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Abstract
In industrial automation, the use of robots is already standard. But there is still a lot of
room for further automation. One such place where improvements can be made is in
the adjustment of a production system to new and unknown products. Currently, this
task includes the reprogramming of the robot and a readjustment of the image
processing algorithms if sensors are involved. This takes time, effort, and a specialist,
something especially small and middle-sized companies shy away from. We propose to
represent a physical production line with a digital twin, using the simulated production
system to generate labeled data to be used for training in a deep learning component.
An artificial neural network will be trained to both recognize and localize the observed
products. This allows the production line to handle both known and unknown products
more flexible. The deep learning component itself is located in a cloud and can be
accessed through a web service, allowing any member of the staff to initiate the
training, regardless of their programming skills. In summary, our approach addresses
not only further automation in manufacturing but also the use of synthesized data for
deep learning.
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1 Introduction

This paper addresses three issues regarding machine learning in the industrial field.
Firstly, many problems can arise when applying machine learning in a production

process. Artificial neural networks need a large amount of data to train on and while there
is a lot available containing day to day situations, like indoor and outdoor scenes, this is
not the case for industrial environments. Suitable training data need to be collected and
labeled manually, which can be difficult and tedious. Another problem is that the envi-
ronment can influence the quality of the data, like distortions due to vibrations or due to
changes in temperature.

Secondly, while the production of large lot sizes is mostly automated, the demand for
small lot sizes increases, as well as the variety of the products. Also, the number of times
the production process needs to be adjusted to new products increases, too. Since both the
reprogramming of the robots, that are included in the process, as well as the image
recognition algorithms, are tailored to the environment and the products, the incorporation
of a new product to the production process is costly. An expert with programming skills is
required. But such experts are not always available.

And thirdly, the acquisition of suitable training data for a specific task. Though there
are many datasets with large amounts of training data they do not cover every situation.
There are many environments in which training data is nearly impossible to obtain, e.g.
the deep sea or space. It is also hard to gather data on situations that rarely occur naturally.
Creating your own dataset of real-world data will take time and effort, since besides
gathering the data, they need to be labeled manually, too.

Our approach relates to all three challenges. We propose creating a digital twin mir-
roring a physical production line in the industry to generate synthesized training data to
train an artificial neural network, accessible through a web service, to learn to recognize
and locate products given observed point clouds of the scene.

In a simulation, we can generate an unlimited amount of training data and the labeling
of the data is automated. Also, a simulation can easily show extreme situations that rarely
occur. With this we can generate a wide range of training data, giving a possible solution
to the problem of insufficient real-world training data.

If an artificial neural network can successfully be trained with synthetic data with or
without a smaller amount of real-world data to recognize and locate products, the flexi-
bility of the production process increases, and the costs decrease. A new product can
easily be incorporated by every member of the staff without the need of any programming
skills and without the need to consult a specialist. With this, producing small lot sizes of a
large variety will become more efficient.

Our solution is also one step in the direction of introducing machine learning into the
industry, showing that the issues with insufficient data and error-prone sensor data can be
approached by using simulations.
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The following parts of this paper are structured as follows: in Sect. 2 we describe some
previous work on the above topics. In Sect. 3 we introduce some works which will be
used as a basis for our solution, VEROSIM, and Rüstflex. The architecture and compo-
nents of our system are described in Sect. 4. We will discuss further plans for our project
in Sect. 5.

2 Related Work

Rossano et al. [12] describe how specialized knowledge is needed to program industrial
robots. They give an overview of approaches to help with the program structure and the
creation of new motion paths. The solutions suggested are either graphic-based, CAD-
based, or include manually moving the robot arm. But mostly those solutions have
drawbacks. A current approach used by Drag & Bot [5] or ArtiMinds [3] includes the use
of function blocks in the form of graphic program modules. In IntellAct [16] a robot learns
by observing a human manually demonstrating certain tasks.

Sahbani et al. [15] describe two different basic research approaches for a robot to grip
unknown objects. Firstly, the analytical approach, which is based on a mathematical
model. Secondly, the empirical approach, which includes the imitation of human motions
or planning a motion based on observations of an object. Bohg et al. [4] give an overview
of the data-based planning of gripping an object. However, the approach of using deep
learning in this context is relatively new.

Digital twins are researched since approximately 2010. Negri et al. [9] give a survey of
current research regarding digital twins. They define digital twins, in the context of
production systems, as a virtual representation of a production process that can be used for
different types of simulations. Rossmann and Schluse [13] define experimental digital
twins, which can be combined into complex simulation models, namely virtual testbeds.
They represent all important parts of an application close to reality and can be used for
interactive experiments.

Georgakis et al. [7] synthesize existing real-world training data of indoor scenes by
superimposing images. Textured object models are placed into different background
scenes at different locations and with different sizes. This is done by either image blending
or by using depth and semantic information to make smart positioning. An object detector
was trained using these images in addition to an existing dataset with good results. This
approach allows the expansion of existing datasets, but in case of applications with no
suitable dataset, a different solution is needed.

Tsai et al. [17] create a large set of computer-generated 3D hand images to train a
convolutional neural network to identify different hand gestures. They discovered that
adding about 0.09% of real-world images to the training process increases the accuracy
from 37.5 to 77.08%. Lindgren et al. [8] generate a dataset of synthetic hand gestures by
using modern gaming engines. The synthetic hand gestures are created by making
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variations to the kinematics. They train a classifier purely on those generated data. The
results are accurate and can be used on real-world data.

Richter et al. [11] use modern computer games to generate labeled training data for
semantic segmentation tasks. They add different amounts of synthetic data to two different
semantic segmentation datasets and compare the results of the trained networks. They
have shown that by including synthetic data to real-world data the performance of the
network increases, reducing the amount of hand-labeled data needed to train a successful
neural network. But in this case, the generated data is completely dependent on the game.
Using this approach for a specific application might not be possible, since the influence,
the user has on the resulting training data, is restricted and there might not be a game
suitable for your application.

3 Groundwork

3.1 Rüstflex

Rüstflex [14] is a web application created by Vathos GmbH [18] which can efficiently
retool industry robots. It can adjust a robot’s movements, mostly those that can be exe-
cuted without sensory aid. The application runs either in a cloud or in a local computer
center and can be accessed through all mobile end devices. It provides a formula where all
relevant information for the setup of an article is stored. We will use Rüstflex in our
project for the parametrization of the demonstrator (see Sect. 4.5) to reprogram the robot.

3.2 VEROSIM

With our simulation framework VEROSIM [19] we can create digital twins and virtual
testbeds. A virtual testbed provides us with a completely virtual environment that can be
used for experimentation. It can be integrated into real systems and can provide intelligent
sensors, actors, and robots. We have already created a wide range of applications ranging
from those in the industry to natural and urban environments as well as space. Three
example applications are shown in Fig. 1. Our framework also provides several sensor
simulations like ToF cameras, laser scanners, or radars, which can be built upon. One of
the goals of this project is to upgrade our sensor simulations.

We will use VEROSIM in our research project to create digital twins of a production
line and all its components, as well as to generate synthetic and automatically labeled data
to be used as training data for an artificial neural network.
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4 System Components

Our goal is to enable a robot to handle unknown objects using machine learning methods
trained mainly on synthetic data. Our overall system consists of several parts. First, there
is a physical production line and its digital twin. A digital twin simulates all parts of its
real-world counterpart. It can consist of several other digital twins and simulates the
communication streams between different components. A deep learning component
located in a cloud can be accessed by the physical production system and the digital twin
as well as a user through a web service. All these components will be combined in a
demonstrator. The overall architecture of our system is shown in Fig. 2. Further
descriptions of each component are given in the following chapters.

Fig. 1 Digital twins and virtual testbeds in industry, forestry, and space

Fig. 2 System architecture
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4.1 Production Line

We view a physical production process as the basis of our system. This process consists of
a pick and place robot, a sensor, a gripper, a robot controller, an edge controller, and
products of the production line. The robot controller dictates the robot’s movements,
opens, and closes the gripper, and triggers the sensor. The edge controller contains a copy
of an artificial neural network trained in a cloud. The deep learning component is further
described in Sect. 4.3.

The edge controller receives the data generated by the sensor and gives them as input to
the copy of the neural network. In this case the edge controller returns the positions of the
products to the robot controller.

The specific production line we chose is situated at aha! Albert Haag GmbH [1]. It is a
deep drawing process where products are redrawn one or several times. Between each
redrawing a robot from type Fanuc [6] takes and places the processed product from a
machine to a palette with a piece of cardboard between each layer of products. Then a new
product is taken and placed from a palette to the machine to be redrawn again.

There are many different variations of products that can be processed in this production
line. They differ in size, material, geometry, and the number of required deep drawings.
Also, each product is oiled. The sensor we use should be able to make accurate recordings
of these products independent of their material or shininess. The observed data is than
used to recognize and locate the products in the topmost layer of the current palette. The
sensor we choose is a structured-light 3D scanner. It can produce both images and point
clouds. The resulting point clouds are forwarded to the edge controller.

4.2 Digital Twin

Given the physical production line we build its digital twin using our simulation frame-
work VEROSIM. But to what extend does a digital twin resemble its counterpart. Here are
some, but not all, examples of what exactly is contained in a digital twin and what it can
do:

• It can have physical attributes like geometry, material, and texture.
• It can manage working data, which is generated during its application.
• It can execute different functions and services.
• It contains interfaces for communication.

We create a digital twin of all components of the production process while keeping the
above points and more in mind. For the robot we define the kinematics and inverse
kinematics. The robot controller can move the robot by following a predefined path and
the sensor generates synthesized point clouds of the observed scene. The difficulty
regarding the simulation of the sensor are the sensor’s internal and external errors that
occur during the recording. Our sensor simulation framework should be able to simulate
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those errors, too, since our goal is to generate a simulation that is as close to reality as
possible. But since the simulation contains all important information it is easy to auto-
matically label all generated data.

In Fig. 3 you can see a picture of the physical production line on the left and its digital
twin on the right.

4.3 Deep Learning

Both the physical production line as well as the simulated production line are capable of
exchanging data through the physical and simulated edge controller with a deep learning
component located in a cloud. The physical edge controller can load a copy of a trained
neural network and provides a method for local inference. On the other hand, the simu-
lated edge controller can send generated data to the cloud as training data or it can send
unlabeled data for inference. In the letter case predicted parameters describing the class
and the locations of the currently observed products are returned.

The deep learning component uses the training data, generated by the digital twin and
the physical production system, to train a neural network to both recognize and locate new
products. It detects objects in point cloud recordings of a scene. The training data we need
to generate consists of three parts. Firstly, the point cloud of a scene. Secondly all visible
bounding boxes in this scene and thirdly a mapping from each point in the point cloud to
the center of the corresponding bounding box. The deep learning component and the
webservice will be provided by Vathos GmbH.

4.4 Web Service

For easy access to the cloud and the deep learning component a web service is used. The
web service allows a user in the production staff to upload the CAD data of new and

Fig. 3 Production process from aha! Albert Haag GmbH [1] and its digital twin
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unknown products to the cloud. He should also be able to initiate the start of the training
process since this is the most expensive part of our system. The physical edge controller
can synchronize with the cloud, loading a copy of the current neural network for a local
usage. In this case the production system will keep working even during disturbances in
the internet connection. Besides, the time needed for inference is shorter by using the edge
controller in contrast to the time needed to access the cloud for inference. The simulated
edge controller has a different duty than the physical one. Through the web service it can
download the CAD data of the new products and replace old products with the new one in
our simulation. After generating labeled training data, the edge controller can use the web
service to upload them to the cloud where a neural net will use them to train.

Since Rüstflex also uses a web service for easy usage, it can be used as groundwork for
the web service used in our project, which is currently in progress.

4.5 Demonstrator

The demonstrator is based on the production process from aha! Albert Haag GmbH. It
combines all previously mentioned components. A simplified version of the described
production line will be built by Arthur Bräuer GmbH & Co. KG [2], an integrator of robot
arrangements. The goal of the demonstrator is to show that it is possible to easily adjust an
automated process to new and unknown products using only data driven algorithms. We
will use it to test our system in the applications from both aha! Albert Haag GmbH as well
es Rewe Digital [10]. While the process from aha! Albert Haag GmbH is used to build our
system on, a different process from Rewe Digital in logistics is considered to ensure the
generalization of our system. For the parametrization of the robot, we will use Rüstflex.
The results of the demonstrator will then be used to optimize the other components of our
system.

5 Conclusions and Future Work

We are currently in the beginning stages of this project. Until now we have worked out the
finer details of our system, specified the system architecture, which is partly shown in
Fig. 2. We have specified the workflow of our chosen production line and built a first
simulation model of said process. Vathos GmbH is developing the web service and the
deep learning component. Currently we work on a digital twin of our chosen sensor and a
component for labeling the generated data.

Further plans regarding this project contain finalizing our simulated sensor and training
a network using the resulting data. At the end of our project, we hope to show that it is
possible to improve a production process using our system and applying machine learning
in industry using only synthetic data. Since a lot of clients wish for their production lines
to be capable of dealing with small lot sizes, our approach would enable Bräuer GmbH &
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Co. KG to offer their clients more flexible production systems. In addition, small and
middle-sized companies like Rewe Digital and aha! Albert Haag GmbH could improve
their current and future production systems. We hope for our results to help many other
such companies to further automate their manufacturing processes.

And lastly, the success of our project will lead to the capability of industry robots to
solve certain tasks more autonomously, making it possible to abstract the instructions
given to the robot.
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original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
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