Skip to main content

Abstract

The genus Treponema comprises a diverse group of bacteria with some well-known human pathogens including the causative agents of venereal syphilis (Treponema pallidum subspecies pallidum), yaws (T. pallidum subsp. pertenue), bejel or endemic syphilis (T. pallidum subsp. endemicum), and pinta (Treponema carateum). This chapter provides an update on genotyping and next-generation sequencing tools being used to study the molecular epidemiology and phylogenetics of T. pallidum. Diagnostic tests in use for syphilis and endemic treponematoses are also described. The enhanced Centers for Disease Control and Prevention typing (ECDCT) method has been applied to syphilis over the past two decades and more recently shown to be applicable to yaws; however, newer methods such as multilocus sequence typing (MLST) and whole genome sequencing (WGS) are being implemented for molecular epidemiological studies.

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the Centers for Disease Control and Prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Norris SJ, Paster BJ, Moter A, Goel UB (2006) The genus Treponema, vol 7. Springer, New York

    Google Scholar 

  2. CDC (2018) Sexually transmitted disease surveillance 2017. U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  3. Matejkova P, Flasarova M, Zakoucka H, Borek M, Kremenova S, Arenberger P, Woznicova V, Weinstock GM, Smajs D (2009) Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol 58:832–836

    Article  CAS  PubMed  Google Scholar 

  4. Lukehart SA, Godornes C, Molini BJ, Sonnett P, Hopkins S, Mulcahy F, Engelman J, Mitchell SJ, Rompalo AM, Marra CM, Klausner JD (2004) Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med 351:154–158

    Article  CAS  PubMed  Google Scholar 

  5. Molini BJ, Tantalo LC, Sahi SK, Rodriguez VI, Brandt SL, Fernandez MC, Godornes CB, Marra CM, Lukehart SA (2016) Macrolide resistance in Treponema pallidum correlates with 23S rDNA mutations in recently isolated clinical strains. Sex Transm Dis 43:579–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smajs D, Pastekova L, Grillova L (2015) Perspective piece: macrolide resistance in the syphilis spirochete, Treponema pallidum ssp. pallidum: can we also expect macrolide-resistant yaws strains? Am J Trop Med Hyg 93:678–683

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tipple C, Taylor GP (2015) Syphilis testing, typing, and treatment follow-up: a new era for an old disease. Curr Opin Infect Dis 28:53–60

    Article  CAS  PubMed  Google Scholar 

  8. Mitchell SJ, Engelman J, Kent CK, Lukehart SA, Godornes C, Klausner JD (2006) Azithromycin-resistant syphilis infection: San Francisco, California, 2000-2004. Clin Infect Dis 42:337–345

    Article  PubMed  Google Scholar 

  9. Mitjà O, Godornes C, Houinei W, Kapa A, Paru R, Abel H, González-Beiras C, Bieb SV, Wangi J, Barry AE, Sanz S, Bassat Q, Lukehart SA (2018) Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study. Lancet 391:1599–1607

    Article  PubMed  PubMed Central  Google Scholar 

  10. Perine PL, Hopkins DR, Niemel PL, St. John A, Ronald CG et al (1984) Handbook of endemic treponematoses : yaws, endemic syphilis and pinta / Peter L. Perine and Donald R. Hopkins, Paul L. A. Niemel, Ronald K. St. John, Georges Causse and G. M. Antal. World Health Organization

    Google Scholar 

  11. Forrestel AK, Kovarik CL, Katz KA (2020) Sexually acquired syphilis: historical aspects, microbiology, epidemiology, and clinical manifestations. J Am Acad Dermatol 82:1–14

    Article  CAS  PubMed  Google Scholar 

  12. Fleming DT, Wasserheit JN (1999) From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect 75:3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dickerson MC, Johnston J, Delea TE, White A, Andrews E (1996) The causal role for genital ulcer disease as a risk factor for transmission of human immunodeficiency virus. An application of the Bradford Hill criteria. Sex Transm Dis 23:429–440

    Article  CAS  PubMed  Google Scholar 

  14. Mabey D (2000) Interactions between HIV infection and other sexually transmitted diseases. Trop Med Int Health 5:A32–A36

    Article  CAS  PubMed  Google Scholar 

  15. CDC (2017) CDCe call to action. https://www.cdc.gov/std/syphilis/syphiliscalltoactionapril2017.pdf. Accessed June 5 2020

  16. Edmondson DG, Hu B, Norris SJ (2018) Long-term in vitro culture of the syphilis spirochete Treponema pallidum subsp. pallidum. mBio 9:e01153–e01118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Radolf JD (1996) Treponema, 4th edn. University of Texas Medical Branch at Galveston, Galveston

    Google Scholar 

  18. Centurion-Lara A, Arroll T, Castillo R, Shaffer JM, Castro C, Van Voorhis WC, Lukehart SA (1997) Conservation of the 15-kilodalton lipoprotein among Treponema pallidum subspecies and strains and other pathogenic treponemes: genetic and antigenic analyses. Infect Immun 65:1440–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holt SC, Ebersole JL (2006) The oral spirochetes: their ecology and role in the pathogenesis of periodontal disease. CaisterAcademic Press, Wymondham

    Google Scholar 

  20. Centurion-Lara A, Molini BJ, Godornes C, Sun E, Hevner K, Van Voorhis WC, Lukehart SA (2006) Molecular differentiation of Treponema pallidum subspecies. J Clin Microbiol 44:3377–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pillay A, Chen CY, Reynolds MG, Mombouli JV, Castro AC, Louvouezo D, Steiner B, Ballard RC (2011) Laboratory-confirmed case of yaws in a 10-year-old boy from the Republic of the Congo. J Clin Microbiol 49:4013–4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chi KH, Danavall D, Taleo F, Pillay A, Ye T, Nachamkin E, Kool JL, Fegan D, Asiedu K, Vestergaard LS, Ballard RC, Chen CY (2015) Molecular differentiation of Treponema pallidum subspecies in skin ulceration clinically suspected as yaws in Vanuatu using real-time multiplex PCR and serological methods. Am J Trop Med Hyg 92:134–138

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nibali L, Sousa V, Davrandi M, Spratt D, Alyahya Q, Dopico J, Donos N (2020) Differences in the periodontal microbiome of successfully treated and persistent aggressive periodontitis. J Clin Periodontol. https://doi.org/10.1111/jcpe.13330

  24. Antal GM, Lukehart SA, Meheus AZ (2002) The endemic treponematoses. Microbes Infect 4:83–94

    Article  PubMed  Google Scholar 

  25. WHO (2019) Endemic treponematoses, on World Health Organization. https://www.who.int/gho/neglected_diseases/treponematoses/en/. Accessed June 26 2019

  26. Giacani L, Lukehart SA (2014) The endemic treponematoses. Clin Microbiol Rev 27:89–115

    Article  PubMed  PubMed Central  Google Scholar 

  27. WHO (2019) NTD roadmap 2021–2030, on World Health Organization. https://www.who.int/neglected_diseases/news/NTD-Roadmap-targets-2021-2030.pdf?ua=1. Accessed June 5 2020

  28. WHO (2018) Report on global sexually transmitted infection surveillance 2018. https://www.who.int/reproductivehealth/publications/stis-surveillance-2018/en/. Accessed June 5 2020

  29. CDC (2019) Sexually transmitted disease surveillance 2018. U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  30. Spiteri G, Unemo M, Mårdh O, Amato-Gauci AJ (2019) The resurgence of syphilis in high-income countries in the 2000s: a focus on Europe. Epidemiol Infect 147:e143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chapel TA (1980) The signs and symptoms of secondary syphilis. Sex Transm Dis 7:161–164

    Article  CAS  PubMed  Google Scholar 

  32. Hook EW 3rd, Marra CM (1992) Acquired syphilis in adults. N Engl J Med 326:1060–1069

    Article  PubMed  Google Scholar 

  33. Larsen SA, Johnson RE (1998) Diagnostic tests, 9th edn. American Public Health Association, Washington, D.C.

    Google Scholar 

  34. Korenromp EL, Rowley J, Alonso M, Mello MB, Wijesooriya NS, Mahiané SG, Ishikawa N, Le L-V, Newman-Owiredu M, Nagelkerke N, Newman L, Kamb M, Broutet N, Taylor MM (2019) Global burden of maternal and congenital syphilis and associated adverse birth outcomes-estimates for 2016 and progress since 2012. PLoS One 14:e0211720–e0211720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Workowski KA, Bolan GA (2015) Sexually transmitted diseses treatment guidelines, 2015. https://www.cdc.gov/std/tg2015/tg-2015-print.pdf

  36. Park IU, Fakile YF, Chow JM, Gustafson KJ, Jost H, Schapiro JM, Novak-Weekley S, Tran A, Nomura JH, Chen V, Beheshti M, Tsai T, Hoover K, Bolan G (2019) Performance of Treponemal tests for the diagnosis of syphilis. Clin Infect Dis 68:913–918

    Article  CAS  PubMed  Google Scholar 

  37. Ratnam S (2005) The laboratory diagnosis of syphilis. Can J Infect Dis Med Microbiol 16:45–51

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bristow CC, Klausner JD (2018) Using Treponemal assay signal strength cutoff ratios to predict syphilis infection. J Clin Microbiol 56

    Google Scholar 

  39. Peng J, Lu Y, Yu H, Wu S, Li T, Li H, Deng L, Sun Z (2018) Analysis of 2 reverse syphilis testing algorithms in diagnosis of syphilis: A large-cohort prospective study. Clin Infect Dis 67:947–953

    Article  CAS  PubMed  Google Scholar 

  40. Tong ML, Lin LR, Liu LL, Zhang HL, Huang SJ, Chen YY, Guo XJ, Xi Y, Liu L, Chen FY, Zhang YF, Zhang Q, Yang TC (2014) Analysis of 3 algorithms for syphilis serodiagnosis and implications for clinical management. Clin Infect Dis 58:1116–1124

    Article  PubMed  Google Scholar 

  41. Workowski KA, Berman SM (2006) Sexually transmitted diseases treatment guidelines, 2006. MMWR Recomm Rep 55:1–94

    PubMed  Google Scholar 

  42. Marra CM, Maxwell CL, Dunaway SB, Sahi SK, Tantalo LC (2017) Cerebrospinal fluid Treponema pallidum particle agglutination assay for Neurosyphilis diagnosis. J Clin Microbiol 55:1865–1870

    Article  PubMed  PubMed Central  Google Scholar 

  43. Castro R, Prieto ES, Aguas MJ, Manata MJ, Botas J, Araujo C, Borges F, Aldir I, Exposto FL (2006) Evaluation of the Treponema pallidum particle agglutination technique (TP.PA) in the diagnosis of neurosyphilis. J Clin Lab Anal 20:233–238

    Article  PubMed  PubMed Central  Google Scholar 

  44. Seña AC, Pillay A, Radolf JD (2019) Treponema and Brachyspira, human host-associated spirochetes, 12th edn. ASM Press, Washington. D.C

    Google Scholar 

  45. Castro AR, Esfandiari J, Kumar S, Ashton M, Kikkert SE, Park MM, Ballard RC (2010) Novel Point-of-Care Test for Simultaneous Detection of Nontreponemal and Treponemal Antibodies in Patients with Syphilis. J Clin Microbiol 48:4615–4619

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marks M, Goncalves A, Vahi V, Sokana O, Puiahi E, Zhang Z, Dalipanda T, Bottomley C, Mabey D, Solomon AW (2014) Evaluation of a rapid diagnostic test for yaws infection in a community surveillance setting. PLoS Negl Trop Dis 8:e3156

    Article  PubMed  PubMed Central  Google Scholar 

  47. Swartzendruber A, Steiner RJ, Adler MR, Kamb ML, Newman LM (2015) Introduction of rapid syphilis testing in antenatal care: A systematic review of the impact on HIV and syphilis testing uptake and coverage. Int J Gynaecol Obstet 130(Suppl 1):S15–S21

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pereira LE, McCormick J, Dorji T, Kang J, Sun Y, Shukla M, Hopkins A, Deutsch J, Kersh EN, Bernstein K, Fakile YF (2018) Laboratory evaluation of a commercially available rapid syphilis test. J Clin Microbiol 56

    Google Scholar 

  49. Herbst de Cortina S, Bristow CC, Humphries R, Vargas SK, Konda KA, Caceres CF, Klausner JD (2017) Laboratory evaluation of a smartphone-based electronic reader of rapid dual point-of-care tests for antibodies to human immunodeficiency virus and Treponema pallidum infections. Sex Transm Dis 44:412–416

    Article  PubMed  Google Scholar 

  50. Romanowski B, Forsey E, Prasad E, Lukehart S, Tam M, Hook EW 3rd. (1987) Detection of Treponema pallidum by a fluorescent monoclonal antibody test. Sex Transm Dis 14:156–159

    Article  CAS  PubMed  Google Scholar 

  51. Buffet M, Grange PA, Gerhardt P, Carlotti A, Calvez V, Bianchi A, Dupin N (2007) Diagnosing Treponema pallidum in secondary syphilis by PCR and immunohistochemistry. J Invest Dermatol 127:2345–2350

    Article  CAS  PubMed  Google Scholar 

  52. Daniels KC, Ferneyhough HS (1977) Specific direct fluorescent antibody detection of Treponema pallidum. Health Lab Sci 14:164–171

    CAS  PubMed  Google Scholar 

  53. Grange PA, Gressier L, Dion PL, Farhi D, Benhaddou N, Gerhardt P, Morini JP, Deleuze J, Pantoja C, Bianchi A, Lassau F, Avril MF, Janier M, Dupin N (2012) Evaluation of a PCR test for detection of treponema pallidum in swabs and blood. J Clin Microbiol 50:546–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hook EW III, Roddy RE, Lukehart SA, Hom J, Holmes KK, Tam MR (1985) Detection of Treponema pallidum in lesion exudate with a pathogen-specific monoclonal antibody. J Clin Microbiol 22:241–244

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee WS, Lee MG, Chung KY, Lee JB (1991) Detection of Treponema pallidum in tissue: a comparative study of the avidin-biotin-peroxidase complex, indirect immunoperoxidase, FTA-ABS complement techniques and the darkfield method. Yonsei Med J 32:335–341

    Article  CAS  PubMed  Google Scholar 

  56. Yobs AR, Brown L, Hunter EF (1964) Fluorescent antibody technique in early syphilis; as applied to the demonstration of T. pallidum in lesions in the rabbit and in the human. Arch Pathol 77:220–225

    CAS  PubMed  Google Scholar 

  57. Orle KA, Gates CA, Martin DH, Body BA, Weiss JB (1996) Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers. J Clin Microbiol 34:49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heymans R, van der Helm JJ, de Vries HJ, Fennema HS, Coutinho RA, Bruisten SM (2010) Clinical value of Treponema pallidum real-time PCR for diagnosis of syphilis. J Clin Microbiol 48:497–502

    Article  CAS  PubMed  Google Scholar 

  59. Yang CJ, Chang SY, Wu BR, Yang SP, Liu WC, Wu PY, Zhang JY, Luo YZ, Hung CC, Chang SC (2015) Unexpectedly high prevalence of Treponema pallidum infection in the oral cavity of human immunodeficiency virus-infected patients with early syphilis who had engaged in unprotected sex practices. Clin Microbiol Infect 21(787):e1–e7

    Google Scholar 

  60. Gayet-Ageron A, Ninet B, Toutous-Trellu L, Lautenschlager S, Furrer H, Piguet V, Schrenzel J, Hirschel B (2009) Assessment of a real-time PCR test to diagnose syphilis from diverse biological samples. Sex Transm Infect 85:264–269

    Article  CAS  PubMed  Google Scholar 

  61. Palmer HM, Higgins SP, Herring AJ et al (2003) Use of PCR in the diagnosis of early syphilis in the United Kingdom. Sex Transm Infect 79:479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martin IE, Tsang RS, Sutherland K, Tilley P, Read R, Anderson B, Roy C, Singh AE (2009) Molecular characterization of syphilis in patients in Canada: azithromycin resistance and detection of Treponema pallidum DNA in whole-blood samples versus ulcerative swabs. J Clin Microbiol 47:1668–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cruz AR, Pillay A, Zuluaga AV, Ramirez LG, Duque JE, Aristizabal GE, Fiel-Gan MD, Jaramillo R, Trujillo R, Valencia C, Jagodzinski L, Cox DL, Radolf JD, Salazar JC (2010) Secondary syphilis in Cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis 4:e690

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hollier LM, Harstad TW, Sanchez PJ, Twickler DM, Wendel GD Jr (2001) Fetal syphilis: clinical and laboratory characteristics. Obstet Gynecol 97:947–953

    CAS  PubMed  Google Scholar 

  65. Grimprel E, Sanchez PJ, Wendel GD, Burstain JM, McCracken GH Jr, Radolf JD, Norgard MV (1991) Use of polymerase chain reaction and rabbit infectivity testing to detect Treponema pallidum in amniotic fluid, fetal and neonatal sera, and cerebrospinal fluid. J Clin Microbiol 29:1711–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Michelow IC, Wendel GD Jr, Norgard MV, Zeray F, Leos NK, Alsaadi R, Sanchez PJ (2002) Central nervous system infection in congenital syphilis. N Engl J Med 346:1792–1798

    Article  PubMed  Google Scholar 

  67. Nathan L, Bohman VR, Sánchez PJ, Leos NK, Twickler DM, Wendel GD (1997) In utero infection with Treponema pallidum in early pregnancy. Prenat Diagn 17:119–123

    Article  CAS  PubMed  Google Scholar 

  68. Sanchez PJ, Wendel GD Jr, Grimprel E, Goldberg M, Hall M, Arencibia-Mireles O, Radolf JD, Norgard MV (1993) Evaluation of molecular methodologies and rabbit infectivity testing for the diagnosis of congenital syphilis and neonatal central nervous system invasion by Treponema pallidum. J Infect Dis 167:148–157

    Article  CAS  PubMed  Google Scholar 

  69. Marks M, Fookes M, Wagner J, Butcher R, Ghinai R, Sokana O, Sarkodie YA, Lukehart SA, Solomon AW, Mabey DCW, Thomson N (2018) Diagnostics for yaws eradication: insights from direct next-generation sequencing of cutaneous strains of Treponema pallidum. Clin Infect Dis 66:818–824

    Article  CAS  PubMed  Google Scholar 

  70. Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, Steiner B, Morse SA (1998) Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis 25:408–414

    Article  CAS  PubMed  Google Scholar 

  71. Thornburg RW, Baseman JB (1983) Comparison of major protein antigens and protein profiles of Treponema pallidum and Treponema pertenue. Infect Immun 42:623–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schalla WOaM, S.A. (1994) Epidemiological applications of lectins to agents of sexually transmitted diseases. In: Doyle RJ, Slifkin M (eds) Lectin: microorganism interactions. Marcel-Dekker Inc., New York

    Google Scholar 

  73. Noordhoek GT, Cockayne A, Schouls LM, Meloen RH, Stolz E, Van Embden JD (1990) A new attempt to distinguish serologically the subspecies of Treponema pallidum causing syphilis and yaws. J Clin Microbiol 28:1600–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Centurion-Lara A, Castro C, Vanvoorhis WC, Lukehart SA (1996) Two 16S-23S ribosomal DNA intergenic regions in different Treponema pallidum subspecies contain tRNA genes. FEMS Microbiol Lett 143:235–240

    Article  CAS  PubMed  Google Scholar 

  75. Pillay A, Liu H, Ebrahim S, Chen CY, Lai W, Fehler G, Ballard RC, Steiner B, Sturm AW, Morse SA (2002) Molecular typing of Treponema pallidum in South Africa: cross-sectional studies. J Clin Microbiol 40:256–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marra C, Sahi S, Tantalo L, Godornes C, Reid T, Behets F, Rompalo A, Klausner JD, Yin Y, Mulcahy F, Golden MR, Centurion-Lara A, Lukehart SA (2010) Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis 202:1380–1388

    Article  CAS  PubMed  Google Scholar 

  77. Molepo J, Pillay A, Weber B, Morse SA, Hoosen AA (2007) Molecular typing of Treponema pallidum strains from patients with neurosyphilis in Pretoria, South Africa. Sex Transm Infect 83:189–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Katz KA, Pillay A, Ahrens K, Kohn RP, Hermanstyne K, Bernstein KT, Ballard RC, Klausner JD (2010) Molecular epidemiology of syphilis–San Francisco, 2004–2007. Sex Transm Dis 37:660–663

    Google Scholar 

  79. Peng RR, Yin YP, Wei WH, Wang HC, Zhu BY, Liu QZ, Zheng HP, Zhang JP, Huang SJ, Chen XS (2012) Molecular typing of Treponema pallidum causing early syphilis in China: a cross-sectional study. Sex Transm Dis 39:42–45

    Article  PubMed  Google Scholar 

  80. Muller EE, Paz-Bailey G, Lewis DA (2012) Macrolide resistance testing and molecular subtyping of Treponema pallidum strains from southern Africa. Sex Transm Infect 88:470–474

    Article  PubMed  Google Scholar 

  81. Mikalova L, Pospisilova P, Woznicova V, Kuklova I, Zakoucka H, Smajs D (2013) Comparison of CDC and sequence-based molecular typing of syphilis treponemes: tpr and arp loci are variable in multiple samples from the same patient. BMC Microbiol 13:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Salado-Rasmussen K, Cowan S, Gerstoft J, Larsen HK, Hoffmann S, Knudsen TB, Katzenstein TL, Jensen JS (2016) Molecular typing of Treponema pallidum in Denmark: A Nationwide study of syphilis. Acta Derm Venereol 96:202–206

    Article  CAS  PubMed  Google Scholar 

  83. Xiao Y, Liu S, Liu Z, Xie Y, Jiang C, Xu M, Zhao F, Zeng T, Yu J, Wu Y (2016) Molecular subtyping and surveillance of resistance genes in Treponema pallidum DNA from patients with secondary and latent syphilis in Hunan, China. Sex Transm Dis 43:310–316

    Article  CAS  PubMed  Google Scholar 

  84. Pillay A, Lee MK, Slezak T, Katz SS, Sun Y, Chi KH, Morshed M, Philip S, Ballard RC, Chen CY (2019) Increased discrimination of Treponema pallidum strains by subtyping with a 4-component system incorporating a mononucleotide tandem repeat in rpsA. Sex Transm Dis 46:e42–e45

    Article  CAS  PubMed  Google Scholar 

  85. Wu H, Chang SY, Lee NY, Huang WC, Wu BR, Yang CJ, Liang SH, Lee CH, Ko WC, Lin HH, Chen YH, Liu WC, Su YC, Hsieh CY, Wu PY, Hung CC (2012) Evaluation of macrolide resistance and enhanced molecular typing of Treponema pallidum in patients with syphilis in Taiwan: a prospective multicenter study. J Clin Microbiol 50:2299–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grange PA, Allix-Beguec C, Chanal J, Benhaddou N, Gerhardt P, Morini JP, Deleuze J, Lassau F, Janier M, Dupin N (2013) Molecular subtyping of Treponema pallidum in Paris, France. Sex Transm Dis 40:641–644

    Article  CAS  PubMed  Google Scholar 

  87. Tipple C, McClure MO, Taylor GP (2011) High prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sex Transm Infect 87:486–488

    Article  PubMed  Google Scholar 

  88. Kanai M, Arima Y, Nishiki S, Shimuta K, Itoda I, Matsui T, Oishi K, Ohnishi M, Nakayama SI (2019) Molecular typing and macrolide resistance analyses of Treponema pallidum in heterosexuals and men who have sex with men in Japan, 2017. J Clin Microbiol 57

    Google Scholar 

  89. Read P, Tagg KA, Jeoffreys N, Guy RJ, Gilbert GL, Donovan B (2016) Treponema pallidum strain types and association with macrolide resistance in Sydney, Australia: new TP0548 gene types identified. J Clin Microbiol 54:2172–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shuel M, Hayden K, Kadkhoda K, Tsang RSW (2018) Molecular typing and macrolide resistance of syphilis cases in Manitoba, Canada, from 2012 to 2016. Sex Transm Dis 45:233–236

    Article  CAS  PubMed  Google Scholar 

  91. Flores JA, Vargas SK, Leon SR, Perez DG, Ramos LB, Chow J, Konda KA, Calvo GM, Salvatierra HJ, Klausner JD, Caceres CF (2016) Treponema pallidum pallidum genotypes and macrolide resistance status in syphilitic lesions among patients at 2 sexually transmitted infection clinics in Lima, Peru. Sex Transm Dis 43:465–466

    Article  CAS  PubMed  Google Scholar 

  92. Khairullin R, Vorobyev D, Obukhov A, Kuular UH, Kubanova A, Kubanov A, Unemo M (2016) Syphilis epidemiology in 1994-2013, molecular epidemiological strain typing and determination of macrolide resistance in Treponema pallidum in 2013-2014 in Tuva Republic, Russia. APMIS 124:595–602

    Article  CAS  PubMed  Google Scholar 

  93. Peng RR, Wang AL, Li J, Tucker JD, Yin YP, Chen XS (2011) Molecular typing of Treponema pallidum: a systematic review and meta-analysis. PLoS Negl Trop Dis 5:e1273

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sutton MY, Liu H, Steiner B, Pillay A, Mickey T, Finelli L, Morse S, Markowitz LE, St Louis ME (2001) Molecular subtyping of Treponema pallidum in an Arizona County with increasing syphilis morbidity: use of specimens from ulcers and blood. J Infect Dis 183:1601–1606

    Article  CAS  PubMed  Google Scholar 

  95. Grillova L, Petrosova H, Mikalova L, Strnadel R, Dastychova E, Kuklova I, Kojanova M, Kreidlova M, Vanousova D, Hercogova J, Prochazka P, Zakoucka H, Krchnakova A, Vasku V, Smajs D (2014) Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: increased prevalence of identified genotypes and of isolates with macrolide resistance. J Clin Microbiol 52:3693–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang RL, Wang QQ, Zhang JP, Yang LJ (2017) Molecular subtyping of Treponema pallidum and associated factors of serofast status in early syphilis patients: identified novel genotype and cytokine marker. PLoS ONE [Electronic Resource] 12:e0175477

    Article  Google Scholar 

  97. Martin IE, Gu W, Yang Y, Tsang RS (2009) Macrolide resistance and molecular types of Treponema pallidum causing primary syphilis in Shanghai, China. Clin Infect Dis 49:515–521

    Article  CAS  PubMed  Google Scholar 

  98. Oliver S, Sahi SK, Tantalo LC, Godornes C, Neblett Fanfair R, Markowitz LE, Lukehart SA, Marra CM (2016) Molecular typing of Treponema pallidum in ocular syphilis. Sex Transm Dis 43:524–527

    Article  PubMed  PubMed Central  Google Scholar 

  99. Northey LC, Skalicky SE, Gurbaxani A, McCluskey PJ (2015) Syphilitic uveitis and optic neuritis in Sydney, Australia. Br J Ophthalmol 99:1215–1219

    Article  PubMed  Google Scholar 

  100. Yap SC, Tan YL, Chio MTW, Teoh SC (2014) Syphilitic uveitis in a Singaporean population. Ocul Immunol Inflamm 22:9–14

    Article  PubMed  Google Scholar 

  101. Wells J, Wood C, Sukthankar A, Jones NP (2018) Ocular syphilis: the re-establishment of an old disease. Eye (Lond) 32:99–103

    Article  CAS  Google Scholar 

  102. Katz SS, Chi KH, Nachamkin E, Danavall D, Taleo F, Kool JL, Addo KK, Ampofo W, Simpson SV, Ye T, Asiedu KB, Ballard RC, Chen CY, Pillay A (2018) Molecular strain typing of the yaws pathogen, Treponema pallidum subspecies pertenue. PLoS One 13:e0203632

    Article  PubMed  PubMed Central  Google Scholar 

  103. Noda AA, Grillova L, Lienhard R, Blanco O, Rodriguez I, Smajs D (2018) Bejel in Cuba: molecular identification of Treponema pallidum subsp. endemicum in patients diagnosed with venereal syphilis. Clin Microbiol Infect 24:1210 e1–1210 e5

    Article  Google Scholar 

  104. Kojima Y, Furubayashi K, Kawahata T, Mori H, Komano J (2019) Circulation of distinct Treponema pallidum strains in individuals with heterosexual orientation and men who have sex with men. J Clin Microbiol 57

    Google Scholar 

  105. Sergio F, Kamran K, Michelle S, Raymond T (2012) Local transmission of imported endemic syphilis, Canada, 2011. Emerg Infect Dis J 18:1002

    Article  Google Scholar 

  106. Vabres P, Roose B, Berdah S, Fraitag S, De Prost Y (1999) Bejel: an unusual etiology of childhood stomatitis. Annales de Dermatologie et de Venereologie 126:49–50

    CAS  PubMed  Google Scholar 

  107. Grange PA, Mikalova L, Gaudin C, Strouhal M, Janier M, Benhaddou N, Smajs D, Dupin N (2016) Treponema pallidum 11qj subtype may correspond to a Treponema pallidum Subsp. Endemicum strain. Sex Transm Dis 43:517–518

    Article  PubMed  Google Scholar 

  108. Florindo C, Reigado V, Gomes JP, Azevedo J, Santo I, Borrego MJ (2008) Molecular typing of Treponema pallidum clinical strains from Lisbon, Portugal. J ClinMicrobiol 46:3802–3803

    CAS  Google Scholar 

  109. Flasarova M, Smajs D, Matejkova P, Woznicova V, Heroldova-Dvorakova M, Votava M (2006) Molecular detection and subtyping of Treponema pallidum subsp. pallidum in clinical specimens. Epidemiol Mikrobiol Imunol 55:105–111

    CAS  PubMed  Google Scholar 

  110. Grillova L, Bawa T, Mikalova L, Gayet-Ageron A, Nieselt K, Strouhal M, Sednaoui P, Ferry T, Cavassini M, Lautenschlager S, Dutly F, Pla-Diaz M, Krutzen M, Gonzalez-Candelas F, Bagheri HC, Smajs D, Arora N, Bosshard PP (2018) Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PLoS One 13:e0200773

    Article  PubMed  PubMed Central  Google Scholar 

  111. Vrbová E, Grillová L, Mikalová L, Pospíšilová P, Strnadel R, Dastychová E, Kojanová M, Kreidlová M, Vaňousová D, Rob F, Procházka P, Krchňáková A, Vašků V, Woznicová V, Dvořáková Heroldová M, Kuklová I, Zákoucká H, Šmajs D (2019) MLST typing of Treponema pallidum subsp. pallidum in the Czech Republic during 2004-2017: clinical isolates belonged to 25 allelic profiles and harbored 8 novel allelic variants. PLoS One 14:e0217611

    Article  PubMed  PubMed Central  Google Scholar 

  112. Grillova L, Noda AA, Lienhard R, Blanco O, Rodriguez I, Smajs D (2019) Multilocus sequence typing of Treponema pallidum subsp. pallidum in Cuba from 2012 to 2017. J Infect Dis 219:1138–1145

    Article  CAS  PubMed  Google Scholar 

  113. Mikalova L, Strouhal M, Cejkova D, Zobanikova M, Pospisilova P, Norris SJ, Sodergren E, Weinstock GM, Smajs D (2010) Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions. PLoS One 5:e15713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pospisilova P, Grange PA, Grillova L, Mikalova L, Martinet P, Janier M, Vermersch A, Benhaddou N, Del Giudice P, Alcaraz I, Truchetet F, Dupin N, Smajs D (2018) Multi-locus sequence typing of Treponema pallidum subsp. pallidum present in clinical samples from France: infecting treponemes are genetically diverse and belong to 18 allelic profiles. PLoS One 13:e0201068

    Article  PubMed  PubMed Central  Google Scholar 

  115. Godornes C, Giacani L, Barry AE, Mitja O, Lukehart SA (2017) Development of a Multilocus Sequence Typing (MLST) scheme for Treponema pallidum subsp. pertenue: application to yaws in Lihir Island, Papua New Guinea. PLoS Negl Trop Dis 11:e0006113

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, Borrego MJ, Mendonca J, Carpinteiro D, Vieira L, Gomes JP (2016) Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol 2:16190

    Article  CAS  PubMed  Google Scholar 

  117. Arora N, Schuenemann VJ, Jager G, Peltzer A, Seitz A, Herbig A, Strouhal M, Grillova L, Sanchez-Buso L, Kuhnert D, Bos KI, Davis LR, Mikalova L, Bruisten S, Komericki P, French P, Grant PR, Pando MA, Vaulet LG, Fermepin MR, Martinez A, Centurion Lara A, Giacani L, Norris SJ, Smajs D, Bosshard PP, Gonzalez-Candelas F, Nieselt K, Krause J, Bagheri HC (2016) Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2:16245

    Article  CAS  PubMed  Google Scholar 

  118. Sun J, Meng Z, Wu K, Liu B, Zhang S, Liu Y, Wang Y, Zheng H, Huang J, Zhou P (2016) Tracing the origin of Treponema pallidum in China using next-generation sequencing. Oncotarget 7:42904–42918

    Article  PubMed  PubMed Central  Google Scholar 

  119. Beale MA, Marks M, Sahi SK, Tantalo LC, Nori AV, French P, Lukehart SA, Marra CM, Thomson NR (2019) Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun 10:3255

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tong ML, Zhao Q, Liu LL, Zhu XZ, Gao K, Zhang HL, Lin LR, Niu JJ, Ji ZL, Yang TC (2017) Whole genome sequence of the Treponema pallidum subsp. pallidum strain Amoy: an Asian isolate highly similar to SS14. PLoS One 12:e0182768

    Article  PubMed  PubMed Central  Google Scholar 

  121. Cejkova D, Zobanikova M, Chen L, Pospisilova P, Strouhal M, Qin X, Mikalova L, Norris SJ, Muzny DM, Gibbs RA, Fulton LL, Sodergren E, Weinstock GM, Smajs D (2012) Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis 6:e1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Noordhoek GT, Oppelt J, Čejková D, Šmajs D (2018) Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: modular structure of several treponemal genes. PLoS Negl Trop Dis 12:e0006867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Strouhal M, Mikalova L, Havlickova P, Tenti P, Cejkova D, Rychlik I, Bruisten S, Smajs D (2017) Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis 11:e0005894

    Article  PubMed  PubMed Central  Google Scholar 

  124. Staudová B, Strouhal M, Zobaníková M, Cejková D, Fulton LL, Chen L, Giacani L, Centurion-Lara A, Bruisten SM, Sodergren E, Weinstock GM, Smajs D (2014) Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl Trop Dis 8:e3261

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mikalová L, Janečková K, Nováková M, Strouhal M, Čejková D, Harper KN, Šmajs D (2020) Whole genome sequence of the Treponema pallidum subsp. endemicum strain Iraq B: a subpopulation of bejel treponemes contains full-length tprF and tprG genes similar to those present in T. p. subsp. pertenue strains. PLoS One 15:e0230926

    Article  PubMed  PubMed Central  Google Scholar 

  126. Grillova L, Giacani L, Mikalova L, Strouhal M, Strnadel R, Marra C, Centurion-Lara A, Poveda L, Russo G, Cejkova D, Vasku V, Oppelt J, Smajs D (2018) Sequencing of Treponema pallidum subsp. pallidum from isolate UZ1974 using Anti-Treponemal antibodies enrichment: first complete whole genome sequence obtained directly from human clinical material. PLoS One 13:e0202619

    Article  PubMed  PubMed Central  Google Scholar 

  127. Woznicová V, Šmajs D, Wechsler D, Matějková P, Flasarová M (2007) Detection of Treponema pallidum subsp. pallidum from skin lesions, serum, and cerebrospinal fluid in an infant with congenital syphilis after clindamycin treatment of the mother during pregnancy. J Clin Microbiol 45:659–661

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Pillay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, M., Pereira, L., Pillay, A. (2022). Treponema . In: de Filippis, I. (eds) Molecular Typing in Bacterial Infections, Volume I. Springer, Cham. https://doi.org/10.1007/978-3-030-74018-4_9

Download citation

Publish with us

Policies and ethics