Skip to main content

Cerebral Hemodynamic Monitoring Techniques

  • Chapter
  • First Online:
Cardiopulmonary Monitoring
  • 3172 Accesses

Abstract

Invasive and noninvasive monitoring of the central nervous system (CNS) has been a cornerstone of neurocritical care since the conception of neural critical care units. Monitoring the brain has been an obsession ever since, even when treatment options are limited or not significantly effective. The original motivation for the development of neurocritical care units was to place patients with critical neurological conditions in the same area, in order to allow providers to frequently perform neurological examinations, as it has been the pillar of neurocritical care since those early days and remains the gold standard assessment of the CNS function. The aim of this chapter is to review the technology and physiology behind the most used techniques and to highlight their potential utility and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akopian G, Gaspard DJ, Alexander M. Outcomes of blunt head trauma without intracranial pressure monitoring. Am Surg. 2007;73:447–50.

    Article  PubMed  Google Scholar 

  • Albeck MJ, Borgesen SE, Gjerris F, Schmidt JF, Sorensen PS. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg. 1991;74:597–600.

    Article  CAS  PubMed  Google Scholar 

  • Andrews PJ, Citerio G. Intracranial pressure. Part one: historical overview and basic concepts. Intensive Care Med. 2004;30:1730–3.

    PubMed  Google Scholar 

  • Andrews PJ, Sinclair HL, Rodriguez A, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373:2403–12.

    Article  CAS  PubMed  Google Scholar 

  • Arshad S, Suarez J. Why monitor and principles of neurocritical care. In: Le Roux P, Levine J, Kofke A, editors. Monitoring in Neurocritical care. Philadelphia: Elsevier; 2013.

    Google Scholar 

  • Asgeirsson B, Grande PO, Nordstrom CH. A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med. 1994;20:260–7.

    Article  CAS  PubMed  Google Scholar 

  • Balestreri M, Czosnyka M, Steiner LA, et al. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir. 2004;146:131–41.

    Article  CAS  PubMed  Google Scholar 

  • Becker DP, Miller JD, Ward JD, Greenberg RP, Young HF, Sakalas R. The outcome from severe head injury with early diagnosis and intensive management. J Neurosurg. 1977;47:491–502.

    Article  CAS  PubMed  Google Scholar 

  • Bellander BM, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.

    Article  PubMed  Google Scholar 

  • Bering EA Jr. Choroid plexus and arterial pulsation of cerebrospinal fluid; demonstration of the choroid plexuses as a cerebrospinal fluid pump. AMA Arch Neurol Psychiatry. 1955;73:165–72.

    Article  PubMed  Google Scholar 

  • Bohman LE, Pisapia JM, Sanborn MR, et al. Response of brain oxygen to therapy correlates with long-term outcome after subarachnoid hemorrhage. Neurocrit Care. 2013;19:320–8.

    Article  CAS  PubMed  Google Scholar 

  • Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma. 2007;24(Suppl 1):S45–54.

    Article  PubMed  Google Scholar 

  • Burrows G. On disorders of the cerebral circulation and on the connection between affections of the brain and diseases of the heart. Philadelphia: Lea & Blanchard; 1848.

    Google Scholar 

  • Calviello LA, de Riva N, Donnelly J, et al. Relationship between brain pulsatility and cerebral perfusion pressure: replicated validation using different drivers of CPP change. Neurocrit Care. 2017;27:392–400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59:817–21.

    Article  CAS  PubMed  Google Scholar 

  • Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80:6–15.

    Article  PubMed  Google Scholar 

  • Castellani G, Zweifel C, Kim DJ, et al. Plateau waves in head injured patients requiring neurocritical care. Neurocrit Care. 2009;11:143–50.

    Article  PubMed  Google Scholar 

  • Chambers IR, Treadwell L, Mendelow AD. Determination of threshold levels of cerebral perfusion pressure and intracranial pressure in severe head injury by using receiver-operating characteristic curves: an observational study in 291 patients. J Neurosurg. 2001;94:412–6.

    Article  CAS  PubMed  Google Scholar 

  • Chapman PH, Cosman ER, Arnold MA. The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study. Neurosurgery. 1990;26:181–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen HI, Stiefel MF, Oddo M, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69:53–63; discussion.

    Article  PubMed  Google Scholar 

  • Chesnut R. Intracranial pressure. In: Le Roux P, Levine J, Kofke A, editors. Monitoring in neurocritical care. Philadelphia: Elsevier; 2013.

    Google Scholar 

  • Chesnut RM. What is wrong with the tenets underpinning current management of severe traumatic brain injury? Ann N Y Acad Sci. 2015;1345:74–82.

    Article  PubMed  Google Scholar 

  • Chesnut RM, Temkin N, Carney N, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesnut R, Videtta W, Vespa P, Le Roux P. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014;21(Suppl 2):S64–84.

    Article  PubMed  Google Scholar 

  • Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.

    Article  CAS  PubMed  Google Scholar 

  • Claassen J, Taccone FS, Horn P, Holtkamp M, Stocchetti N, Oddo M. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med. 2013;39:1337–51.

    Article  CAS  PubMed  Google Scholar 

  • Colton K, Yang S, Hu PF, et al. Pharmacologic treatment reduces pressure times time dose and relative duration of intracranial hypertension. J Intensive Care Med. 2016;31:263–9.

    Article  PubMed  Google Scholar 

  • Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502.

    Article  CAS  PubMed  Google Scholar 

  • Cushing H. Concerning a definite regulatory mechanism of the vasomotor centre which controls blood pressure during cerebral compression Johns Hopkins Hospital. Bulletin. 1901;12:290–2.

    Google Scholar 

  • Cushing H. The third circulation in studies in intracranial physiology and surgery. London: Oxford University Press; 1926.

    Google Scholar 

  • Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75:813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czosnyka M, Price DJ, Williamson M. Monitoring of cerebrospinal dynamics using continuous analysis of intracranial pressure and cerebral perfusion pressure in head injury. Acta Neurochir. 1994;126:113–9.

    Article  CAS  PubMed  Google Scholar 

  • Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7; discussion 7–9

    Article  CAS  PubMed  Google Scholar 

  • Czosnyka M, Pickard JD, Steiner LA. Principles of intracranial pressure monitoring and treatment. Handb Clin Neurol. 2017;140:67–89.

    Article  CAS  PubMed  Google Scholar 

  • Depreitere B, Meyfroidt G, Guiza F. What do we mean by cerebral perfusion pressure? Acta Neurochir Suppl. 2018;126:201–3.

    Article  PubMed  Google Scholar 

  • Dreier JP, Major S, Pannek HW, et al. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain. 2012;135:259–75.

    Article  PubMed  Google Scholar 

  • Egawa S, Hifumi T, Kawakita K, et al. Impact of neurointensivist-managed intensive care unit implementation on patient outcomes after aneurysmal subarachnoid hemorrhage. J Crit Care. 2016;32:52–5.

    Article  PubMed  Google Scholar 

  • Ehtisham A, Taylor S, Bayless L, Klein MW, Janzen JM. Placement of external ventricular drains and intracranial pressure monitors by neurointensivists. Neurocrit Care. 2009;10:241–7.

    Article  PubMed  Google Scholar 

  • Eisenberg HM, Gary HE Jr, Aldrich EF, et al. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1990;73:688–98.

    Article  CAS  PubMed  Google Scholar 

  • Engemann DA, Raimondo F, King JR, et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain. 2018;141:3179–92.

    Article  PubMed  Google Scholar 

  • Eriksson EA, Barletta JF, Figueroa BE, et al. Cerebral perfusion pressure and intracranial pressure are not surrogates for brain tissue oxygenation in traumatic brain injury. Clin Neurophysiol. 2012a;123:1255–60.

    Article  PubMed  Google Scholar 

  • Eriksson EA, Barletta JF, Figueroa BE, et al. The first 72 hours of brain tissue oxygenation predicts patient survival with traumatic brain injury. J Trauma Acute Care Surg. 2012b;72:1345–9.

    Article  PubMed  Google Scholar 

  • Farahvar A, Gerber LM, Chiu YL, Carney N, Hartl R, Ghajar J. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J Neurosurg. 2012;117:729–34.

    Article  PubMed  Google Scholar 

  • Filippi R, Reisch R, Mauer D, Perneczky A. Brain tissue pO2 related to SjvO2, ICP, and CPP in severe brain injury. Neurosurg Rev. 2000;23:94–7.

    Article  CAS  PubMed  Google Scholar 

  • Gracias VH, Guillamondegui OD, Stiefel MF, et al. Cerebral cortical oxygenation: a pilot study. J Trauma. 2004;56:469–72. discussion 72-4

    Article  PubMed  Google Scholar 

  • Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology. 1992;34:370–80.

    Article  CAS  PubMed  Google Scholar 

  • Hall A, O’Kane R. The best marker for guiding the clinical management of patients with raised intracranial pressure-the RAP index or the mean pulse amplitude? Acta Neurochir. 2016;158:1997–2009.

    Article  PubMed  Google Scholar 

  • Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring-review and avenues for development. Sensors (Basel, Switzerland). 2018;18

    Google Scholar 

  • Hawryluk GW, Phan N, Ferguson AR, et al. Brain tissue oxygen tension and its response to physiological manipulations: influence of distance from injury site in a swine model of traumatic brain injury. J Neurosurg. 2016;125:1217–28.

    Article  CAS  PubMed  Google Scholar 

  • Hecht N, Fiss I, Wolf S, Barth M, Vajkoczy P, Woitzik J. Modified flow- and oxygen-related autoregulation indices for continuous monitoring of cerebral autoregulation. J Neurosci Methods. 2011;201:399–403.

    Article  PubMed  Google Scholar 

  • Helbok R, Schmidt JM, Kurtz P, et al. Systemic glucose and brain energy metabolism after subarachnoid hemorrhage. Neurocrit Care. 2010;12:317–23.

    Article  CAS  PubMed  Google Scholar 

  • Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32:87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill CE, Blank LJ, Thibault D, et al. Continuous EEG is associated with favorable hospitalization outcomes for critically ill patients. Neurology. 2019;92:e9–e18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horn P, Oddo M, Schmitt S. Electroencephalography. In: Le Roux P, Levine J, Kofke A, editors. Monitoring in neurocritical care. Philadelphia: Elsevier; 2013.

    Google Scholar 

  • Hosokawa K, Gaspard N, Su F, Oddo M, Vincent JL, Taccone FS. Clinical neurophysiological assessment of sepsis-associated brain dysfunction: a systematic review. Crit Care (London, England). 2014;18:674.

    Article  Google Scholar 

  • Hutchinson PJ, Kolias AG, Timofeev IS, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375:1119–30.

    Article  PubMed  Google Scholar 

  • Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8.

    Article  PubMed  Google Scholar 

  • Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38:981–6.

    Article  PubMed  Google Scholar 

  • Jordan KG. Neurophysiologic monitoring in the neuroscience intensive care unit. Neurol Clin. 1995;13:579–626.

    Article  CAS  PubMed  Google Scholar 

  • Kasprowicz M, Lalou DA, Czosnyka M, Garnett M, Czosnyka Z. Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation. Acta Neurol Scand. 2016;134:168–80.

    Article  CAS  PubMed  Google Scholar 

  • Kellie G. An account of the appearances observed in the dissection of two of the three individuals presumed to have perished in the storm of the 3rd, and whose bodies were discovered in the vicinity of Leith on the morning of the 4th November 1821 with some reflections on the pathology of the brain. Trans Med Chir Sci. 1824;1:84–169.

    Google Scholar 

  • Kirkness CJ, Mitchell PH, Burr RL, March KS, Newell DW. Intracranial pressure waveform analysis: clinical and research implications. J Neurosci Nurs. 2000;32:271–7.

    Article  CAS  PubMed  Google Scholar 

  • Ko SB, Choi HA, Parikh G, et al. Multimodality monitoring for cerebral perfusion pressure optimization in comatose patients with intracerebral hemorrhage. Stroke. 2011;42:3087–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korbakis G, Bleck T. The evolution of neurocritical care. Crit Care Clin. 2014;30:657–71.

    Article  PubMed  Google Scholar 

  • Kramer AH, Jette N, Pillay N, Federico P, Zygun DA. Epileptiform activity in neurocritical care patients. Can J Neurol Sci Le journal canadien des sciences neurologiques. 2012;39:328–37.

    Article  Google Scholar 

  • Kurtz P, Helbok R, Claassen J, et al. The effect of packed red blood cell transfusion on cerebral oxygenation and metabolism after subarachnoid hemorrhage. Neurocrit Care. 2016;24:118–21.

    Article  CAS  PubMed  Google Scholar 

  • Lang JM, Beck J, Zimmermann M, Seifert V, Raabe A. Clinical evaluation of intraparenchymal Spiegelberg pressure sensor. Neurosurgery. 2003;52:1455–9. discussion 9

    Article  PubMed  Google Scholar 

  • Lang EW, Kasprowicz M, Smielewski P, Pickard J, Czosnyka M. Changes in cerebral partial oxygen pressure and cerebrovascular reactivity during intracranial pressure plateau waves. Neurocrit Care. 2015;23:85–91.

    Article  CAS  PubMed  Google Scholar 

  • Langfitt TW, Weinstein JD, Kassell NF, Simeone FA. Transmission of increased intracranial pressure. I. Within the craniospinal axis. J Neurosurg. 1964;21:989–97.

    Article  CAS  PubMed  Google Scholar 

  • Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238.

    Article  CAS  PubMed  Google Scholar 

  • Lazaridis C, DeSantis SM, Smielewski P, et al. Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J Neurosurg. 2014;120:893–900.

    Article  PubMed  Google Scholar 

  • Le Roux P, Oddo M. Brain oxygen. In: Le Roux P, Levine J, Kofke A, editors. Monitoring in neurocritial care. Philadelphia: Elsevier; 2013.

    Google Scholar 

  • Le Roux PD, Newell DW, Lam AM, Grady MS, Winn HR. Cerebral arteriovenous oxygen difference: a predictor of cerebral infarction and outcome in patients with severe head injury. J Neurosurg. 1997;87:1–8.

    Article  PubMed  Google Scholar 

  • Livesay SL, McNett MM, Keller M, Olson DM. Challenges of cerebral perfusion pressure measurement. J Neurosci Nurs. 2017;49:372–6.

    Article  PubMed  Google Scholar 

  • Livramento JA, Machado LR. The history of cerebrospinal fluid analysis in Brazil. Arq Neuropsiquiatr. 2013;71:649–52.

    Article  PubMed  Google Scholar 

  • Lowenstein DH, Aminoff MJ. Clinical and EEG features of status epilepticus in comatose patients. Neurology. 1992;42:100–4.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–193.

    CAS  PubMed  Google Scholar 

  • Marik PE. Obituary: pulmonary artery catheter 1970 to 2013. Ann Intensive Care. 2013;3:38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marmarou A, Anderson R, Ward J. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:S159–S66.

    Article  Google Scholar 

  • Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part II: acute and chronic barbiturate administration in the management of head injury. J Neurosurg. 1979a;50:26–30.

    Article  CAS  PubMed  Google Scholar 

  • Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring. J Neurosurg. 1979b;50:20–5.

    Article  CAS  PubMed  Google Scholar 

  • Mascarenhas S, Vilela GH, Carlotti C, et al. The new ICP minimally invasive method shows that the Monro-Kellie doctrine is not valid. Acta Neurochir Suppl. 2012;114:117–20.

    Article  PubMed  Google Scholar 

  • Maset AL, Marmarou A, Ward JD, et al. Pressure-volume index in head injury. J Neurosurg. 1987;67:832–40.

    Article  CAS  PubMed  Google Scholar 

  • Meixensberger J, Renner C, Simanowski R, Schmidtke A, Dings J, Roosen K. Influence of cerebral oxygenation following severe head injury on neuropsychological testing. Neurol Res. 2004;26:414–7.

    Article  CAS  PubMed  Google Scholar 

  • Merritt H, Fremont-Smith F. The cerebrospinal fluid. Philadelphia: W. B. Saunders Co; 1937.

    Google Scholar 

  • Miller JD. Intracranial pressure monitoring. Arch Neurol. 1985;42:1191–3.

    Article  CAS  PubMed  Google Scholar 

  • Miller JD, Stanek A, Langfitt TW. Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension. Prog Brain Res. 1972;35:411–32.

    Article  CAS  PubMed  Google Scholar 

  • Monro A. Observations on the structure and function of the nervous system. Creech & Johnson: Edinburgh; 1823.

    Google Scholar 

  • Nangunoori R, Maloney-Wilensky E, Stiefel M, et al. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review. Neurocrit Care. 2012;17:131–8.

    Article  CAS  PubMed  Google Scholar 

  • Narayan RK, Kishore PR, Becker DP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56:650–9.

    Article  CAS  PubMed  Google Scholar 

  • Oddo M, Levine JM, Mackenzie L, et al. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery. 2011;69:1037–45; discussion 45

    Article  PubMed  Google Scholar 

  • Okonkwo DO, Shutter LA, Moore C, et al. Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit Care Med. 2017;45:1907–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piek J, Bock WJ. Continuous monitoring of cerebral tissue pressure in neurosurgical practice--experiences with 100 patients. Intensive Care Med. 1990;16:184–8.

    Article  CAS  PubMed  Google Scholar 

  • Pinczolits A, Zdunczyk A, Dengler NF, et al. Standard-sampling microdialysis and spreading depolarizations in patients with malignant hemispheric stroke. J Cereb Blood Flow Metab. 2017;37:1896–905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piper IR, Chan KH, Whittle IR, Miller JD. An experimental study of cerebrovascular resistance, pressure transmission, and craniospinal compliance. Neurosurgery. 1993;32:805–15; discussion 15–6

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar S, Bhatia R. Management of agitation and convulsions in hepatic encephalopathy. Indian J Gastroenterol. 2003;22(Suppl 2):S54–8.

    PubMed  Google Scholar 

  • Purins K, Lewen A, Hillered L, Howells T, Enblad P. Brain tissue oxygenation and cerebral metabolic patterns in focal and diffuse traumatic brain injury. Front Neurol. 2014;5:64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raboel PH, Bartek J Jr, Andresen M, Bellander BM, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods-a review. Crit Care Res Prac. 2012;2012:950393.

    CAS  Google Scholar 

  • Radolovich DK, Czosnyka M, Timofeev I, et al. Transient changes in brain tissue oxygen in response to modifications of cerebral perfusion pressure: an observational study. Anesth Analg. 2010;110:165–73.

    Article  PubMed  Google Scholar 

  • Ramakrishna R, Stiefel M, Udoetuk J, et al. Brain oxygen tension and outcome in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2008;109:1075–82.

    Article  PubMed  Google Scholar 

  • Rao V, Klepstad P, Losvik OK, Solheim O. Confusion with cerebral perfusion pressure in a literature review of current guidelines and survey of clinical practice. Scandinavian J Trauma Resusc Emerg Med. 2013;21:78.

    Article  Google Scholar 

  • Resnick DK, Marion DW, Carlier P. Outcome analysis of patients with severe head injuries and prolonged intracranial hypertension. J Trauma. 1997;42:1108–11.

    Article  CAS  PubMed  Google Scholar 

  • Roberts I, Sydenham E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev. 2012;12:Cd000033.

    PubMed  Google Scholar 

  • Robertson CS, Valadka AB, Hannay HJ, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27:2086–95.

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal G, Hemphill JC 3rd, Sorani M, et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36:1917–24.

    Article  CAS  PubMed  Google Scholar 

  • Rosner MJ, Becker DP. Origin and evolution of plateau waves. Experimental observations and a theoretical model. J Neurosurg. 1984;60:312–24.

    Article  CAS  PubMed  Google Scholar 

  • Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.

    Article  CAS  PubMed  Google Scholar 

  • Sadaka F, Kasal J, Lakshmanan R, Palagiri A. Placement of intracranial pressure monitors by neurointensivists: case series and a systematic review. Brain Inj. 2013;27:600–4.

    Article  PubMed  Google Scholar 

  • Sahuquillo J, Poca MA, Arribas M, Garnacho A, Rubio E. Interhemispheric supratentorial intracranial pressure gradients in head-injured patients: are they clinically important? J Neurosurg. 1999;90:16–26.

    Article  CAS  PubMed  Google Scholar 

  • Sala N, Suys T, Zerlauth JB, et al. Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury. J Cereb Blood Flow Metab. 2013;33:1815–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuels O, Webb A, Culler S, Martin K, Barrow D. Impact of a dedicated neurocritical care team in treating patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;14:334–40.

    Article  PubMed  Google Scholar 

  • Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med. 2002;30:1062–70.

    Article  PubMed  Google Scholar 

  • Schmidt JM, Ko SB, Helbok R, et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 2011;42:1351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt JM, Claassen J, Ko SB, et al. Nutritional support and brain tissue glucose metabolism in poor-grade SAH: a retrospective observational study. Crit Care (London, England). 2012;16:R15.

    Article  Google Scholar 

  • Schultke E. Theodor Kocher’s craniometer. Neurosurgery. 2009;64:1001–4; discussion 4–5

    Article  PubMed  Google Scholar 

  • Shafi S, Diaz-Arrastia R, Madden C, Gentilello L. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma. 2008;64:335–40.

    PubMed  Google Scholar 

  • Shapiro K, Marmarou A, Shulman K. Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol. 1980;7:508–14.

    Article  CAS  PubMed  Google Scholar 

  • Sharpe W. Diagnosis and treatment of brain injuries with and without a fracture of the skull. Philadelphia: J. B. Lippincott; 1920.

    Google Scholar 

  • Shen L, Wang Z, Su Z, et al. Effects of intracranial pressure monitoring on mortality in patients with severe traumatic brain injury: a meta-analysis. PLoS One. 2016;11:e0168901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrestha GS, Suarez JI, Hemphill JC 3rd. Precision medicine in neurocritical care. JAMA Neurol. 2018;75:1463–4.

    Article  PubMed  Google Scholar 

  • Skjoth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;100:8–15.

    Article  CAS  PubMed  Google Scholar 

  • Soliman I, Aletreby WT, Faqihi F, et al. Improved outcomes following the establishment of a neurocritical care unit in Saudi Arabia. Crit Care Res Prac. 2018;2018:2764907.

    Google Scholar 

  • Sorrentino E, Diedler J, Kasprowicz M, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.

    Article  CAS  PubMed  Google Scholar 

  • Spina-Franca A. Physiological variations in cerebrospinal fluid pressure in the cisterna magna. Arq Neuropsiquiatr. 1963;21:19–24.

    CAS  PubMed  Google Scholar 

  • Srinivasan VM, O’Neill BR, Jho D, Whiting DM, Oh MY. The history of external ventricular drainage. J Neurosurg. 2014;120:228–36.

    Article  PubMed  Google Scholar 

  • Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelso C. Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry. 2005;76:965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiefel MF, Udoetuk JD, Spiotta AM, et al. Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J Neurosurg. 2006;105:568–75.

    Article  PubMed  Google Scholar 

  • Stone JL, Hughes JR. Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J Clin Neurophysiol. 2013;30:28–44.

    Article  PubMed  Google Scholar 

  • Suarez JI, Zaidat OO, Suri MF, et al. Length of stay and mortality in neurocritically ill patients: impact of a specialized neurocritical care team. Crit Care Med. 2004;32:2311–7.

    Article  PubMed  Google Scholar 

  • Varelas PN, Schultz L, Conti M, Spanaki M, Genarrelli T, Hacein-Bey L. The impact of a neuro-intensivist on patients with stroke admitted to a neurosciences intensive care unit. Neurocrit Care. 2008;9:293–9.

    Article  PubMed  Google Scholar 

  • Vespa P, Prins M, Ronne-Engstrom E, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89:971–82.

    Article  CAS  PubMed  Google Scholar 

  • Vespa P, Martin NA, Nenov V, et al. Delayed increase in extracellular glycerol with post-traumatic electrographic epileptic activity: support for the theory that seizures induce secondary injury. Acta Neurochir Suppl. 2002;81:355–7.

    CAS  PubMed  Google Scholar 

  • Vespa PM, O’Phelan K, Shah M, et al. Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome. Neurology. 2003;60:1441–6.

    Article  CAS  PubMed  Google Scholar 

  • Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Volovici V, Huijben JA, Ercole A, et al. Ventricular drainage catheters versus intracranial parenchymal catheters for intracranial pressure monitoring-based management of traumatic brain injury: a systematic review and meta-analysis. J Neurotrauma. 2018.

    Google Scholar 

  • Whytt R. Observations on dropsy in the brain. J. Balfour: Edinburgh; 1768.

    Google Scholar 

  • Wijdicks EF. The history of neurocritical care. Handb Clin Neurol. 2017;140:3–14.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins RH. Neurosurgical classic. XVII. J Neurosurg. 1964;21:240–4.

    Article  CAS  PubMed  Google Scholar 

  • Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36:1338–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Witsch J, Frey HP, Schmidt JM, et al. Electroencephalographic periodic discharges and frequency-dependent brain tissue hypoxia in acute brain injury. JAMA Neurol. 2017;74:301–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JS, Blow O, Turrentine F, Claridge JA, Schulman A. Is there an upper limit of intracranial pressure in patients with severe head injury if cerebral perfusion pressure is maintained? Neurosurg Focus. 2003;15:E2.

    Article  PubMed  Google Scholar 

  • Zeiler FA, Thelin EP, Helmy A, Czosnyka M, Hutchinson PJA, Menon DK. A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochir. 2017;159:2245–73.

    Article  PubMed  Google Scholar 

  • Zeiler FA, Ercole A, Cabeleira M, et al. Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult TBI: a CENTER-TBI study. J Neurotrauma. 2018.

    Google Scholar 

  • Zhang X, Medow JE, Iskandar BJ, et al. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas. 2017;38:R143–r82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Da Silva, I., Bleck, T.P. (2021). Cerebral Hemodynamic Monitoring Techniques. In: Magder, S., Malhotra, A., Hibbert, K.A., Hardin, C.C. (eds) Cardiopulmonary Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-73387-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73387-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73386-5

  • Online ISBN: 978-3-030-73387-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics