Skip to main content

Species Selection for Pharmaceutical Toxicity Studies

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays
  • 119 Accesses

Abstract

Selecting the most appropriate animal species for toxicity testing increases the likelihood of detecting potential effects in humans. Regulatory guidelines provide a framework for the development of appropriate and meaningful nonclinical programs for both chemically synthesized pharmaceuticals and biotherapeutic products. In the case of small molecules, a key factor in species selection is determining the metabolic profiles (similarities and differences) between candidate species and human. For biotherapeutics, species selection is based on pharmacological relevance (expressed target receptor or epitope and appropriate functional engagement) that evokes a similar pharmacological response as that expected in humans. The rat is the predominant rodent species of choice based on size and extensive historical database. The rationale for selecting the appropriate nonrodent species among commonly used toxicology species including dog, minipig, rabbit, and nonhuman primate (NHP) is more challenging and should be a science-based and data driven decision to meet regulatory expectations and not a default to a preferred species. In particular, the use of the NHP should be scientifically and ethically justified in terms of benefits and pharmacological relevance, as well as consideration to the 3R principles. This chapter aims to provide an introduction to the selection of relevant animal species for toxicology studies for small molecules and biotherapeutics. A firm understanding of the regulatory requirements for pharmaceuticals for human use will ensure that the most sensitive and regulatory-compliant animal species are utilized to maximize the chances of gaining regulatory approval for clinical testing or market authorization in the shortest time frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Actemra (tocilizumab): Genentech, Inc. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125276s092lbl.pdf. Accessed Aug 2022

  • Aguilera B, Perez Gomez J, DeGrazia D (2021) Should biomedical research with great apes be restricted? A systematic review of reasons. BMC Med Ethics 22:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali S, Kolter K (2019) Kolliphor® HS 15 – an enabler for parenteral and oral formulations. Am Pharm Rev, 25 Feb 2019. https://www.americanpharmaceuticalreview.com/Featured-Articles/358749-Kolliphor-HS-15-An-Enabler-for-Parenteral-and-Oral-Formulations/. Accessed July 2022

  • Allio T (2018) The FDA animal rule and its role in protecting human safety. Expert Opin Drug Saf 17(10):971–973

    Article  PubMed  Google Scholar 

  • Animals (Scientific Procedures) Act 1986 Amendment Regulations (2012) https://www.legislation.gov.uk/ukdsi/2012/9780111530313. Accessed July 2022

  • Arcalyst (rilonacept): Regeneron Pharmaceuticals, Inc. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/125249lbl.pdf. Accessed Aug 2022

  • Arora T, Mehta AK, Joshi V (2011) Substitute of animals in drug research: an approach towards fulfillment of 4R’s. Indian J Pharm Sci 73(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audia A, Bannish G, Bunting R et al (2022) Flow cytometry and receptor occupancy in immune-oncology. Expert Opin Bio Ther 22(1):87–94

    Article  CAS  Google Scholar 

  • Avila AM, Bebenek I, Bonzo JA et al (2020) An FDA/CDER perspective on nonclinical testing strategies: classical toxicology approaches and new approach methodologies (NAMs). Regul Toxicol Pharmacol 114:104662

    Article  CAS  PubMed  Google Scholar 

  • Baldrick P (2008) Safety evaluation to support first-in-man investigations II: toxicology studies. Regul Toxicol Pharmacol 51(2):237–243

    Google Scholar 

  • Baldrick P, Reeve L (2007) Carcinogenicity evaluation: comparison of tumor data from dual control groups in the CD-1 mouse. Toxicol Pathol 35(4):562–575

    Article  CAS  PubMed  Google Scholar 

  • Baumann B, Schirmer J, Rauscher S et al (2015) Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology. Invest Ophthalmol Vis Sci 56(12):7462–7472

    Article  PubMed  Google Scholar 

  • Beermann F, Orlow S, Lamoreux M (2004) The Tyr (albino) locus of the laboratory mouse. Mamm Genome 15:749–758

    Article  CAS  PubMed  Google Scholar 

  • Bogdanffy MS, Lesniak J, Mangipudy R et al (2020) Tg.rasH2 mouse model for assessing carcinogenic potential of pharmaceuticals: industry survey of current practices. Int J Toxicol 39(3):198–206

    Article  PubMed  Google Scholar 

  • Bradley A, Mukaratirwa S, Petersen-Jones M (2012) Incidences and range of spontaneous findings in the lymphoid and haemopoietic system of control Charles River CD-1 mice (Crl: CD-1(ICR) BR) used in chronic toxicity studies. Toxicol Pathol 40(2):375–381

    Article  PubMed  Google Scholar 

  • Brennan FR, Morton LD, Spindeldreher S et al (2010) Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. MAbs 2(3):233–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Brennan FR, Cavagnaro J, McKeever K (2018) Safety testing of monoclonal antibodies in non-human primates: case studies highlighting their impact on human risk assessment. mAbs 10(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Buckley LA, Chapman K, Burns-Naas LA et al (2011) Considerations regarding nonhuman primate use in safety assessment of biopharmaceuticals. Int J Toxicol 30(5):583–590

    Article  CAS  PubMed  Google Scholar 

  • Bugelski PJ, Martin PL (2012) Concordance of preclinical and clinical pharmacology and toxicology of therapeutic monoclonal antibodies and fusion proteins: cell surface targets. Br J Pharmacol 166:823–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussiere JL, Martin P, Horner M et al (2009) Alternative strategies for toxicity testing of species-specific biopharmaceuticals. Int J Toxicol 28(3):230–253

    Article  CAS  PubMed  Google Scholar 

  • Cauvin AJ, Peters C, Brennan F (2015) Advantages and limitations of commonly used nonhuman primate species in research and development of biopharmaceuticals. In: Blumel J, Korte S, Schnenck E, Weinbauer G (eds) The nonhuman primate in nonclinical drug development and safety assessment, 1st edn. Academic/Elsevier, London, pp 379–395

    Chapter  Google Scholar 

  • Chamanza R, Marxfeld HA, Blanco AI et al (2010) Incidences and range of spontaneous findings in control cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. Toxicol Pathol 38(4):642–657

    Article  PubMed  Google Scholar 

  • Chamanza R, Naylor SW, Gregori M et al (2022) The influence of geographical origin, age, sex, and animal husbandry on the spontaneous histopathology of laboratory cynomolgus macaques (Macaca fascicularis): a contemporary global and multisite review of historical control data. Toxicol Pathol 50(5):607–627

    Article  PubMed  Google Scholar 

  • Chapman K, Burnett J, Corvaro M et al (2014a) Reducing pre-clinical blood volumes for toxicokinetics: toxicologists, pathologists and bioanalysts unite. Bioanalysis 6(22):2965–2968

    Article  CAS  PubMed  Google Scholar 

  • Chapman K, Chivers S, Gliddon D (2014b) Overcoming the barriers to the uptake of nonclinical microsampling in regulatory safety studies. Drug Discov Today 19(5):528–532

    Article  CAS  PubMed  Google Scholar 

  • Charng J, Nguyen C, Bui B et al (2011) Age-related retinal function changes in albino and pigmented rats. Invest Ophthalmol Vis Sci 52:8891–8899

    Article  PubMed  Google Scholar 

  • Cimzia (certolizumab pegol): UCB, Inc. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125160s270lbl.pdf. Accessed Aug 2022

  • Coleman K, Novak MA (2017) Environmental enrichment in the 21st century. ILAR J 58:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colleton C, Brewster D, Chester A et al (2016) The use of minipigs for preclinical safety assessment by the pharmaceutical industry: results of an IQ druSafe minipig survey. Toxicol Pathol 44(3):458–466

    Article  CAS  PubMed  Google Scholar 

  • Corvi R, Madia F, Guyton KZ et al (2017) Moving forward in carcinogenicity assessment: report of an EURL ECVAM/ESTIV workshop. Toxicol In Vitro 45(3):278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalgaard L (2015) Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 74:80–92

    Article  CAS  PubMed  Google Scholar 

  • Directive 2010/63/EU. Annex VIII, Section 1. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF. Accessed 16 July 2022

  • Dogterom P, Zbinden G, Reznik GK (1992) Cardiotoxicity of vasodilators and positive inotropic/vasodilating drugs in dogs: an overview. Crit Rev Toxicol 22:203–241

    Article  CAS  PubMed  Google Scholar 

  • Dorso L, Chanut F, Howroyd P et al (2008) Variability in weight and histological appearance of the prostate of beagle dogs used in toxicology studies. Toxicol Pathol 36(7):917–925

    Article  PubMed  Google Scholar 

  • du Sert NP, Holmes AM, Wallis R et al (2012) Predicting the emetic liability of novel chemical entities: a comparative study. Br J Pharmacol 165(6):1848–1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellenbroek B, Youn J (2016) Rodent models in neuroscience research: is it a rat race? Dis Model Mech 9(10):1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EMA (European Medicines Agency) (2017) EMEA/CHMP/SWP/28367/07 Rev. 1. Guideline on strategies to identify and mitigate risks for first-in-human clinical trials with investigational medicinal products

    Google Scholar 

  • EMA (European Medicines Agency) (2018) Information for the package leaflet regarding polysorbates used as excipients in medicinal products for human use. https://www.ema.europa.eu/en/polysorbates

  • Emmerich CH, Gamboa LM, Hofmann MCJ et al (2021) Improving target assessment in biomedical research: the GOT-IT recommendations. Nat Rev Drug Discov 20:64–81

    Article  CAS  PubMed  Google Scholar 

  • Esteves PJ, Abrantes J, Baldauf HM et al (2018) The wide utility of rabbits as models of human diseases. Exp Mol Med 50:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ettlin RA, Kuroda J, Plassmann S et al (2010) Successful drug development despite adverse preclinical findings part 2: examples. J Toxicol Pathol 23(4):213–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans DT, Silvestri G (2013) Nonhuman primate models in AIDS research. Curr Opin HIV AIDS 8(4):255–261

    PubMed  PubMed Central  Google Scholar 

  • Fan J, Chen Y, Yan H et al (2018) Principles and applications of rabbit models for atherosclerosis research. J Atheroscler Thromb 25(3):213–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faqi AS (2012) A critical evaluation of developmental and reproductive toxicology in nonhuman primates. Syst Biol Reprod Med 58(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Gad SC (1990) Symposium V: models for experimentation in toxicology – refinements, improvements, and alternatives presented at the tenth annual meeting of the American college of toxicology, October 30–November 1, 1989. J Am Coll Toxicol 9(3):289–289

    Article  Google Scholar 

  • Ganderup NC, Harvey W, Mortensen JT et al (2012) The minipig as nonrodent species in toxicology-where are we now? Int J Toxicol 31:507–528

    Article  PubMed  Google Scholar 

  • Gardner MB, Luciw PA (2008) Macaque models of human infectious disease. ILAR J 49(2):220–255

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi C, Finco D, Fort MM et al (2016) Cytokine release: a workshop proceedings on the state-of-the-science, current challenges and future directions. Cytokine 85:101–108

    Article  CAS  PubMed  Google Scholar 

  • Haese NN, Roberts VHJ, Chen A et al (2021) Nonhuman primate models of Zika virus infection and disease during pregnancy. Viruses 13(10):2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han HJ, Powers SJ, Gabrielson KL (2022) The common marmoset-biomedical research animal model applications and common spontaneous diseases. Toxicol Pathol 50(5):628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannibal DL, Bliss-Moreau E, Vandeleest J et al (2017) Laboratory rhesus macaque social housing and social changes: implications for research. Am J Primatol 79(1):1–14

    Article  PubMed  Google Scholar 

  • Harvey W (2012) Regulatory acceptance of the minipig in non-pharmaceutical industry and research. In: McAnulty P, Dayan A, Ganderup N-C, Hastings K (eds) The minipig in biomedical research. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Hayakawa K, Mimura Y, Tachibana S et al (2013) Study for collecting background data on Wistar Hannover [Crl:WI(Han)] rats in general toxicity studies–comparative data to Sprague Dawley rats. J Toxicol Sci 38:855–873

    Article  PubMed  Google Scholar 

  • Hayes TJ, Roberts GKS, Halliwell WH (1989) An idiopathic febrile necrotizing arteritis syndrome in the dog: beagle pain syndrome. Toxicol Pathol 17(1_part_2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Heining P, Ruysschaert T (2016) The use of minipig in drug discovery and development: pros and cons of minipig selection and strategies to use as a preferred nonrodent species. Toxicol Pathol 44(3):467–473

    Article  CAS  PubMed  Google Scholar 

  • Henze LJ, Koehl NJ, O’Shea JP et al (2019) The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: a PEARRL review. J Pharm Pharmacol 71:581–602

    Article  CAS  PubMed  Google Scholar 

  • Horner S, Ryan D, Robinson S et al (2013) Target organ toxicities in studies conducted to support first time in man dosing: an analysis across species and therapy areas. Regul Toxicol Pharmacol 65:334–343

    Article  CAS  PubMed  Google Scholar 

  • ICH M3(R2) (2009) Nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. In: International Conference for Harmonisation (ICH). Topic M3(R2)

    Google Scholar 

  • ICH S1B(R1) (2022) Testing for carcinogenicity of pharmaceuticals. In: International Conference for Harmonisation (ICH). Topic S1B(R1)

    Google Scholar 

  • ICH S3A (1994) Note for guidance on toxicokinetics: the assessment of systemic exposure in toxicity studies. In: International Conference for Harmonisation (ICH). Topic S3A

    Google Scholar 

  • ICH S5(R3) (2020) Detection of reproductive and developmental toxicity for human pharmaceuticals. In: International Conference for Harmonisation (ICH). Topic S5(R3)

    Google Scholar 

  • ICH S6(R1) (2011) Preclinical safety evaluation of biotechnology-derived pharmaceuticals. In: International Conference for Harmonisation (ICH). Topic S6(R1)

    Google Scholar 

  • ICH S9 (2009) Nonclinical evaluation for anticancer pharmaceuticals. In: International Conference on Harmonisation (ICH). Topic S9

    Google Scholar 

  • Ilaris (canakinumab): Novartis Pharmaceuticals Corporation. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/BLA125319_858687lbl.pdf. Assessed Aug 2022

  • Jena GB, Chavan S (2017) Implementation of Good Laboratory Practices (GLP) in basic scientific research: translating the concept beyond regulatory compliance. Regul Toxicol Pharmacol 89:20–25

    Article  CAS  PubMed  Google Scholar 

  • Johnson AL, Keesler RI, Lewis AD et al (2022) Common and not-so-common pathologic findings of the gastrointestinal tract of rhesus and cynomolgus macaques. Toxicol Pathol 50(5):638–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk RGW (2018) Recovering the principles of humane experimental technique: the 3Rs and the human essence of animal research. Sci Technol Hum Values 43(4):622–648

    Article  Google Scholar 

  • Kissner T, Blaich G, Baumann A et al (2021) Challenges of non-clinical safety testing for biologics: a report of the 9th BioSafe European Annual General Membership Meeting. mAbs 13:1938796

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingemann H (2021) Immunotherapy for dogs: still running behind humans. Front Immunol 12:665784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhn F (2012) History and development of miniature, micro- and minipigs. In: McAnulty P, Dayan A, Ganderup N-C, Hastings K (eds) The minipig in biomedical research. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Kohn DF, Clifford CB (2002) Biology and diseases of rats. Lab Anim Med:121–165

    Google Scholar 

  • Kreger M, Farris M (2003) International transportation of nonhuman primates: US fish and wildlife service perspective. In: International perspectives: the future of nonhuman primate resources. NRC. The National Academies Press, Washington, DC

    Google Scholar 

  • Kuramoto T, Nakanishi S, Ochiai M et al (2012) Origins of albino and hooded rats: implications from molecular genetic analysis across modern laboratory rat strains. PLoS One 7(8):e43059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H (2022) Obesity-associated cancers: evidence from studies in mouse models. Cell 11:1472

    Article  CAS  Google Scholar 

  • Liang M, Schwickart M, Schneider AK et al (2016) Receptor occupancy assessment by flow cytometry as a pharmacodynamic biomarker in biopharmaceutical development. Cytometry B Clin Cytom 90(2):117–127

    Article  PubMed  Google Scholar 

  • Lu S, Zhao Y, Yu W et al (2020) Comparison of nonhuman primates identified the suitable model for COVID-19. Sig Transduct Target Ther 5(1):157

    Google Scholar 

  • Lynch CM, Hart BW, Grewal IS (2009) Practical considerations for nonclinical safety evaluation of therapeutic monoclonal antibodies. MAbs 1(1):2–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Makurvet FD (2021) Biologics vs. small molecules: drug costs and patient access. Med Drug Discov 9:100075

    Article  CAS  Google Scholar 

  • Mapara M, Thomas BS, Bhat KM (2012) Rabbit as an animal model for experimental research. Dent Res J (Isfahan) 9(1):111–118

    Article  PubMed  Google Scholar 

  • Meyer O, Svendsen O (2003) Animal models in pharmacology and toxicology, Chapter 2. In: Hau J, Van Hoosier GL Jr (eds) Handbook of laboratory animal science/volume II animal models, 2nd edn. CRC Press LLC, Boca Raton, p 11

    Google Scholar 

  • Morton DM (1998) Importance of species selection in drug toxicity testing. Toxicol Lett 102–103:545–550

    Article  PubMed  Google Scholar 

  • Namdari R, Jones K, Chuang SS (2021) Species selection for nonclinical safety assessment of drug candidates: examples of current industry practice. Regul Toxicol Pharmacol 126:105029

    Article  CAS  PubMed  Google Scholar 

  • Nunoya T, Shibuya K, Saitoh T et al (2007) Use of miniature pig for biomedical research, with reference to toxicologic studies. J Toxicol Pathol 20:125–132

    Article  CAS  Google Scholar 

  • Nürnberg A, Pierre H (2017) An introduction to little-known aspects of nonclinical regulatory writing. Eur Med Writ Assoc 26(4):9–19

    Google Scholar 

  • OECD (1997) Principles on good laboratory practice. https://www.oecd.org/chemicalsafety/testing/good-laboratory-practiceglp.htm. Accessed 16 Aug 2022

  • Oglesbee BL, Lord B (2020) Gastrointestinal diseases of rabbits. In: Quesenberry KE, Orcutt CJ, Mans C, Carpenter JW (eds) Ferrets, rabbits, and rodents. Clinical medicine and surgery, 4th edn. Elsevier, St. Louis, pp 174–187

    Chapter  Google Scholar 

  • Okamura T, Suzuki S, Ogawa T et al (2011) Background data for general toxicology parameters in RccHan:WIST Rats at 8, 10, 19 and 32 weeks of age. J Toxicol Pathol 24(4):195–205

    Article  PubMed  Google Scholar 

  • Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    Article  CAS  PubMed  Google Scholar 

  • Padrell M, Llorente M, Amici F (2021) Invasive research on non-human primates—time to turn the page. Animals 11(10):2999

    Google Scholar 

  • Parish ST, Aschner M, Casey W et al (2020) An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul Toxicol Pharmacol 112:104592

    Article  PubMed  Google Scholar 

  • Prior H, Sewell F, Stewart J (2017) Overview of 3Rs opportunities in drug discovery and development using non-human primates. Drug Discov Today Dis Model 23:11–16

    Article  Google Scholar 

  • Prior H, Monticello T, Boulifard V et al (2019) Integration of consortia recommendations for justification of animal use within current and future drug development paradigms. Int J Toxicol 38(4):319–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Prior H, Baldrick P, Beken S et al (2020a) Opportunities for use of one species for longer-term toxicology testing during drug development: a cross-industry evaluation. Regul Toxicol Pharmacol 113:104624

    Article  CAS  PubMed  Google Scholar 

  • Prior H, Haworth R, Labram B (2020b) Justification for species selection for pharmaceutical toxicity studies. Toxicol Res 9(6):758–770

    Article  Google Scholar 

  • Prueksaritanont T, Tang C (2012) ADME of biologics-what have we learned from small molecules? AAPS J 14(3):410–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remicade (infliximab): Janssen Biotech, Inc. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/103772s5359lbl.pdf. Accessed Aug 2022

  • Rosso MC, Badino P, Ferrero G (2016) Biologic data of cynomolgus monkeys maintained under laboratory conditions. PLoS One 11(6):e0157003

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozkot M, Václavková E, BÄ›lková J (2015) Minipigs as laboratory animals – review. Res Pig Breed 9:10–14

    Google Scholar 

  • Sakai C, Iwano S, Yamazaki Y et al (2014) Species differences in the pharmacokinetic parameters of cytochrome P450 probe substrates between experimental animals, such as mice, rats, dogs, monkeys, and microminipigs, and humans. J Drug Metab Toxicol 5(6):1000173

    Google Scholar 

  • Sanger GJ, Andrews PLR (2018) A history of drug discovery for treatment of nausea and vomiting and the implications for future research. Front Pharmacol 9:913

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasseville VG, Diters RW (2008) Impact of infections and normal flora in nonhuman primates on drug development. ILAR J 49(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Sato J, Doi T, Kanno T, Wako Y et al (2012) Histopathology of incidental findings in cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. J Toxicol Pathol 25(1):63–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer K, Rensing S, Hillen H et al (2016) Is science the only driver in species selection? An internal study to evaluate compound requirements in the minipig compared to the dog in preclinical studies. Toxicol Pathol 44(3):474–479

    Article  CAS  PubMed  Google Scholar 

  • Sécher T, Bodier-Montagutelli E, Guillon A et al (2020) Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv Drug Deliv Rev 167:148–169

    Article  PubMed  Google Scholar 

  • Sewell F, Chapman K, Couch J et al (2017) Challenges and opportunities for the future of monoclonal antibody development: improving safety assessment and reducing animal use. MAbs 9(5):742–755

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Swift B, Mamelok R et al (2019) Design and conduct considerations for first-in-human trials. Clin Transl Sci 12(1):6–19

    Article  PubMed  Google Scholar 

  • Smith D, Trennery P (2002) Non-rodent selection in pharmaceutical toxicology. A ‘points to consider’ document, developed by the ABPI in conjunction with the UK Home Office. https://www.abpi.org.uk/media/1644/non-rodent-selection.pdf. Accessed 16 July 2022

  • Smith D, Trennery P, Farningham D et al (2001) The selection of marmoset monkeys (Callithrix jacchus) in pharmaceutical toxicology. Lab Anim 35(2):117–130

    Article  CAS  PubMed  Google Scholar 

  • Son W-C, Gopinath C (2004) Early occurrence of spontaneous tumors in CD-1 Mice and Sprague – Dawley rats. Toxicol Pathol 32(4):371–374

    Article  CAS  PubMed  Google Scholar 

  • Son YW, Choi HN, Che JH et al (2020) Advances in selecting appropriate non-rodent species for regulatory toxicology research: policy, ethical, and experimental considerations. Regul Toxicol Pharmacol 116:104757

    Article  CAS  PubMed  Google Scholar 

  • Spilker ME, Singh P, Vicini P (2016) Mathematical modeling of receptor occupancy data: a valuable technology for biotherapeutic drug development. Cytometry B Clin Cytom 90(2):230–236

    Article  PubMed  Google Scholar 

  • Stricker-Krongrad A, Shoemake CR, Liu J et al (2017) The importance of minipigs in dermal safety assessment: an overview. Cutan Ocul Toxicol 36:105–113

    Article  PubMed  Google Scholar 

  • Suntharalingam G, Perry MR, Ward S et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028

    Article  CAS  PubMed  Google Scholar 

  • Svendsen O (2006) The minipig in toxicology. Exp Toxicol Pathol 57:335–339

    Article  PubMed  Google Scholar 

  • Swindle MM, Makin A, Herron AJ et al (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49(2):344–356

    Article  CAS  PubMed  Google Scholar 

  • t’Hart BA, Abbott DH, Nakamura K et al (2012) The marmoset monkey: a multi-purpose preclinical and translational model of human biology and disease. Drug Discov Today 17(21–22):1160–1165

    PubMed  Google Scholar 

  • Tamaki C, Nagayama T, Hashiba M et al (2013) Potentials and limitations of nonclinical safety assessment for predicting clinical adverse drug reactions: correlation analysis of 142 approved drugs in Japan. J Toxicol Sci 38:581–598

    Article  PubMed  Google Scholar 

  • Tang H, Mayersohn M (2018) Porcine prediction of pharmacokinetics in people. Drug Metab Dispos 46(11):1712–1724

    Article  CAS  PubMed  Google Scholar 

  • Trepanier LA, Ray K, Winand NJ et al (1997) Cytosolic arylamine n-acetyltransferase (NAT) deficiency in the dog and other canids due to an absence of NAT genes. Biochem Pharmacol 54(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • US Congress FDA Modernisation Act 2.0 (2022) https://www.congress.gov/bill/117th-congress/senate-bill/5002. Accessed 17 Mar 2023

  • US Food and Drug Administration (1987) 21CFR58 code of Federal Regulations Title 21. Good Laboratory Practice for Nonclinical Laboratory Studies. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=58. Accessed 16 Aug 2022

  • US Food and Drug Administration (2004) Cetuximab pharmacology review. https://www.accessdata.fda.gov/drugsatfda_docs/bla/2004/125084_ERBITUX_PHARMR_P1.PDF. https://www.accessdata.fda.gov/drugsatfda_docs/bla/2004/125084_ERBITUX_PHARMR_P2.PDF. https://www.accessdata.fda.gov/drugsatfda_docs/bla/2004/125084_ERBITUX_PHARMR_P3.PDF. Accessed 27 Aug 2022

  • US Food and Drug Administration (2005) Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. https://www.fda.gov/media/72309/download. Accessed 19 June 2022

  • US Food and Drug Administration (2015) Guidance for industry: product development under the Animal Rule. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm399217.pdf. Accessed 16 Aug 2022

  • US Food and Drug Administration (2020) Guidance for industry: safety testing of drug metabolites-Center for Evaluation and Research (CDER). https://www.fda.gov/media/72279/download. Accessed Aug 2022

  • US Food and Drug Administration (2022) Guidance for Industry: nonclinical considerations for mitigating nonhuman primate supply constraints arising from the COVID-19 pandemic. https://www.fda.gov/media/155950/download. Accessed 16 Aug 2022

  • Vargason AM, Anselmo AC, Mitragotri S (2021) The evolution of commercial drug delivery technologies. Nat Biomed Eng 5:951–967

    Article  PubMed  Google Scholar 

  • Vargesson N (2015) Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today 105(2):140–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vugmeyster Y, Xu X, Theil FP et al (2012) Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem 3(4):73–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, An Z, Luo W et al (2018) Molecular and functional analysis of monoclonal antibodies in support of biologics development. Protein Cell 9:74–85

    Article  PubMed  Google Scholar 

  • Warne RK, Moloney GK, Chaber A-L (2023) Is biomedical research demand driving a monkey business? One Health 16:100520

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber K, Razinger T, Hardisty JF et al (2011) Differences in rat models used in routine toxicity studies. Int J Toxicol 30(2):162–173

    Article  PubMed  Google Scholar 

  • Webster J, Bollen P, Grimm H et al (2010) Ethical implications of using the minipig in regulatory toxicology studies. J Pharmacol Toxicol Methods 62(3):160–166

    Article  CAS  PubMed  Google Scholar 

  • Whiteside GT, Kennedy JD (2010) Consideration of pharmacokinetic pharmacodynamic relationships in the discovery of new pain drugs, Chapter 16. In: Kruger L, Light AR (eds) Translational pain research: from mouse to man. CRC Press/Taylor & Francis, Boca Raton. https://www.ncbi.nlm.nih.gov/books/NBK57267/

    Google Scholar 

  • Wolfreys A, Kilgour J, Allen AD et al (2021) Review of the technical, toxicological, and PKPD considerations for conducting inhalation toxicity studies on biologic pharmaceuticals-the outcome of a cross-industry working group survey. Toxicol Pathol 49(2):261–285

    Article  CAS  PubMed  Google Scholar 

  • Zuch de Zafra CL, Sasseville VG, Matsumoto S et al (2017) Inflammation and immunogenicity limit the utility of the rabbit as a nonclinical species for ocular biologic therapeutics. Regul Toxicol Pharmacol 86:221–230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren D. Harvey .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harvey, W.D. (2023). Species Selection for Pharmaceutical Toxicity Studies. In: Hock, F.J., Gralinski, M.R., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_133-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_133-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics