Skip to main content

High-Throughput Phenotyping in Soybean

  • Chapter
  • First Online:
High-Throughput Crop Phenotyping

Abstract

Soybean [Glycine max (L.) Merr.] breeders and geneticists routinely evaluate thousands of plots per year in order to characterize various accessions and breeding populations for a multitude of traits, for example, morphological, physiological, abiotic and biotic stress, plant organs, and seed composition. Most of these trait evaluations require experienced raters to spend countless hours, recording phenotypes for each genotype in different filial generations. Plant breeders strive to work with increased population sizes, and improved accuracy of selection to increase the response to selection. These requirements have motivated the development of high-throughput phenotyping (HTP) methods and associated tools (i.e., hardware) and software solutions. This chapter consists of several topics related to HTP, including sensors, unmanned aerial systems, and ground robots, as these are important components of plant phenotyping in the new technological era. The advances in image-based analysis and machine learning methods have accompanied the improvements in phenotyping capabilities, both aerial and ground. This chapter includes the current state of the art in types of sensors, aerial, and ground-based HTP, in conjunction with machine learning-based analytics, particularly for physiological and morphological traits, abiotic and biotic stresses, and root-related traits. Advances in the integration of HTP with crop modeling are provided. Finally, the complementary relationship between HTP and genomic studies is explained with pertinent examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Haleem H, Lee G-J, Boerma RH (2011) Identification of QTL for increased fibrous roots in soybean. Theor Appl Genet 122:935–946

    Article  PubMed  Google Scholar 

  • Adu MO, Chatot A, Wiesel L, Bennett MJ, Broadley MR, White PJ et al (2014) A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes. J Exp Bot 65:2039–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad IS, Reid JF, Paulsen MR, Sinclair JB (1999) Color classifier for symptomatic soybean seeds using image processing. Plant Dis 83:320–327

    Article  PubMed  Google Scholar 

  • Akintayo A, Tylka GL, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S (2018) A deep learning framework to discern and count microscopic nematode eggs. Sci Rep 8:9145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen TW, Bradley CA, Sisson AJ, Byamukama E, Chilvers MI, Coker CM et al (2017) Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Prog 18:19–27

    Article  Google Scholar 

  • Alves TM, Moon RD, MacRae IV, Koch RL (2019) Optimizing band selection for spectral detection of Aphis glycines Matsumura in soybean. Pest Manag Sci 75:942–949

    Article  CAS  PubMed  Google Scholar 

  • Amorim WP, Tetila EC, Pistori H, Papa JP (2019) Semi-supervised learning with convolutional neural networks for UAV images automatic recognition. Comput Electron Agric 164:

    Article  Google Scholar 

  • Ao J, Fu J, Tian J, Yan X, Liao H (2010) Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean. Funct Plant Biol 37:304–312

    Article  Google Scholar 

  • Arad B, Ben-Shahar O, Timofte R, Van Gool L, Zhang L, Yang M-H, et al (2018) NTIRE 2018 challenge on spectral reconstruction from RGB Images. 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 1042–1049

    Google Scholar 

  • Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high-throughput phenotyping into genetic gain. Trends Plant Sci 23:451–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnal Barbedo JG (2019) Plant disease identification from individual lesions and spots using deep learning. Biosyst Eng 180:96–107

    Article  Google Scholar 

  • Assefa T, Zhang J, Chowda-Reddy RV, Moran Lauter AN, Singh A, O’Rourke JA et al (2020) Deconstructing the genetic architecture of iron deficiency chlorosis in soybean using genome-wide approaches. BMC Plant Biol 20:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ et al (2015) Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot 66:2283–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson JA, Robert J J, Bentley AR, Ober E, Wells DM (2018) Field phenotyping for the future. In: Roberts JA (ed) Annual plant reviews online. Chichester, UK: John Wiley & Sons, Ltd; pp 1–18

    Google Scholar 

  • Bai G, Ge Y, Hussain W, Baenziger PS, Graef G (2016) A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comput Electron Agric 128:181–192

    Article  Google Scholar 

  • Ballesteros R, Ortega JF, Hernandez D, Moreno MA (2018) Onion biomass monitoring using UAV-based RGB imaging. Precis Agric 19:840–857

    Article  Google Scholar 

  • Bandara AY, Weerasooriya DK, Bradley CA, Allen TW, Esker PD (2019) Dissecting the economic impact of soybean diseases in the United States over two decades. bioRxiv. p 655837. https://doi.org/10.1101/655837

  • Barker J, Zhang N, Sharon J, Steeves R, Wang X, Wei Y et al (2016) Development of a field-based high-throughput mobile phenotyping platform. Comput Electron Agric 122:74–85

    Article  Google Scholar 

  • Barmeier G, Schmidhalter U (2017) High-throughput field phenotyping of leaves, leaf sheaths, culms and ears of spring barley cultivars at anthesis and dough ripeness. Front Plant Sci 8:1920

    Article  PubMed  PubMed Central  Google Scholar 

  • Batey T (2009) Soil compaction and soil management–a review. Soil Use Manage 25:335–345

    Article  Google Scholar 

  • Benfey P (2017) Hi Fidelity genetics non-invasive field phenotyping device for plant roots. In: ARPA-E [Internet]. 2017. Available: https://arpa-e.energy.gov/?q=slick-sheet-project/plant-root-phenotyping

  • Betbeder J, Fieuzal R, Baup F (2016) Assimilation of LAI and dry biomass data from optical and sar images into an agro-meteorological model to estimate soybean yield. IEEE J Sel Topics Appl Earth Obser Remote Sens 9:2540–2553

    Article  Google Scholar 

  • Birrell S, Hughes J, Cai JY, Iida F (2019) A field-tested robotic harvesting system for iceberg lettuce. J Field Robot. https://doi.org/10.1002/rob.21888

    Article  PubMed  PubMed Central  Google Scholar 

  • Bock CH, Poole GH, Parker PE, Gottwald TR (2010) Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging. CRC Crit Rev Plant Sci. 29:59–107

    Article  Google Scholar 

  • Burridge J, Jochua CN, Bucksch A, Lynch JP (2016) Legume shovelomics: High—Throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crops Res 192:21–32

    Google Scholar 

  • Castelão Tetila E, Brandoli Machado B, D S. Belete NA, Guimarães DA, Pistori H (2017) Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci Remote Sens Lett 14:2190–2194

    Google Scholar 

  • Castelão Tetila E, Brandoli Machado B, Menezes GK, d. S. Oliveira A, Alvarez M, Amorim WP, et al (2019) Automatic recognition of soybean leaf diseases using uAV images and deep convolutional neural networks. IEEE Geosci Remote Sens Lett, 1–5

    Google Scholar 

  • Chaerle L, Van Der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta 1519:153–166

    Article  CAS  PubMed  Google Scholar 

  • Chelladurai V, Karuppiah K, Jayas DS, Fields PG, White NDG (2014) Detection of Callosobruchus maculatus (F.) infestation in soybean using soft X-ray and NIR hyperspectral imaging techniques. J Stored Prod Res 57:43–48

    Google Scholar 

  • Choudhuri A, Chowdhary G (2018) Crop stem width estimation in highly cluttered field environment. CVPPP. Available: https://www.plant-phenotyping.org/lw_resource/datapool/systemfiles/elements/files/ce6e81f0-949b-11e8-8a88-dead53a91d31/current/document/0016.pdf

  • Christenson BS, Schapaugh WT, An N, Price KP, Prasad V, Fritz AK (2016) Predicting soybean relative maturity and seed yield using canopy reflectance. Crop Sci 56:625–643

    Article  CAS  Google Scholar 

  • Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ et al (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn A, Pedmale UV, Chory J, Navlakha S (2017) High-resolution laser scanning reveals plant architectures that reflect universal network design principles. Cell Syst 5(53–62):

    Google Scholar 

  • Coser SM, Chowda Reddy RV, Zhang J, Mueller DS, Mengistu A, Wise KA et al (2017) Genetic architecture of Charcoal Rot () resistance in soybean revealed using a diverse panel. Front Plant Sci 8:1626

    Article  PubMed  PubMed Central  Google Scholar 

  • Crain J, Mondal S, Rutkoski J, Singh RP, Poland J (2018) Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome, 11. https://doi.org/10.3835/plantgenome2017.05.0043

  • da Silva LA, Bressan PO, Gonçalves DN, Freitas DM, Machado BB, Gonçalves WN (2019) Estimating soybean leaf defoliation using convolutional neural networks and synthetic images. Comput Electron Agric 156:360–368

    Article  Google Scholar 

  • Das Choudhury S, Samal A, Awada T (2019) Leveraging Image Analysis For High-Throughput Plant Phenotyping. Front Plant Sci 10:508

    Article  PubMed  PubMed Central  Google Scholar 

  • Das A, Schneider H, Burridge J, Ascanio AKM, Wojciechowski T, Topp CN, et al (2015) Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods, 11. https://doi.org/10.1186/s13007-015-0093-3

  • De Rainville F-M, Durand A, Fortin F-A, Tanguy K, Maldague X, Panneton B et al (2014) Bayesian classification and unsupervised learning for isolating weeds in row crops. Pattern Anal Appl 17:401–414

    Article  Google Scholar 

  • Delgado A, Hays DB, Bruton RK, Ceballos H, Novo A, Boi E, et al (2017) Ground penetrating radar: a case study for estimating root bulking rate in cassava (Manihot esculenta Crantz). Plant Methods. https://doi.org/10.1186/s13007-017-0216-0

  • Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC et al (2016) Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biol 16:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Do more GCPs equal more accurate drone maps? In: Pix4D [Internet]. 5 Nov 2018 [cited 28 Aug 2019]. Available: https://www.pix4d.com/blog/GCP-accuracy-drone-maps

  • Dobbels AA, Lorenz AJ (2019) Soybean iron deficiency chlorosis high throughput phenotyping using an unmanned aircraft system. Plant Methods 15:1–9

    CAS  Google Scholar 

  • dos Santos Ferreira A, Matte Freitas D, Gonçalves da Silva G, Pistori H, Theophilo Folhes M (2017) Weed detection in soybean crops using ConvNets. Comput Electron Agric 143:314–324

    Google Scholar 

  • Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX (2012) Transparent Soil for Imaging the Rhizosphere. PLoS ONE 7:

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DroneDeploy (2017) Choosing the Right Mapping Drone for Your Business Part I: Multi-Rotor vs. Fixed Wing Aircraft. In: Medium [Internet]. DroneDeploy’s Blog; 16 Jun 2017 [cited 29 Aug 2019]. Available: https://blog.dronedeploy.com/choosing-the-right-mapping-drone-for-your-business-part-i-multi-rotor-vs-fixed-wing-aircraft-6ec2d02eff48

  • Dupuy L, Vignes M, Mckenzie BM, White PJ (2010) The dynamics of root meristem distribution in the soil. Plant, Cell & Environ 33:358–369

    Article  CAS  Google Scholar 

  • Eberbach PL, Hoffmann J, Moroni SJ, Wade LJ, Weston LA (2013) Rhizo-lysimetry: facilities for the simultaneous study of root behaviour and resource use by agricultural crop and pasture systems. Plant Methods 9:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etienne A (2019) AUTOMATED WEED DETECTION USING MACHINE LEARNING TECHNIQUES ON UAS-ACQUIRED IMAGERY. 2019. Available: https://hammer.figshare.com/articles/AUTOMATED_WEED_DETECTION_USING_MACHINE_LEARNING_TECHNIQUES_ON_UAS-ACQUIRED_IMAGERY/9108371

  • Falk KG, Jubery TZ, Mirnezami SV, Parmley KA, Sarkar S, Singh A et al (2020a) Computer vision and machine learning enabled soybean root phenotyping pipeline. Plant Methods 16:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Falk KG, Jubery TZ, O’Rourke JA, Singh A, Soumik S, Ganapathysubramanian B, et al (2020) Soybean root system architecture trait study through genotypic, phenotypic, and shape-based clusters. Plant. 2020. Available: https://spj.sciencemag.org/plantphenomics/2020/1925495/

  • Fang S, Yan X, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research: 3D dynamic modeling of root architecture in situ. Plant J 60:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Fenta B, Beebe S, Kunert K, Burridge J, Barlow K, Lynch J et al (2014) Field phenotyping of soybean roots for drought stress tolerance. Agronomy 4:418–435

    Article  Google Scholar 

  • Friedli M, Kirchgessner N, Grieder C, Liebisch F, Mannale M, Walter A (2016) Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions. Plant Methods 12:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Gage JL, Miller ND, Spalding EP, Kaeppler SM, de Leon N (2017) TIPS: a system for automated image-based phenotyping of maize tassels. Plant Methods, 13. https://doi.org/10.1186/s13007-017-0172-8

  • Gage JL, Richards E, Lepak N, Kaczmar N, Soman C, Chowdhary G, et al (2019) In-field whole plant maize architecture characterized by Latent Space Phenotyping. bioRxiv. p 763342. https://doi.org/10.1101/763342

  • Gai J, Tang L, Steward BL (2019) Automated crop plant detection based on the fusion of color and depth images for robotic weed control. J Field Robot. https://doi.org/10.1002/rob.21897

    Article  Google Scholar 

  • Galkovskyi T, Mileyko Y, Bucksch A, Moore B, Symonova O, Price CA et al (2012) GiA Roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biol 12:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao T, Emadi H, Saha H, Zhang J, Lofquist A, Singh A et al (2018a) A Novel Multirobot system for plant phenotyping. Robotics 7:61

    Article  Google Scholar 

  • Gao F, Anderson M, Daughtry C, Johnson D (2018b) Assessing the variability of corn and soybean yields in central iowa using high spatiotemporal resolution multi-satellite imagery. Remote Sens 10:1489

    Article  Google Scholar 

  • Gelder BK (2015) Automation of DEM Cutting for Hydrologic/Hydraulic Modeling. Iowa State University; 2015. Report No.: IHRB TR-631. Available: http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1062&context=intrans_techtransfer

  • Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S (2018) An explainable deep machine vision framework for plant stress phenotyping. Proc Natl Acad Sci U S A 115:4613–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson KD, Dirks R, Medlin CR, Johnston L (2004) Detection of weed species in soybean using multispectral digital images. Weed Technol 18:742–749

    Article  Google Scholar 

  • Gnädinger F, Schmidhalter U (2017) Digital counts of maize plants by unmanned aerial vehicles (UAVs). Remote Sens 9:544

    Article  Google Scholar 

  • Gosseau F, Blanchet N, Varès D, Burger P, Campergue D, Colombet C et al (2018) Heliaphen, an outdoor high-throughput phenotyping platform for genetic studies and crop modeling. Front Plant Sci 9:1908

    Article  PubMed  Google Scholar 

  • Haghighattalab A, González Pérez L, Mondal S, Singh D, Schinstock D, Rutkoski J et al (2016) Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartman GL, Rupe J, Sikora EJ, Domier LL, Davis JA, Steffey KL (2015) Compendium of soybean diseases and pests. 5th Edition. C. HGLRJ, editor. St. Paul, Minnesota: American Phytopathological Society

    Google Scholar 

  • Hatton N, Sharda A, Schapaugh W, Van der Merwe D (2018). Remote thermal infrared imaging for rapid screening of sudden death syndrome in soybean. 2018 ASABE annual international meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  • Herrmann I, Vosberg SK, Ravindran P, Singh A, Chang H-X, Chilvers MI et al (2018) Leaf and Canopy Level Detection of Fusarium virguliforme (Sudden Death Syndrome) in Soybean. Remote Sens 10:426

    Article  Google Scholar 

  • Hohmann M, Stahl A, Rudloff J, Wittkop B, Snowdon RJ (2016) Not a load of rubbish: simulated field trials in large-scale containers. Plant, Cell Environ 39:2064–2073

    Article  CAS  Google Scholar 

  • Hoyos-Villegas V, Houx JH, Singh SK, Fritschi FB (2014) Ground-based digital imaging as a tool to assess soybean growth and yield. Crop Sci 54:1756–1768

    Article  Google Scholar 

  • Hughes DP, Salathe M (2015) An open access repository of images on plant health to enable the development of mobile disease diagnostics

    Google Scholar 

  • Inoue Y, Peñuelas J (2006) Relationship between light use efficiency and photochemical reflectance index in soybean leaves as affected by soil water content. Int J Remote Sens 27:5109–5114

    Article  Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J et al (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang G-S, Sudduth KA, Hong S-Y, Kitchen NR, Palm HL (2006) Relating hyperspectral image bands and vegetation indices to corn and soybean yield. Korean J Remote Sens 22:183–197

    Google Scholar 

  • Jia Y, Jannink J-L (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang N, Floro E, Bray AL, Laws B, Duncan KE, Topp CN (2018) High-resolution 4D spatiotemporal analysis reveals the contributions of local growth dynamics to contrasting maize root architectures. bioRxiv, p 381046. https://doi.org/10.1101/381046

  • Jin X, Kumar L, Li Z, Feng H, Xu X, Yang G et al (2018) A review of data assimilation of remote sensing and crop models. Eur J Agron 92:141–152

    Article  Google Scholar 

  • Jubery TZ, Shook J, Parmley K, Zhang J, Naik HS, Higgins R et al (2017) Deploying fourier coefficients to unravel soybean canopy diversity. Front Plant Sci 7:2066

    Article  PubMed  PubMed Central  Google Scholar 

  • Jubery TZ, Carley CN, Singh A, Sarkar S, Ganapathysubramanian B, Singh AK (2020) Using Machine learning to develop a fully automated soybean nodule acquisition pipeline (SNAP). bioRxiv. 2020. Available: https://www.biorxiv.org/content/10.1101/2020.10.12.336156v1.abstract

  • Kaler AS, Ray JD, Schapaugh WT, King CA, Purcell LC (2017) Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theor Appl Genet 130:2203–2217

    Article  CAS  PubMed  Google Scholar 

  • Kaler AS, Ray JD, Schapaugh WT, Asebedo AR, King CA, Gbur EE et al (2018a) Association mapping identifies loci for canopy temperature under drought in diverse soybean genotypes. Euphytica 214:135

    Article  Google Scholar 

  • Kaler AS, Ray JD, Schapaugh WT, Davies MK, King CA, Purcell LC (2018b) Association mapping identifies loci for canopy coverage in diverse soybean genotypes. Mol Breed 38:50

    Article  CAS  Google Scholar 

  • Keller K, Kirchgessner N, Khanna R, Siegwart R, Walter A, Aasen H (2018) Soybean Leaf coverage estimation with machine learning and thresholding algorithms for field phenotyping. Proc BMVC 2018:0032

    Google Scholar 

  • Khan Z, Miklavcic SJ (2019) An automatic field plot extraction method from aerial Orthomosaic images. Front Plant Sci. 10:683

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirchgessner N, Liebisch F, Yu K, Pfeifer J, Friedli M, Hund A, et al (2016) The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Functional Plant Biol. Available: http://www.publish.csiro.au/fp/fp16165

  • Koger CH, Bruce LM, Shaw DR, Reddy KN (2003) Wavelet analysis of hyperspectral reflectance data for detecting pitted morning glory (Ipomoea lacunosa) in soybean (Glycine max). Remote Sens Environ 86:108–119

    Article  Google Scholar 

  • Kovar M, Brestic M, Sytar O, Barek V, Hauptvogel P, Zivcak M (2019) Evaluation of Hyperspectral reflectance parameters to assess the leaf water content in soybean. Water 11:443

    Article  CAS  Google Scholar 

  • Li Y, Jia J, Zhang L, Khattak AM, Sun S, Gao W et al (2019) Soybean seed counting based on pod image using two-column convolution neural network. IEEE Access 7:64177–64185

    Article  Google Scholar 

  • Lijavetzky D, Cabezas JA, Ibáñez A, Rodríguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics, 8:424

    Google Scholar 

  • Lind K (2018) Environments-by-design: developing new tools to bring “field conditions” to the laboratory. Cademaritiri L, editor. Doctor of Philosophy, Iowa State University

    Google Scholar 

  • Lind KR, Sizmur T, Benomar S, Miller A, Cademartiri L (2014) LEGO ® bricks as building blocks for centimeter-scale biological environments: the case of plants. PLoS ONE 9:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loh P-R, Tucker G, Berger B (2011) Phenotype prediction using regularized regression on genetic data in the DREAM5 systems genetics b challenge. PLoS ONE 6:

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez MA, Xavier A, Rainey KM (2019) Phenotypic variation and genetic architecture for photosynthesis and water use efficiency in soybean (Glycine max L. Merr). Front Plant Sci 10:680

    Google Scholar 

  • Lynch J, Hanlon M (2019) Identification of deep-rooted maize with X-ray fluorescence. In: Roots Lab [Internet]. 2019. Available: https://plantscience.psu.edu/research/labs/roots/projects/deeper/research-projects-1/leader

  • Ma L, Shi Y, Siemianowski O, Yuan B, Egner TK, Mirnezami SV et al (2019) Hydrogel-based transparent soils for root phenotyping in vivo. Proc Natl Acad Sci USA 116:11063–11068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlein A (2016) Plant Disease Detection By Imaging Sensors—Parallels And Specific Demands For Precision Agriculture And Plant Phenotyping. Plant Dis 100:241–251

    Article  PubMed  Google Scholar 

  • Maimaitijiang M, Ghulam A, Sidike P, Hartling S, Maimaitiyiming M, Peterson K et al (2017) Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J Photogramm Remote Sens 134:43–58

    Article  Google Scholar 

  • Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett M, Mooney SJ et al (2012) RooTrak: automated recovery of three-dimensional plant root architecture in soil from X-Ray Microcomputed tomography images using visual tracking. Plant Physiol 158:561–569

    Article  CAS  PubMed  Google Scholar 

  • Majdi H (1996) Root sampling methods—applications and limitations of the minirhizotron technique. Plant Soil 185:255–258

    Article  CAS  Google Scholar 

  • Manavalan LP, Guttikonda SK, Nguyen VT, Grover Shannon J, Nguyen HT (2010) Evaluation of diverse soybean germplasm for root growth and architecture. Plant Soil 330:503–514

    Article  CAS  Google Scholar 

  • McAllister W, Osipychev D, Davis A, Chowdhary G (2019) Agbots: Weeding a field with a team of autonomous robots. Comput Electron Agric 163:

    Article  Google Scholar 

  • McKinney NV, Schapaugh WT, Kanemasu ET (1989) Selection for canopy temperature differential in six populations of Soybean. Crop Sci 29:255

    Article  Google Scholar 

  • Merchuk-Ovnat L, Ovnat Z, Amir-Segev O, Kutsher Y, Saranga Y, Reuveni M (2019) CoverageTool: A semi-automated graphic software: applications for plant phenotyping. Plant Methods, 15. https://doi.org/10.1186/s13007-019-0472-2

  • Metzner R, Eggert A, van Dusschoten D, Pflugfelder D, Gerth S, Schurr U et al (2015) Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Mfuka C, Zhang X, Byamukama E (2019) Mapping and quantifying white mold in soybean across south dakota using landsat images. J Geogr Inform Syst 11:331–346

    Google Scholar 

  • Mila AL, Carriquiry AL, Yang XB (2004) Logistic regression modeling of prevalence of soybean sclerotinia stem rot in the north-central region of the United States. Phytopathology 94:102–110

    Article  CAS  PubMed  Google Scholar 

  • Mo C, Kim MS, Kim G, Cheong EJ, Yang J, Lim J (2015) Detecting drought stress in soybean plants using hyperspectral fluorescence imaging. J Biosyst Eng 40:335–344

    Article  Google Scholar 

  • Moellers TC, Singh A, Zhang J, Brungardt J, Kabbage M, Mueller DS et al (2017) Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments. Sci Rep 7:3554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohanty SP, Hughes DP, Salathé M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno R, Corona F, Lendasse A, Graña M, Galvão LS (2014) Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 128:207–216

    Article  Google Scholar 

  • Moulin S, Bondeau A, Delecolle R (1998) Combining agricultural crop models and satellite observations: From field to regional scales. Int J Remote Sens 19:1021–1036

    Article  Google Scholar 

  • Nagasubramanian K, Jones S, Sarkar S, Singh AK, Singh A, Ganapathysubramanian B (2018) Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems. Plant Methods 14:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagasubramanian K, Jones S, Singh AK, Sarkar S, Singh A, Ganapathysubramanian B (2019) Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 15:1–10

    Article  Google Scholar 

  • Nagasubramanian K, Jubery TZ, Ardakani FF, Mirnezami SV, Singh AK, Singh A et al (2020) How useful is Active Learning for Image-based Plant Phenotyping? arXiv [cs.CV]. Available: http://arxiv.org/abs/2006.04255

  • Nagasubramanian K, Singh AK, Singh A, Sarkar S, Ganapathysubramanian B (2020) Usefulness of interpretability methods to explain deep learning based plant stress phenotyping. arXiv [cs.CV]. 2020. Available: http://arxiv.org/abs/2007.05729

  • Nagel KA, Kastenholz B, Jahnke S, van Dusschoten D, Aach T, Mühlich M et al (2009) Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Funct Plant Biol 36:947–959

    Article  CAS  PubMed  Google Scholar 

  • Naik HS, Zhang J, Lofquist A, Assefa T, Sarkar S, Ackerman D et al (2017) A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods 13:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanan B, Floyd B, Tu K, Ries L, Hausmann N (2019) Improving soybean breeding using UAS measurements of physiological maturity. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV. Int Soc Opt Photon. https://doi.org/10.1117/12.2519072

  • Näsi R, Honkavaara E, Lyytikäinen-Saarenmaa P, Blomqvist M, Litkey P, Hakala T et al (2015) Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens 7:15467–15493

    Article  Google Scholar 

  • Nawaz MF, Bourrié G, Trolard F (2013) Soil compaction impact and modelling. A Rev Agron Sustain Dev 33:291–309

    Article  Google Scholar 

  • Nguy-Robertson A, Gitelson A, Peng Y, Viña A, Arkebauer T, Rundquist D (2012) Green leaf area index estimation in maize and soybean: combining vegetation indices to achieve maximal sensitivity. Agron J 104:1336–1347

    Article  Google Scholar 

  • Oide M, Ninomiya S (2000) Discrimination of soybean leaflet shape by neural networks with image input. Comput Electron Agric 29:59–72

    Article  Google Scholar 

  • Oniga V-E, Breaban A-I, Statescu F (2018) Determining the optimum number of ground control points for obtaining high precision results based on UAS images. Multidisciplinary Digital Publishing Institute, p. 352

    Google Scholar 

  • Pace J, Lee N, Naik HS, Ganapathysubramanian B, Lübberstedt T (2014) Analysis of Maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis). PLoS ONE 9:e108255

    Google Scholar 

  • Parmley K, Nagasubramanian K, Sarkar S, Ganapathysubramanian B, Singh AK (2019a) Development of optimized phenomic predictors for efficient plant breeding decisions using phenomic-assisted selection in soybean. Plant Phenomics 2019:5809404

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmley K, Higgins RH, Ganapathysubramanian B, Sarkar S, Singh AK (2019b) Machine learning approach for prescriptive plant breeding. Sci Rep 9:17132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paya AM, Silverberg JL, Padgett J, Bauerle TL (2015). X-ray computed tomography uncovers root–root interactions: quantifying spatial relationships between interacting root systems in three dimensions. Front Plant Sci, 6. https://doi.org/10.3389/fpls.2015.00274

  • Piñeros MA, Larson BG, Shaff JE, Schneider DJ, Falcão AX, Yuan L et al (2016) Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants. J Integr Plant Biol 58:230–241

    Article  PubMed  Google Scholar 

  • Pires RDL, Gonçalves DN, Oruê JPM, Kanashiro WES, Rodrigues JF, Machado BB et al (2016) Local descriptors for soybean disease recognition. Comput Electron Agric 125:48–55

    Article  Google Scholar 

  • Pittman JJ, Arnall DB, Interrante SM, Moffet CA, Butler TJ (2015) Estimation of biomass and canopy height in bermudagrass, alfalfa, and wheat using ultrasonic, laser, and spectral sensors. Sensors 15:2920–2943

    Article  PubMed  PubMed Central  Google Scholar 

  • Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, et al (2018) Erratum to: Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience, 7. https://doi.org/10.1093/gigascience/giy042

  • R Shamshiri R, Weltzien C, Hameed IA, J Yule I, E Grift T, Balasundram SK, et al (2018) Research and development in agricultural robotics: A perspective of digital farming. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2595468

  • Rascher U, Blossfeld S, Fiorani F, Jahnke S, Jansen M, Kuhn AJ et al (2011) Non-invasive approaches for phenotyping of enhanced performance traits in bean. Funct Plant Biol 38:968–983

    Article  CAS  PubMed  Google Scholar 

  • Rellán-Álvarez R, Lobet G, Lindner H, Pradier P-L, Sebastian J, Yee M-C, et al (2015) GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. Elife, 4. https://doi.org/10.7554/elife.07597

  • Riera LG, Carroll ME, Zhang Z, Shook JM, Ghosal S, Gao T, et al (2020) Deep multi-view image fusion for soybean yield estimation in breeding applications. arXiv [cs.CV]. 2020. Available: http://arxiv.org/abs/2011.07118

  • Sakoda K, Watanabe T, Sukemura S, Kobayashi S, Nagasaki Y, Tanaka Y et al (2019) Genetic diversity in stomatal density among soybeans elucidated using high-throughput technique based on an algorithm for object detection. Sci Rep 9:7610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shoeiby M, Robles-Kelly A, Timofte R, Zhou R, Lahoud F, Süsstrunk S, et al (2019) PIRM2018 challenge on spectral image super-resolution: methods and results. Computer Vision—ECCV 2018 workshops, pp 356–371

    Google Scholar 

  • Shook J, Gangopadhyay T, Wu L, Ganapathysubramanian B, Sarkar S, Singh AK (2020) Crop yield prediction integrating genotype and weather variables using deep learning. arXiv preprint arXiv. Available: https://arxiv.org/abs/2006.13847

  • Shook JM, Zhang J, Jones SE, Singh A, Diers BW, Singh AK (2021) Meta-GWAS for quantitative trait loci identification in soybean, G3 Genes|Genomes|Genetics. jkab117. https://doi.org/10.1093/g3journal/jkab117

  • Shrivastava S, Hooda DS (2014) Automatic brown spot and frog eye detection from the image captured in the field. Amer J Intell Syst 4:131–134

    Google Scholar 

  • Shrivastava S, Singh SK, Hooda DS (2017) Soybean plant foliar disease detection using image retrieval approaches. Multimed Tools Appl 76:26647–26674

    Article  Google Scholar 

  • Shuai X, Zhou Z, Yost RS (2003) Using segmented regression models to fit soil nutrient and soybean grain yield changes due to liming. JABES 8:240–252

    Article  Google Scholar 

  • Sinclair TR, Kitani S, Hinson K, Bruniard J, Horie T (1991) Soybean flowering date: linear and logistic models based on temperature and photoperiod. Crop Sci 31:786–790

    Article  Google Scholar 

  • Singh A, Ganapathysubramanian B, Singh AK, Sarkar S (2016) Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci 21:110–124

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Ganapathysubramanian B, Sarkar S, Singh A (2018) Deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant Sci 23:883–898

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Jones S, Ganapathysubramanian B, Sarkar S, Mueller D, Sandhu K et al (2020) Challenges and Opportunities In Machine-Augmented Plant Stress Phenotyping. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2020.07.010

    Article  PubMed  Google Scholar 

  • Singh DP, Singh AK, Singh A (2021) Plant breeding and cultivar development. 1st edition. Academic Press, p662

    Google Scholar 

  • Sivakumar ANV (2019) Mid to Late Season Weed Detection in Soybean Production Fields Using Unmanned Aerial Vehicle and Machine Learning. Shi Y, editor. MSc, University of Nebraska. 2019. Available: https://digitalcommons.unl.edu/biosysengdiss/91/

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8:

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Poland JA, Mondal S, Crossa J, Juliana P, Singh RP et al (2019) High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Theor Appl Genet 132:1705–1720

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Okamoto H, Kataoka T (2008) Image segmentation between crop and weed using hyperspectral imaging for weed detection in soybean field. Environ Control Biol 46:163–173

    Article  Google Scholar 

  • Svane SF, Jensen CS, Thorup-Kristensen K (2019) Construction of a large-scale semi-field facility to study genotypic differences in deep root growth and resources acquisition. Plant Methods 15:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang J, Wang D, Zhang Z, He L, Xin J, Xu Y (2017) Weed identification based on K-means feature learning combined with convolutional neural network. Comput Electron Agric 135:63–70

    Article  Google Scholar 

  • Terliksiz AS, Altýlar DT (2019) Use of deep neural networks for crop yield prediction: a case study of soybean yield in Lauderdale County, Alabama, USA. 2019 8th international conference on Agro-Geoinformatics (Agro-Geoinformatics), pp 1–4

    Google Scholar 

  • Thorp KR, Thompson AL, Harders SJ, French AN, Ward RW (2018) High-throughput phenotyping of crop water use efficiency via multispectral drone imagery and a daily soil water balance model. Remote Sens 10:1682

    Article  Google Scholar 

  • Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee C-R, Zurek PR, Symonova O, et al (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci U S A 110:E1695–704

    Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87

    Google Scholar 

  • Tresch L, Mu Y, Itoh A, Kaga A, Taguchi K, Hirafuji M et al (2019) Easy MPE: extraction of quality microplot images for UAV-based high-throughput field phenotyping. Plant Phenomics 2019:2591849

    Article  PubMed  PubMed Central  Google Scholar 

  • Ubbens JR, Stavness I (2017) Corrigendum: Deep Plant Phenomics: a deep learning platform for complex plant phenotyping tasks. Front Plant Sci 8:2245

    Article  PubMed  Google Scholar 

  • Uzal LC, Grinblat GL, Namías R, Larese MG, Bianchi JS, Morandi EN et al (2018) Seed-per-pod estimation for plant breeding using deep learning. Comput Electron Agric 150:196–204

    Article  Google Scholar 

  • Veenadhari S, Mishra B, Singh CD (2011) Soybean productivity modelling using decision tree algorithms. Int J Comput Appl Technol 27:11–15

    Google Scholar 

  • Verrelst J, Rivera JP, Gitelson A, Delegido J, Moreno J, Camps-Valls G (2016) Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int J Appl Earth Obs Geoinf 52:554–567

    Google Scholar 

  • Wallace L, Lucieer A, Watson C, Turner D (2012) Development of a UAV-LiDAR system with application to forest inventory. Remote Sens 4:1519–1543

    Article  Google Scholar 

  • Wang D, Dowell FE, Ram MS, Schapaugh WT (2004) Classification of fungal-damaged soybean seeds using near-infrared spectroscopy. Int J Food Prop 7:75–82

    Article  Google Scholar 

  • Wang X, Singh D, Marla S, Morris G, Poland J (2018a) Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods 14:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang AX, Tran C, Desai N, Lobell D, Ermon S (2018) Deep transfer learning for crop yield prediction with remote sensing data. Proceedings of the 1st ACM SIGCAS conference on computing and sustainable societies. New York, NY, USA: ACM, pp 50:1–50:5

    Google Scholar 

  • Wang T, Rostamza M, Song Z, Wang L, McNickle G, Iyer-Pascuzzi AS et al (2019) SegRoot: a high throughput segmentation method for root image analysis. Comput Electron Agric 162:845–854

    Article  Google Scholar 

  • Wasson A, Bischof L, Zwart A, Watt M (2016) A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field. J Exp Bot 67:1033–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver RW, Frederick LR (1974) Effect of Inoculum Rate on Competitive Nodulation of Glycine max L Merrill. I Greenhouse Studies. Agronomy J 66:229

    Article  Google Scholar 

  • Williams WA, Qualset CO, Geng S (1979) Ridge regression for extracting soybean yield factors. Crop Sci 19:869

    Article  Google Scholar 

  • Xavier A, Hall B, Hearst AA, Cherkauer KA, Rainey KM (2017) Genetic architecture of phenomic-enabled canopy coverage in glycine max. Genetics 206:1081–1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sens. 2017. https://doi.org/10.1155/2017/1353691

  • Yang XB, Royer MH, Tschanz AT, Tsai BY (1990) Analysis and quantification of soybean rust epidemics from seventy-three sequential planting experiments. Phytopathology 80:1421–1427

    Google Scholar 

  • Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H et al (2017) Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front Plant Sci 8:1111

    Article  PubMed  PubMed Central  Google Scholar 

  • You J, Li X, Low M, Lobell D, Ermon S (2017) Deep gaussian process for crop yield prediction based on remote sensing data. Thirty-First AAAI Conference on artificial intelligence. 2017. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPaper/14435

  • Yu N, Li L, Schmitz N, Tian LF, Greenberg JA, Diers BW (2016) Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens Environ 187:91–101

    Article  Google Scholar 

  • Yuan H, Yang G, Li C, Wang Y, Liu J, Yu H et al (2017) Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: analysis of RF, ANN, and SVM regression models. Remote Sens 9:309

    Article  Google Scholar 

  • Zhang J, Naik HS, Assefa T, Sarkar S, Chowda Reddy RV, Singh A et al (2017) Computer vision and machine learning for robust phenotyping in genome-wide studies. Scientific Reports 7:44048

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Fu J, Liao H, He Y, Nian H, Hu Y et al (2004) Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chinese Sci Bull 49:1611–1620

    Article  CAS  Google Scholar 

  • Zheng H, Chen L, Han X, Zhao X, Ma Y (2009) Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions. Agric Ecosyst Environ 132:98–105

    Article  Google Scholar 

  • Zheng H, Chen L, Han X, Ma Y, Zhao X (2010) Effectiveness of phosphorus application in improving regional soybean yields under drought stress: a multivariate regression tree analysis. Afr J Agric Res 5:3251–3258

    Google Scholar 

  • Zhou J, Yungbluth D, Vong CN, Scaboo A, Zhou J (2019a) Estimation of the maturity date of soybean breeding lines using UAV-based multispectral imagery. Remote Sens 11:2075

    Article  Google Scholar 

  • Zhou Y, Srinivasan S, Mirnezami SV, Kusmec A, Fu Q, Attigala L et al (2019b) Semiautomated feature extraction from RGB images for sorghum panicle architecture GWAS. Plant Physiol 179:24–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of USDA CRIS project IOW04714 (to A.K.S., A.S.), USDA National Institute of Food and Agriculture (NIFA) Food and Agriculture Cyberinformatics Tools (FACT) award 2019-67021-29938 (to A.S., A.K.S., B.G., S.S.), NSF S&CC award 1952045 (to A.K.S., S.S.), NSF CPS Frontier award CNS-1954556 (to S.S., B.G., A.K.S., A.S.), Iowa Soybean Association (to A.K.S.); Plant Sciences Institute (to A.K.S., B.G., S.S., F.E.M.); Bayer Chair in Soybean Breeding (to A.K.S.); and R F Baker Center for Plant Breeding (to A.K.S.) is sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asheesh K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K. et al. (2021). High-Throughput Phenotyping in Soybean. In: Zhou, J., Nguyen, H.T. (eds) High-Throughput Crop Phenotyping. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-73734-4_7

Download citation

Publish with us

Policies and ethics