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time steps [13]. Long Short-Term Memory (LSTM) is a RNN architecture that solves the
vanishing and exploding gradient problem and is used in applications where spatial–
temporal information has to be processed [12].

Molchanov et al. proposed a sequential architecture for the dynamic classification of
hand gestures, where short video sequences were fed into a 3-Dimensional-Convolutional
Neural Network (3D-CNN), extracting spatial temporal features. Afterwards, features
were fed into an RNN where the spatial temporal information was processed. Multiple
modalities were used to feed the network individually and combined, so that the results
could be compared. With a precision of 80.3%, the depth-data provided the best individual
result, while the combination of all modalities results in a precision of 83%. The
robustness of the depth-data towards changing illumination might be the reason for the
superior results, as suggested by the authors [14].

Lai et al. fused a CNN and RNN architecture on different architecture levels and
reported an overall accuracy of 85.46% using skeleton-, and depth-data [15].

Since the recognition of hand gestures is a much more common problem than the
recognizing and classifying assembly operations, considerably more datasets are available
on this topic. While gesture recognition and assembly recognition are closely related, the
classification of assembly operations is much more challenging, since the interaction with
objects and tools might occlude parts of the hand and vice versa. Additionally, video
sensors for assembly operations have to be mounted above the worker as to not hinder the
assembly process. Thus recording the image sequences from a bird view perspective is
necessary, thereby hindering the effective use of skeleton recognition.

4 Activity Recognition in Manual Assembly

While papers regarding the field of the recognition of manual assembly operations often
focus on detecting objects and hands in certain areas inside the workspace, they generally
do not detect individual assembly operations. Nonetheless, these papers offer insights
regarding the challenges of the recognition and classification of assembly operations.

One challenging aspect of the recognition of manual assembly operations is processing
the classification in real time. Root et al. detect the hands using the
You-Only-Look-Once-v3 algorithm and surround them by a bounding box and subse-
quently calculates their positions [5]. They reported an accuracy of up to 89% but could
not reproduce this result in a real assembly scenario due to the interaction with tools and
objects [5].

Liu et al. investigated the feasibility in classifying manual assembly operations in a real
production environment. In this context, they elaborated three key points that need to be
addressed. They concluded that individual characteristics of each worker hinder a precise
classification of assembly operations and that the visual sensors must not interfere with the
assembly process. Furthermore, they mention the financial costs of the sensors. The
suggested algorithm distinguishes seven different movements found in assembly
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scenarios. The most important ones are classified as general assembly, reaching for
assembly pieces and the recognition that no assembly takes place at specific moments in
time. For the classification, a sequential architecture is proposed.

The hands are detected and their trajectory is fed into a 3D-CNN, which classifies the
assembly operation with an accuracy of 89.1% Liu et al. [4].

Petruck et al. pursue a similar approach, using nine classes including general assembly
and reaching for tools and objects. The movements during assembly are tracked using
markers for a visual camera system, generating a numerical 27-dimensional vector, which
contains the position and velocity and is fed into a CNN-architecture [3].

Andrainakos et al. propose a system that detects different objects and the hands of the
assembler, drawing bounding boxes around them. Once the bounding box of an object and
a hand intersect by a certain amount, the object is considered to be grabbed.

The water pump, which is used as an example, must be assembled from top to bottom.
Whenever one detected object is correctly stacked on top of the other, the assembly is
classified as correct [7].

5 Network Structure and Implementation

5.1 Dataset

For the experimental part of this paper, the dataset presented by Rückert et al. [6] was
used. It consists of 2100 assembly operation sequences. The MTM basic operations reach,
grasp, move and release are equally represented. The depth-data which was used for the
training of the neural networks is stored in a resolution of 480 � 270 pixel [6]. While this
dataset is small in comparison to other machine learning datasets, it is able to form the
basis for a proof of concept.

5.2 Neural Network Architecture

During the training runs conducted in this paper, the depth-data was used since it high-
lights changes in the height of the hands and objects relative to the table. The images were
scaled down to 50% of their original size in order to reduce the number or parameters in
the neural network and to counteract overfitting. The initial learning rate of the Adaptive
Moment Estimation (adam)-optimizer was set at 0.0001. Whenever the validation loss did
not decrease during the training runs for five epochs, the learning rate was further
decreased by a factor of five, until a minimum value of 10�6. This step helps the loss
converge.

The architecture of the neural network is shown in Table 1. The input layer contains no
trainable parameters. As the name suggests its purpose is to bundle the input and forward
it to the next layer. The input is a five-dimensional tensor. The first dimension represents
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the number of samples fed into the neural network during a discrete training step, also
known as the batch size. The second dimension represents the number of individual
images per sequence. Dimension three and four represent the height and width of the input
frames. The last dimension represents the number of color channels. The Convolu-
tional LSTM 2 Dimensions (ConvLSTM2D)-layer that was proposed by Shi et al. [16]
extends a LSTM to have a convolutional structure, therefore enabling it to process the
spatial temporal data of image sequences. The activation function of the second layer is
hyperbolic tangent, while the output dimensionality is 64. In order to reduce overfitting,
50% of the neurons are dropped out at random during every epoch. A batch normalization
is performed in the third layer. Thereafter a three dimensional max pooling operation is
performed, reducing the height and width of the initial image in half, while the time
dimension remains unchanged. Another ConvLSTM2D-layer, with a dropout of 50%, is
applied after max pooling. This layer has eight output dimensions. It has to be noted that
the output of this layer is a four-dimensional tensor, since the individual images are no
longer represented at this point. Thereafter another batch normalization is performed.
Afterwards follows the first densely connected neural layer with eight output dimensions.
The second to last layer flattens the neural network to a series of individual neurons,
which are then fed to the last densely connected layer. This last layer can be interpreted as
a 4 � 1 vector, where each column represents one of the possible classes for classifica-
tion. The activation function of the last layer is the SoftMax function. The neural network
has 160.780 parameters in total.

5.3 Implementation

For the training of the neural network an NVIDIA RTX 2060 graphics card is used. The
code was implemented in python, using the TensorFlow 2.3 framework [17].

Table 1 Architecture of the neural network

layer (type) Rows Columns Dimensions Parameters

Input 106 128 32 0

ConvLSTM2D 106 128 32 40,448

Batch normalization 106 128 32 128

Max pooling 3D 53 128 32 20

ConvLSTM2D 53 64 8 11,552

Batch normalization 53 64 8 32

Dense 53 64 8 72

Flatten 1 27,136 27,136 0

Dense 1 1 4 108,548
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To evaluate the model, a variant of a stratified tenfold cross validation was conducted.
At first, the dataset was shuffled to randomly distribute the assembly operations. After-
wards, 20% of the dataset was reserved for the final evaluation. This test dataset was
stratified so that the assembly operations were distributed evenly. The remaining 80%
were divided into ten splits. Therefore, ten individual training runs were conducted.
During these runs, nine splits were used for training and the remaining split was used for
validation. This procedure was chosen so that a potential overfitting of the model can be
evaluated. After each training run, another split was used for validation, until eventually
all ten runs were completed. Each run was conducted for 30 epochs.

6 Results

The loss and accuracy of the training and validation data are depicted in Figs. 1 and 2. The
training losses decay exponentially and converge at values from 0.25 to nearly zero.
Because of this decrease, the training accuracy increases significantly in the first few
epochs before converging near 100%. Up until the third epoch the accuracies and losses of
the training and validation dataset rise and decay in unison.

The validation accuracy converges at about 60% after the fifth epoch. In the first few
epochs, the validation losses generally decrease while still being very volatile. The val-
idation loss of one of the runs even increases at this stage. While this particular run seems
to be an outlier, the general phenomenon occurs due to the initial learning rate. At first, the
learning rate is set at a value of 0.0001 in order to escape local minima of the loss
function, which leads to volatile validation losses.
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Fig. 1 Accuracy and loss of the training datasets converge to values near 1 and 0.25 to 0 for the ten
different training runs
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The first reduction of the learning rate, which takes place between the tenth and
eleventh epoch, significantly reduces the volatility of the validation losses. The validation
loss converges at a value of 1 to 1.5 after 15 epochs. While the model does not overfit, it
stops improving after the first 15 epochs.

The evaluation of the test dataset confirms the results of the validation dataset. The
average accuracy is 59.6% with a standard deviation of 3.37% as shown in Table 2. The
best training run has an accuracy of 64.3% while the worst run has an accuracy of 52.1%.

The confusion matrix of the average training run is shown in Fig. 3. The networks
rarely predict reach/move to be grasp/release and vice versa, since those motions are
fundamentally different from another. While reach/move has a dynamic course of
movement, the assembly operations grasp/release show static characteristics. Although the
distinction works most of the time in the case of reach/move, it does not work as well for
grasp/release. Reach and move differ in the position of the tool or object after the
assembly operation is finished. The difference between grasp and release is the inverted
movement.

Since the algorithm is able to make a relatively clear distinction between the assembly
operations reach and move, it can be assumed that it is able to implicitly detect objects. As
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Fig. 2 Accuracy and loss of the validation datasets converge around 0.6 and 1 to 1.5 for the ten
different training runs

Table 2 Overview of the accuracy of the different training runs on the test dataset

No 1 2 3 4 5 6 7 8 9 10

Accuracy in
%

64.3 61.0 61.0 56.7 59.5 63.3 52.1 59.0 61.7 57.4

Mean accuracy: 59.6%
Standard deviation: 3.37%
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the range of motion differs greatly between reach/move and grasp/release, it is deducted
that the recurrent part of the neural network is able to process the spatial–temporal
information contained in the image sequences very well.

7 Conclusion and Outlook

The recognition of assembly operations in an industrial manufacturing scenario is a
challenging task due to the interaction with objects and tools as well as the constraints of
manual assembly work stations. Due to these challenges, many approaches do not track
individual assembly operations. Instead, they define classes like “general assembly” to
circumvent the issue of complexity. This paper aimed to directly classify the assembly
operations reach, grasp, move and release of the MTM-1 basic operations.

The dataset used in this approach consists of 2100 image sequences, which were fed
into a RNN to process spatial temporal information. The average accuracy of the ten runs
that were performed during the tenfold stratified cross validation is 59.6%. Most of the
wrongful predictions are reach/move and grasp/release.

In order to achieve significant improvements in the training results, the dataset used
must be enlarged, which allows the use of more complex neural networks. In addition,
more people need to be involved in data collection so that individual characteristics have a
smaller influence on the dataset and the task of classifying assembly operations can be
better generalized.

Assembly operations are an interaction between the mechanic’s hands and the tools or
objects. The recognition and classification of these open up great potential for improve-
ment. By adding this feature, conclusions about the assembly process can be drawn based
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on the positions and movement patterns of the hands and objects, which can be directly
processed by the neural network in order to significantly boost its performance. Therefore,
this enhanced architecture is suited to decrease the wrong predictions for the case
reach/move, since the position of the objects is detected by a sub-architecture of the neural
network. Complementary to this, detecting the position of the hands as well as their
orientation and trajectory results in a better performance regarding the case grasp/release,
since more individual characteristics of the movements can be identified.
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