Skip to main content

Fire Ecology of the North American Mediterranean-Climate Zone

  • Chapter
  • First Online:
Fire Ecology and Management: Past, Present, and Future of US Forested Ecosystems

Abstract

North America’s Mediterranean climate zone (NAMCZ) includes most of California, southwestern Oregon, a slice of western Nevada, and northwestern Baja California, Mexico. Climatically, the world’s Mediterranean climate regions are unique because the wet season is concurrent with the cold season, and the warm, dry season is akin to an annual drought of 3–7 months. Most of the NAMCZ receives sufficient precipitation in the winter and early spring to produce a crop of fuel just in time for the hot, dry summer. Vegetation in the NAMCZ is among the most fire-prone and fire-shaped on the continent. The NAMCZ supports all of the major fire regime types represented in North America, but most of the modern landscape supports either the chaparral type (moderate frequency, high-severity), or the moderate frequency/“mixed” severity type including the extensive yellow pine and mixed conifer forest type, which before logging, reduced human ignitions and fire suppression supported a high frequency, low-severity fire regime. We compare historical (pre-Euro-American settlement) and modern fire regimes in the NAMCZ and discuss current pyrological and ecological trends, ecosystem management, conservation and restoration, and the future of fire and fuels management in a time of rapid global change.

Ecoregions 4, South Cascades; 5, Sierra Nevada; 6, Central California Foothills and Coastal Mountains; 7, Central California Valley; 8, Southern California Mountains; 9, Eastern Cascade Slopes and Foothills; 78, Klamath Mountains and California High North Coast Range; 85, Southern California/Northern Baja Coast

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abella SR, Hurja JC, Merkler DJ, Denton CW, Brewer DG (2012) Overstory-understory relationships along forest type and environmental gradients in the Spring Mountains of southern Nevada, USA. Folia Geobot 47:119–134

    Article  Google Scholar 

  • Agee JK (1993) Fire ecology of Pacific northwest forests. Island Press, Washington, DC

    Google Scholar 

  • Alexander JD, Seavy NE, Ralph CJ, Hogoboom B (2006) Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California. Int J Wildland Fire 15:237–245

    Article  Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8):129

    Article  Google Scholar 

  • Allen-Diaz B, Standiford R, Jackson RD (2007) Oak woodlands and forests. In: Barbour MG, Keeler-Wolf T, Schoenherr AA (eds) Terrestrial vegetation of California, 3rd edn. University of California Press, Berkeley, pp 313–338

    Chapter  Google Scholar 

  • Anderson MK (2005) Tending the wild: native American knowledge and the management of California’s natural resources. University of California Press, Berkeley

    Book  Google Scholar 

  • Anderson MK (2006) The use of fire by native Americans in California. In: van Wagtendonk JW, Sugihara NG, Stephens SL, Thode AE, Shaffer KE, Fites-Kaufman J (eds) Fire in California’s ecosystems, 2nd edn. University of California Press, Berkeley, pp 417–430

    Google Scholar 

  • Bailey RG (1995) Descriptions of the ecoregions of the United States, 2nd edn. USDA Forest Service Misc Publ 1391, Washington, DC

    Google Scholar 

  • Bailey J, Quinn-Davidson L (2018) Prescribed fire training exchanges: training, treatment, and outreach. Fire Manag Today 76(4):20–22

    Google Scholar 

  • Baker WL, Shinneman DJ (2004) Fire and restoration of piñon–juniper woodlands in the western United States: a review. For Ecol Manag 189:1–21

    Article  Google Scholar 

  • Baldwin BG, Goldman DH, Keil DJ, Patterson R, Rosatti TJ (eds) (2012) The Jepson manual: vascular plants of California. University of California Press, Berkeley

    Google Scholar 

  • Balint PJ, Stewart RE, Desai A, Walters LC (2011) Wicked environmental problems: managing uncertainty and conflict. Island Press, Washington, DC

    Book  Google Scholar 

  • Barbour MG, Keeler-Wolf T, Schoenherr AA (eds) (2007) Terrestrial vegetation of California, 3rd edn. Berkeley, University of California Press

    Google Scholar 

  • Barger NN, Adams HD, Woodhouse C, Neff JC, Asner GP (2009) Influence of livestock grazing and climate on pinyon pine (Pinus edulis) dynamics. Rangel Ecol Manag 62:531–539

    Article  Google Scholar 

  • Barrett SW, Swetnam TW, Baker WL (2005) Indian fire use: deflating the legend. Fire Manag Today 65(3):31–34

    Google Scholar 

  • Bates JD, Svejcar T, Miller R, Davies KW (2017) Plant community dynamics 25 years after juniper control. Rangel Ecol Manag 70:356–362

    Article  Google Scholar 

  • Beck Group (2015) California assessment of wood business innovation opportunities and markets (CAWBIOM). Report prepared for the National Forest Foundation. The Beck Group, Portland, Oregon. https://www.nationalforests.org/assets/pdfs/California-Assessment-Wood-Biomass-Innovation-Interim-Report-June-2015.pdf

  • Bedsworth L, Cayan D, Franco G, Fisher L, Ziaja S, Ackerly DD (2018). Statewide summary report. California’s 4th Climate Change Assessment. Publ No SUMCCCA4–2018-013, Sacramento, California

    Google Scholar 

  • Board DI, Chambers JC, Miller RF, Weisberg PJ (2018) Fire patterns in piñon and juniper land cover types in the Semiarid Western United States from 1984 through 2013. USDA Forest Service Gen Tech Rep RMRS-372, Fort Collins, Colorado

    Google Scholar 

  • Bohlman GN, Skinner CN, Safford HD (2021) Natural range of variation for yellow pine and mixed conifer forests in northwestern California and southwestern Oregon. USDA Forest Service Gen Tech Rep PSW-273, Albany, California

    Google Scholar 

  • Boisramé G, Thompson S, Collins B, Stephens S (2017a) Managed wildfire effects on forest resilience and water in the Sierra Nevada. Ecosystems 20:717–732

    Article  Google Scholar 

  • Boisramé GF, Thompson SE, Kelly M, Cavalli J, Wilkin KM, Stephens SL (2017b) Vegetation change during 40 years of repeated managed wildfires in the Sierra Nevada, California. For Ecol Manag 402:241–252

    Article  Google Scholar 

  • Bolsinger CL (1988) The hardwoods of California’s timberlands, woodlands, and savannas. USDA Forest Service Gen Res Bull PNW-RB-148, Portland, Oregon

    Google Scholar 

  • Bolsinger CL (1989) California’s western juniper and pinyon-juniper woodlands: area, stand characteristics, wood volume, and fenceposts. USDA Forest Service Gen Res Bull PNW-RB-166, Portland, Oregon

    Google Scholar 

  • Bradley BA (2009) Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Glob Chang Biol 15:196–208

    Article  Google Scholar 

  • Brooks ML, D’antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688

    Article  Google Scholar 

  • Callaway RM, Davis FW (1993) Vegetation dynamics, fire, and the physical environment in coastal Central California. Ecology 74:1567–1578

    Article  Google Scholar 

  • Cal-SAF (2019) The social benefits of a robust woody biomass energy sector in California. California Society of American Foresters, Murphys, California. https://californiasaf.org/wp-content/uploads/2019/05/The-Social-Benefits-of-a-Robust-Biomass-Energy-Sector-in-California.adopted-version.pdf

  • Cermak RW (2005) Fire in the forest: A history of fire control on the national forests in California, 1898–1956. USDA Forest Service Publ R5-FR-003, Vallejo, California

    Google Scholar 

  • Chappell CB, Agee JK (1996) Fire severity and tree seedling establishment in Abies magnifica forests, southern cascades, Oregon. Ecol Appl 6(2):628–640

    Article  Google Scholar 

  • Cocking MI, Varner JM, Knapp EE (2014) Long-term effects of fire severity on oak-conifer dynamics in the southern cascades. Ecol Appl 24(1):94–107

    Article  PubMed  Google Scholar 

  • Cody ML, Mooney HA (2018) Convergence vs. nonconvergence in mediterranean-climate ecosystems. Annu Rev Ecol Syst 9:265–321

    Article  Google Scholar 

  • Cole KL, Fisher JF, Ironside K, Mead JI, Koehler P (2013) The biogeographic histories of Pinus edulis and Pinus monophylla over the last 50,000 years. Quat Int 310:96–110

    Article  Google Scholar 

  • Collins BM, Stevens JT, Miller JD, Stephens SL, Brown PM, North MP (2017) Alternative characterization of forest fire regimes: incorporating spatial patterns. Landsc Ecol 32:1543–1552

    Article  Google Scholar 

  • Cook PS, Becker DR (2017) State funding for wildfire suppression in the western US. PAG Rep 37. College of Natural Resources Policy Analysis Group, University of Idaho, Moscow. https://www.uidaho.edu/-/media/UIdaho-Resposive/Files/cnr/reearch/PAG/Research/PAGReport37.pdf

  • Coppoletta M, Merriam KE, Collins BM (2016) Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol Appl 26(3):686–699

    Article  PubMed  Google Scholar 

  • Coppoletta M, Meyer MD, North, MP (2021) Natural Range of Variation (NRV) for red fir and subalpine forests in northwestern California and southwestern Oregon, USA. USDA Forest Service Gen Tech Rep PSW-269, Albany, California

    Google Scholar 

  • Crowder L (2019) Prescribed fire gains momentum. Calif Agric 73(1):5–8

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Article  Google Scholar 

  • Dalrymple SE, Safford HD (2019) Ants, wind, and low litter deposition contribute to the maintenance of fire-protective clearings around Jeffrey pine trees (Pinus jeffreyi). For Ecol Manag 438:44–50

    Article  Google Scholar 

  • Dass P, Houlton BZ, Wang YP, Warlind D (2018) Grasslands may be more reliable carbon sinks than forests in California. Environ Res Lett 13(7)

    Google Scholar 

  • Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR (2011) Atmospheric rivers, floods and the water resources of California. Water 3(2):445–478

    Article  Google Scholar 

  • Dettinger MD, Alpert H, Battles JJ, Kusel J, Safford H, Fougeres D, Knight C, Miller L, Sawyer S (2018) Sierra Nevada summary report. California’s 4th climate change assessment. Publ No SUM-CCCA4–2018-004. California Natural Resources Agency and California Energy Commission, Sacramento

    Google Scholar 

  • Dolanc CR, Thorne JH, Safford HD (2013) Widespread shifts in the demographic structure of subalpine forests in the Sierra Nevada, California, 1934-2007. Glob Ecol Biogeogr 22:264–276

    Article  Google Scholar 

  • Dove NC, Safford HD, Bohlman GN, Estes BL, Hart SC (2020) High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. Ecol Appl 30(4):e02072

    Article  PubMed  Google Scholar 

  • Engber E, Teraoka J, van Mantgem P (2017) Forest restoration at Redwood National Park: exploring prescribed fire alternatives to second-growth management: A case study. In: Standiford RB, Valachovic Y (eds) Coast redwood science symposium—2016: Past successes and future direction. Proceedings of a workshop. USDA Forest Service Gen Tech Rep PSW-258, Albany, California, pp 75–86

    Google Scholar 

  • Estes BL, Knapp EE, Skinner CN, Miller JD, Preisler HK (2017) Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere 8(5):1–20

    Article  Google Scholar 

  • Fettig CJ, Klepzig KD, Billings RF, Munson AS, Nebeker TE, Negrón JF, Nowak JT (2007) The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For Ecol Manag 238(1–3):24–53

    Article  Google Scholar 

  • Fettig CJ, Mortenson LA, Bulaon BM, Foulk PB (2019) Tree mortality following drought in the central and southern Sierra Nevada, California, US. For Ecol Manag 432:164–178

    Article  Google Scholar 

  • Fites-Kaufman JA, Rundel P, Stephenson N, Weixelman DA (2007) Montane and subalpine vegetation of the Sierra Nevada and Cascade ranges. In: Barbour MG, Keeler-Wolf T, Schoenherr AA (eds) Terrestrial vegetation of California, 3rd edn. University of California Press, Berkeley

    Google Scholar 

  • Flint LE, Flint AL, Mendoza J, Kalansky J, Ralph FM (2018) Characterizing drought in California: new drought indices and scenario-testing in support of resource management. Ecol Proc 7:1–13

    Article  CAS  Google Scholar 

  • Floyd ML, Romme WH, Hanna DP, Hanna DD (2017) Historical and modern fire regimes in piñon-juniper woodlands, dinosaur National Monument, United States. Rangel Ecol Manag 70:348–355

    Article  Google Scholar 

  • Fontaine JB, Kennedy PL (2012) Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in US fire-prone forests. Ecol Appl 22:1547–1561

    Article  PubMed  PubMed Central  Google Scholar 

  • Frost EJ, Sweeney R (2000) Fire regimes, fire history and forest conditions in the Klamath-Siskiyou Region: An overview and synthesis of knowledge. World Wildlife Fund, Klamath-Siskiyou Ecoregion Program, Ashland, Oregon

    Google Scholar 

  • Fry DL (2008) Prescribed fire effects on deciduous oak woodland stand structure, northern diablo range, California. Rangel Ecol Manag 61:294–301

    Article  Google Scholar 

  • Fry DL, Stephens SL (2006) Influence of humans and climate on the fire history of a ponderosa pine-mixed conifer forest in the southeastern Klamath Mountains, California. For Ecol Manag 223(1–3):428–438

    Article  Google Scholar 

  • Fusco EJ, Finn JT, Balch JK, Nagy RC, Bradley BA (2019) Invasive grasses increase fire occurrence and frequency across US ecoregions. PNAS 116:23594–23599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo T, Stinson LT, Pejchar L (2016) Pinyon-juniper removal has long-term effects on mammals. For Ecol Manag 377:93–100

    Article  Google Scholar 

  • Gause GW (1966) Silvical characteristics of bigcone Douglas fir (Pseudotsuga macrocarpa [Vasey] Mayr). USDA Forest Service Res Pap PSW-RP-39, Berkeley, California

    Google Scholar 

  • Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, McDowell NG (2013) Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytol 198:567–578

    Article  CAS  PubMed  Google Scholar 

  • Griffin D, Anchukaitis KJ (2014) How unusual is the 2012–2014 California drought? Geophys Res Lett 41:9017–9023

    Article  Google Scholar 

  • Griffith RS (1992) Sequoia sempervirens. In: Fire effects information system (online). USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. https://www.fs.fed.us/database/feis/plants/tree/seqsem/all.html. Accessed 15 Jul 2020

  • Hallett D, Anderson R (2010) Paleofire reconstruction for high-elevation forests in the Sierra Nevada, California, with implications for wildfire synchrony and climate variability in the late Holocene. Quat Res 73:180–190

    Article  CAS  Google Scholar 

  • Halofsky JE, Donato DC, Hibbs DE, Campbell JL, Cannon MD, Fontaine JB, Thompson JR, Anthony RG, Bormann BT, Kayes LJ, Law BE (2011) Mixed-severity fire regimes: lessons and hypotheses from the Klamath-Siskiyou ecoregion. Ecosphere 2(4):1–19

    Article  Google Scholar 

  • Hanberry BB, Noss RF, Safford HD, Allison SK, Dey DC (2015) Restoration is preparation for the future. J For 113(4):425–429

    Google Scholar 

  • Hasel AA (1932) Methods of cutting, Shasta National Forest, California, Progress Report, 1930. USDA Forest Service, California Forest Experiment Station, Government Printing Office, Washington, DC

    Google Scholar 

  • Hickman JC (1993) The Jepson manual. University of California Press, Berkeley

    Google Scholar 

  • Holmes KA, Veblen KE, Young TP, Berry AM (2008) California oaks and fire: A review and case study. In: Proceedings of the sixth California oak symposium: Today’s challenges, tomorrow’s opportunities. USDA Forest Service Gen Tech Rep PSW-217, Albany, California, pp 551–565

    Google Scholar 

  • Hurteau M, North M (2009) Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios. Front Ecol Environ 7(8):409–414

    Article  Google Scholar 

  • III (2020) Wildfire facts and statistics. Insurance Information Institute. https://www.iii.org/fact-statistic/facts-statistics-wildfires

  • Jin Y, Goulden ML, Faivre N, Veraverbeke S, Sun F, Hall A, Hand MS, Hook S, Randerson JT (2015) Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environ Res Lett 10(9):094005. https://doi.org/10.1088/1748-9326/10/9/094005

    Article  Google Scholar 

  • Jones ME, Paine TD, Fenn ME, Poth MA (2004) Influence of ozone and nitrogen deposition on bark beetle activity under drought conditions. For Ecol Manag 200(1–3):67–76

    Article  Google Scholar 

  • Jones GM, Gutiérrez RJ, Tempel DJ, Whitmore SA, Berigan WJ, Peery MZ (2016) Megafires: an emerging threat to old-forest species. Front Ecol Environ 14:300–306

    Article  Google Scholar 

  • Kattelmann R, Embury M (1996) Riparian areas and wetlands. In: Sierra Nevada ecosystem project: Final report to Congress, vol 3. Center for Watershed Sciences, University of California, Davis

    Google Scholar 

  • Kauffman JB, Martin RE (1987) Effects of fire and fire suppression on mortality and mode of reproduction of California black oak (Quercus kelloggii Newb.). In: Proceedings of the symposium on multiple-use management of California’s hardwood resources. USDA Forest Service Gen Tech Rep PSW-100, pp 122–126

    Google Scholar 

  • Keeley JE, Fotheringham C (2000) Role of fire in regeneration from seed. In: Fenner M (ed) Seeds: The ecology of regeneration in plant communities, 2nd edn. CAB International, pp 311–330

    Google Scholar 

  • Keeley JE, Fotheringham C (2003) Impact of past, present, and future fire regimes on North American mediterranean shrublands. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the western Americas. Springer, New York, pp 218–262

    Chapter  Google Scholar 

  • Keeley JE, Safford HD (2016) Fire as an ecosystem process. In: Mooney HA, Zavaleta E (eds) Ecosystems of California. University of California Press, Berkeley, pp 27–46

    Google Scholar 

  • Keeley JE, Zedler PH (1998) Evolution of life histories in Pinus. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 219–250

    Google Scholar 

  • Keeley JE, Zedler PH (2009) Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model. Ecol Appl 19(1):69–94

    Article  PubMed  Google Scholar 

  • Keeley SC, Keeley JE, Hutchinson SM, Johnson AW (1981) Post-fire succession of the herbaceous flora in southern California chaparral. Ecology 62:1608–1621

    Article  Google Scholar 

  • Keeley JE, Fotheringham C, Baer-Keeley M (2005) Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA. Divers Distrib 11:525–537

    Article  Google Scholar 

  • Keeley JE, Fotheringham C, Baer-Keeley M (2006) Demographic patterns of post-fire regeneration in mediterranean-climate shrublands of California. Ecol Monogr 76:235–255

    Article  Google Scholar 

  • Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2011) Fire in mediterranean ecosystems: ecology, evolution, and management. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kennedy MC, Johnson MC (2014) Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland–urban interface during the wallow fire, Arizona, USA. For Ecol Manag 318:122–132

    Article  Google Scholar 

  • Kershner JM, ed (2014) A climate change vulnerability assessment for focal resources of the Sierra Nevada, Version 1.0. EcoAdapt, Bainbridge Island, Washington. https://www.cakex.org/sites/default/files/documents/EcoAdapt_CALCC_SierraNevadaVulnerabilityAssessment_26Feb2014%20%281%29.pdf

  • Keter TS (1995) Environmental history and cultural ecology of the North Fork of the Eel River Basin, California. USDA Forest Service Publ R5-EM-TP-002, Vallejo, California

    Google Scholar 

  • Kirk TA, Zielinski WJ (2009) Developing and testing a landscape habitat suitability model for the American marten (Martes americana) in the cascades mountains of California. Landsc Ecol 24:759–773

    Article  Google Scholar 

  • Laacke, RJ, Tappeiner JC (1996) Red fir ecology and management. In: Erman DC (ed) Sierra Nevada ecosystem project: Final report to congress, vol 3. University of California, pp 1–10

    Google Scholar 

  • Lake FK, Wright V, Morgan P, McFadzen M, McWethy D, Stevens-Rumann C (2017) Returning fire to the land: celebrating traditional knowledge and fire. J For 115(5):343–353

    Google Scholar 

  • Laudenslayer WFJ, Darr HH (1990) Historical effects of logging on the forests of the Cascade and Sierra Nevada ranges in California. Trans West Sect Wildl Soc 26:12–23

    Google Scholar 

  • Leiberg JB (1900) The Cascade Range and Ashland forest reserves and adjacent regions. Twenty-first annual report of the survey, 1899–1900. US Geological Survey, Government Printing Office, Washington, DC

    Google Scholar 

  • Leiberg JB (1902) Forest conditions in the northern Sierra Nevada, California. US Geological Survey Prof Pap 8. US Government Printing Office, Washington, DC

    Google Scholar 

  • Lenihan JM, Bachelet D, Neilson RP, Drapek R (2008) Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California. Clim Chang 87:215–230

    Article  CAS  Google Scholar 

  • Lewis HT (1973) Patterns of Indian burning in California: ecology and ethnohistory. In: Blackburn TC, Anderson MK (eds) Before the wilderness: environmental management by native Californians. Ballena Press, Menlo Park, pp 55–116

    Google Scholar 

  • Lowry CS, Loheide SP, Moore CE, Lundquist JD (2011) Groundwater controls on vegetation composition and patterning in mountain meadows. Wat Resour Res 47

    Google Scholar 

  • Mallek C, Safford H, Viers J, Miller J (2013) Modern departures in fire severity and area vary by forest type, Sierra Nevada and southern cascades, California, USA. Ecosphere 4(12):153

    Article  Google Scholar 

  • Marlon JR, Bartlein PJ, Gavin DG, Long CJ, Anderson RS, Briles CE, Brown KJ, Colombaroli D, Hallett DJ, Power MJ, Scharf EA (2012) Long-term perspective on wildfires in the western USA. PNAS 109:E535–E543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCune B (1988) Ecological diversity in North American pines. Am J Bot 75:353–368

    Article  PubMed Central  Google Scholar 

  • McDonald PM, Tappeiner JC (1996) Silviculture-ecology of forest-zone hardwoods in the Sierra Nevada. In: Sierra Nevada ecosystem project: final report to congress, vol 3. Assessments and scientific basis for management options. Centers for Water and Wildland Resources, University of California, Berkeley, pp 621–636

    Google Scholar 

  • McIntyre PJ, Thorne JH, Dolanc CR, Flint AL, Flint LE, Kelly M, Ackerly DD (2015) Twentieth-century shifts in forest structure in California: denser forests, smaller trees, and increased dominance of oaks. PNAS 112:1458–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie D, Peterson DL, Littell JJ (2008) Global warming and stress complexes in forests of western North America. In: Bytnerowicz A, Arbaugh MJ, Riebau AR, Andersen C (eds) Developments in environmental science, vol 8. Elsevier, pp 319–337

    Google Scholar 

  • McLauchlan KK, Higuera PE, Miesel J, Rogers BM, Schweitzer J, Shuman JK, Tepley AJ, Varner JM, Veblen TT, Adalsteinsson SA, Balch JK (2020) Fire as a fundamental ecological process: research advances and frontiers. J Ecol. https://doi.org/10.1111/1365-2745.13403

  • Meentemeyer RK, Cunniffe NJ, Cook AR, Filipe JA, Hunter RD, Rizzo DM, Gilligan CA (2011) Epidemiological modeling of invasion in heterogeneous landscapes: spread of sudden oak death in California (1990–2030). Ecosphere 2(2):1–24

    Article  Google Scholar 

  • Mensing S (2006) The history of oak woodlands in California, part II: the native American and historic period. Calif Geogr 46:1–31

    Google Scholar 

  • Metz MR, Frangioso KM, Meentemeyer RK, Rizzo DM (2011) Interacting disturbances: wildfire severity affected by stage of forest disease invasion. Ecol Appl 21:313–320

    Article  PubMed  Google Scholar 

  • Metz MR, Varner JM, Frangioso KM, Meentemeyer RK, Rizzo DM (2013) Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease. Ecology 94:2152–2159

    Article  PubMed  Google Scholar 

  • Meyer MD (2015) Forest fire severity patterns of resource objective wildfires in the southern Sierra Nevada. J For 113(1):49–56

    Google Scholar 

  • Meyer MD, North MP (2019) Natural range of variation of red fir and subalpine forests in the Sierra Nevada bioregion. USDA Forest Service Gen Tech Rep PSW-263, Albany, California

    Google Scholar 

  • Meyer MD, Bulaon B, MacKenzie M, Safford HD (2016) Mortality, stucture, and regeneration in whitebark pine stands impacted by mountain pine beetle in the southern Sierra Nevada. Can J For Res 46:572–581

    Article  Google Scholar 

  • Meyer MD, Estes BL, Wuenschel A, Bulaon B, Stucy A, Smith DF, Caprio AC (2019) Structure, diversity and health of Sierra Nevada red fir forests with reestablished fire regimes. Int J Wildland Fire 28:386–396

    Article  Google Scholar 

  • Millar CI, Rundel PW (2016) Subalpine forests. In: Mooney H, Zavaleta E (eds) Ecosystems of California. University of California Press, Berkeley, pp 579–611

    Google Scholar 

  • Miller RF, Heyerdahl EK (2008) Fine-scale variation of historical fire regimes in sagebrush-steppe and juniper woodland: an example from California, USA. Int J Wildland Fire 17:245–254

    Article  Google Scholar 

  • Miller RF, Rose JA (1999) Fire history and western juniper encroachment in sagebrush steppe. Rangel Ecol Manag 52:550–559

    Article  Google Scholar 

  • Miller RF, Tausch RJ (2001) The role of fire in juniper and pinyon woodlands: a descriptive analysis. In: Proceedings of the first national congress on fire, ecology, prevention, and management. Tall Timbers Research Station, Tallahassee, pp 15–30

    Google Scholar 

  • Miller JD, Collins BM, Lutz JA, Stephens SL, van Wagtendonk JW, Yasuda DA (2012a) Differences in wildfires among ecoregions and land management agencies in the Sierra Nevada region, California, USA. Ecosphere 3(9):80

    Article  Google Scholar 

  • Miller JD, Skinner CN, Safford HD, Knapp EE, Ramirez CM (2012b) Trends and causes of severity, size, and number of fires in northwestern California, USA. Ecol Appl 22(1):184–203

    Article  CAS  PubMed  Google Scholar 

  • Miller PR, Taylor OC, McBride JR (2012c) Oxidant air pollution impacts in the montane forests of southern California: a case study of the San Bernardino Mountains. Springer, New York

    Google Scholar 

  • Miller JED, Root H, Safford HD (2018) Altered fire regimes cause long-term lichen diversity losses. Glob Chang Biol 24:4909–4918

    Article  PubMed  Google Scholar 

  • Miller RF, Chambers JC, Evers L, Williams CJ, Snyder KA, Roundy BA, Pierson FB (2019) The ecology, history, ecohydrology, and management of pinyon and juniper woodlands in the Great Basin and Northern Colorado Plateau of the western United States. USDA Forest Service Gen Tech Rep RMRS-403, Ft. Collins, Colorado

    Google Scholar 

  • Minnich RA (1977) The geography of fire and big-cone Douglas fir, Coulter pine and western conifer forests in the east Transverse Ranges, southern California. In: Mooney HA, Conrad CE (eds) Proceedings of the symposium on the environmental consequences of fire and fuel management in mediterranean ecosystems. USDA Forest Service Gen Tech Rep WO-3, Washington, DC, pp 443–450

    Google Scholar 

  • Minnich RA (1988) The biogeography of fire in the San Bernardino Mountains of California. University of California Press, Berkeley

    Google Scholar 

  • Minnich RA (2007) Southern California conifer forests. In: Barbour MG, Keeler-Wolf T, Schoenherr AA (eds) Terrestrial vegetation of California. University of California Press, Berkeley, pp 502–538

    Chapter  Google Scholar 

  • Molinari NA, Underwood EC, Kim JB, Safford HD (2018) Climate change trends for chaparral. In: Underwood EC, Safford HD, Molinari NA, Keeley JE (eds) Valuing chaparral: ecological, socio-economic and management perspectives. Springer, Switzerland, pp 385–409

    Chapter  Google Scholar 

  • Mooney HA, Zavaleta E (eds) (2016) Ecosystems of California. University of California Press, Berkeley

    Google Scholar 

  • Moreira F, Ascoli D, Safford HD (2020) Wildfire management in mediterranean-type regions: paradigm change needed. Environ Res Lett 15:011001

    Article  Google Scholar 

  • Mueller RC, Scudder CM, Porter ME, Talbot Trotter IIIR, Gehring CA, Whitham TG (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093. https://doi.org/10.1111/j.1365-2745.2005.01042.x

    Article  Google Scholar 

  • Nigro K, Molinari N (2019) Status and trends of fire activity in southern California yellow pine and mixed conifer forests. For Ecol Manag 441:20–31

    Article  Google Scholar 

  • Norman SP, Taylor AH (2005) Pine forest expansion along a forest-meadow ecotone in northeastern California, USA. For Ecol Manag 215:51–68

    Article  Google Scholar 

  • North MS, Stine P, O’Hara K, Zielinski W, Stephens S (2009) An ecosystem management strategy for Sierran mixed-conifer forests. USDA Forest Service Gen Tech Rep PSW-220, Albany, California

    Google Scholar 

  • North M, Collins BM, Stephens S (2012) Using fire to increase the scale, benefits, and future maintenance of fuels treatments. J For 110(7):392–401

    Google Scholar 

  • North MP, Collins BM, Safford HD, Stephenson NL (2016) Montane forests. In: Mooney HA, Zavaleta E (eds) Ecosystems of California. University of California Press, Berkeley, pp 553–577

    Google Scholar 

  • Nowacki GJ, MacCleery DW, Lake FK (2012) Native Americans, ecosystem development, and historical range of variation. In: Wiens J, Hayward G, Safford HD, Giffen C (eds) Historical environmental variation in conservation and natural resource management. Wiley, Sussex, pp 76–91

    Chapter  Google Scholar 

  • Nowak CL, Nowak RS, Tausch RJ, Wigand PE (1994) Tree and shrub dynamics in northwestern Great Basin woodland and shrub steppe curing the late-Pleistocene and Holocene. Am J Bot 81:265–277

    Article  Google Scholar 

  • Oliver AA, Bogan MT, Herbst DB, Dahlgren RA (2012) Short-term changes in-stream macroinvertebrate communities following a severe fire in the Lake Tahoe basin, California. Hydrobiol 694:117–130

    Article  Google Scholar 

  • Pettit N, Naiman R (2007) Fire in the riparian zone: characteristics and ecological consequences. Ecosystems 10:673–687

    Article  CAS  Google Scholar 

  • Plumb TR, McDonald PM (1981). Oak management in California. USDA Forest Service Gen Tech Rep PSW-54, Berkeley, California

    Google Scholar 

  • Pratt RB, Jacobsen AL, Ramirez AR, Helms AM, Traugh CA, Tobin MF, Heffner MS, Davis SD (2014) Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Glob Chang Biol 20:893–907

    Article  PubMed  Google Scholar 

  • Pyne SJ (2019) Fire: a brief history, 2nd edn. University of Washington Press, Seattle

    Google Scholar 

  • Ratliff RD (1985) Meadows in the Sierra Nevada of California: State of knowledge. USDA Forest Service Gen Tech Rep PSW-84, Berkeley, California

    Google Scholar 

  • Restaino CR, Safford HD (2018) Fire and climate change. In: van Wagtendonk JW, Sugihara NG, Stephens SL, Thode AE, Shaffer KE, Fites-Kaufman J (eds) Fire in California’s ecosystems, 2nd edn. University of California Press, Berkeley, pp 493–505

    Google Scholar 

  • Restaino C, Young DJ, Estes B, Gross S, Wuenschel A, Meyer M, Safford H (2019) Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA. Ecol Appl 29(4) doi:UNSP e01902https://doi.org/10.1002/eap.1902

  • Reynier WA, Hillberg LE, Kershner JM (2016) Southern California oak woodland habitats: Climate change vulnerability assessment synthesis, Version 1.0. EcoAdapt, Bainbridge Island, Washington. http://ecoadapt.org/programs/adaptation-consultations/socal

  • Richter C, Rejmánek M, Miller JE, Welch KR, Weeks J, Safford H (2019) The species diversity × fire severity relationship is hump-shaped in semiarid yellow pine and mixed conifer forests. Ecosphere 10(10):e02882

    Article  Google Scholar 

  • Rivera-Huerta H, Safford HD, Miller JD (2016) Patterns and trends in burned area and fire severity from 1984 to 2010 in the sierra de San Pedro Mártir, Baja California, Mexico. Fire Ecol 12(1):52–72

    Article  Google Scholar 

  • Roundy BA, Miller RF, Tausch RJ, Young K, Hulet A, Rau B, Jessop B, Chambers JC, Eggett D (2014) Understory cover responses to pinon-juniper treatments across tree dominance gradients in the Great Basin. Rangel Ecol Manag 67:482–494

    Article  Google Scholar 

  • Rundel PW (2018) California chaparral and its global significance. In: Underwood EC, Safford HD, Molinari NA, Keeley JE (eds) Valuing chaparral: ecological, socio-economic and management perspectives. Springer, Cham, pp 1–27

    Google Scholar 

  • Rundel PW, Arroyo MT, Cowling RM, Keeley JE, Lamont BB, Vargas P (2016) Mediterranean biomes: evolution of the floras, vegetation, and climate regime. Annu Rev Ecol Evol Syst 47:383–407

    Article  Google Scholar 

  • Safford HD (2007) Man and fire in Southern California: doing the math. Fremontia 35(4):25–29

    Google Scholar 

  • Safford HD, Harrison SP (2004) Fire effects on plant diversity in serpentine versus sandstone chaparral. Ecology 85:539–548

    Article  Google Scholar 

  • Safford HD, Stevens JT (2017) Natural range of variation (NRV) for yellow pine and mixed conifer forests in the Sierra Nevada, southern Cascades, and Modoc and Inyo National Forests, California, USA. USDA Forest Service Gen Tech Rep PSW-256, Albany, California

    Google Scholar 

  • Safford HD, Van de Water KM (2014) Using fire return interval departure (FRID) analysis to map spatial and temporal changes in fire frequency on national forest lands in California. USDA Forest Service Res Pap PSW-RP-266, Albany, California

    Google Scholar 

  • Safford HD, Schmidt DA, Carlson CH (2009) Effects of fuel treatments on fire severity in an area of wildland–urban interface, angora fire, Lake Tahoe Basin, California. For Ecol Manag 258:773–787

    Article  Google Scholar 

  • Safford HD, North MP, Meyer MD (2012a) Climate change and the relevance of historical forest conditions. In: North MP (ed) Managing Sierra Nevada forests. USDA Forest Service Gen Tech Rep PSW-237, Albany, California, pp 23–46

    Google Scholar 

  • Safford HD, Stevens JT, Merriam K, Meyer MD, Latimer AM (2012b) Fuel treatment effectiveness in California yellow pine and mixed conifer forests. For Ecol Manag 274:17–28

    Article  Google Scholar 

  • Safford HD, Underwood EC, Molinari NA (2018) Managing chaparral resources on public lands. In: Underwood EC, Safford HD, Molinari NA, Keeley JE (eds) Valuing chaparral: ecological, socio-economic and management perspectives. Springer, Cham, pp 411–448

    Chapter  Google Scholar 

  • Sawyer JO, Keeler-Wolf T, Evens JM (2009) A manual of California vegetation. California Native Plant Society, Sacramento

    Google Scholar 

  • Schmidt KM, Menakis JP, Hardy CC, Hann WJ, Bunnell DL (2002) Development of coarse-scale spatial data for wildland fire and fuel management. USDA Forest Service Gen Tech Rep RMRS-87, Fort Collins, Colorado

    Google Scholar 

  • Schwartz MW, Butt N, Dolanc CR, Holguin A, Moritz MA, North MP, Safford HD, Stephenson NL, Thorne JH, van Mantgem PJ (2015) Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere 6(7):121

    Article  Google Scholar 

  • Shaw JD (2006) Population-wide changes in pinyon-juniper woodlands caused by drought in the American southwest: effects on structure, composition, and distribution. In: Lafortezza R, Sanesi G (eds) Patterns and processes in forest landscapes: consequences of human management. Proceedings of the 4th meeting of IUFRO working party 80103, 26–29 Sep 2006, Locorotondo, pp 117–124

    Google Scholar 

  • Shive KL, Preisler HK, Welch KR, Safford HD, Butz RJ, O’Hara KL, Stephens SL (2018) From the stand scale to the landscape scale: predicting the spatial patterns of forest regeneration after disturbance. Ecol Appl 28(6):1626–1639

    Article  PubMed  Google Scholar 

  • Show SB, Kotok EI (1924) The role of fire in the California pine forests. USDA bull 1294. Government Printing Office, Washington, DC

    Google Scholar 

  • Show SB, Kotok EI (1929) Cover type and fire control in the national forests of northern California. USDA Forest Service, Washington, DC

    Book  Google Scholar 

  • Skinner C (2003) Fire history of upper montane and subalpine glacial basins in the Klamath Mountains of northern California. In: KEM G, Klinger RC, Sugihara NG (eds) Proceedings of fire conference 2000: the first national congress on fire ecology, prevention, and management. Tall Timbers Research Station Misc Pub No 13, Tallahassee, pp 145–151

    Google Scholar 

  • Skinner CN, Chang CR (1996) Fire regimes, past and present: status of the Sierra Nevada. In: Sierra Nevada ecosystem project: final report to congress, vol 2. Assessments and scientific basis for management options. Centers for Water and Wildland Resources, University of California, Berkeley, pp 1041–1069

    Google Scholar 

  • Skinner CN, Abbott CS, Fry DL, Stephens SL, Taylor AH, Trouet V (2009) Human and climatic influences on fire occurrence in California’s North coast range, USA. Fire Ecol 5(3):76–99

    Article  Google Scholar 

  • Skinner CN, Taylor AH, Agee JK (2018) Klamath Mountains bioregion. In: van Wagtendonk JW, Sugihara NG, Stephens SL, Thode AE, Shaffer KE, Fites-Kaufman J (eds) Fire in California’s ecosystems, 2nd edn. University of California Press, Berkeley, pp 171–193

    Google Scholar 

  • Slaton MR, Stone H (2013) Pinyon-juniper natural range of variation (unpublished report). USDA Forest Service, Pacific Southwest Region, Vallejo

    Google Scholar 

  • Standiford RB, Phillips RL, McDougald NK (2012) Fire history in California’s southern Sierra Nevada blue oak woodlands. Fire Ecol 8:163–167

    Article  Google Scholar 

  • State of California (2018) California forest carbon plan: managing our forest landscapes in a changing climate. Forest Climate Action Team, Sacramento

    Google Scholar 

  • Steel ZL, Safford HD, Viers JH (2015) The fire frequency-severity relationship and the legacy of fire suppression in California forests. Ecosphere 6(1):1–23

    Article  Google Scholar 

  • Steel ZL, Koontz MJ, Safford HD (2018) The changing landscape of wildfire: burn pattern trends and implications for California’s yellow pine and mixed conifer forests. Landsc Ecol 33:1159–1176

    Article  Google Scholar 

  • Stephens SL (1997) Fire history of a mixed oak-pine forest in the foothills of the Sierra Nevada, El Dorado County, California. In: Pillsbury NH, Verner J, Tietje WD (eds) Proceedings, symposium on oak woodlands: ecology, management, and urban interface issues. USDA Forest Service Gen Tech Rep PSW-160, Albany, pp 191–198

    Google Scholar 

  • Stephens SL, Collins BM, Fettig CJ, Finney MA, Hoffman CM, Knapp EE, North MP, Safford H, Wayman RB (2018a) Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68(2):77–88

    Article  Google Scholar 

  • Stephens SL, Kane JM, Stuart JD (2018b) North coast bioregion. In: van Wagtendonk JW, Sugihara NG, Stephens SL, Thode AE, Shaffer KE, Fites-Kaufman J (eds) Fire in California’s ecosystems. University of California Press, Berkeley, pp 149–170

    Google Scholar 

  • Stevens JT, Safford HD, Harrison SP, Latimer AM (2015) Forest disturbance accelerates thermophilization of understory plant communities. J Ecol 103:1253–1263

    Article  Google Scholar 

  • Stevens JT, Collins BM, Miller JD, North MP, Stephens SL (2017) Changing spatial patterns of stand-replacing fire in California conifer forests. For Ecol Manag 406:28–36

    Article  Google Scholar 

  • Stevens JT, Kling MM, Schwilk DW, Varner JM, Kane JM (2020) Biogeography of fire regimes in western US conifer forests: a trait-based approach. Glob Ecol Biogeogr 29(5):944–955

    Article  Google Scholar 

  • Stuart JD, Sayer JO (2001) Trees and shrubs of California. University of California Press, Berkeley

    Google Scholar 

  • Swiecki TJ, Bernhardt E (2001) Effects of fire on naturally occurring blue oak (Quercus douglasii) saplings. In: Standiford R, McCreary D, Purcell K (eds) Proceedings of the fifth symposium on oak woodlands: oaks in California’s changing landscape. USDA Forest Service, Pacific Southwest Research Station, San Diego, pp 251–259

    Google Scholar 

  • Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007) Human influence on California fire regimes. Ecol Appl 17:1388–1402

    Article  PubMed  Google Scholar 

  • Taylor AH (2000) Fire regimes and forest changes in mid and upper montane forests of the southern cascades, Lassen volcanic National Park, California, USA. J Biogeogr 27:87–104

    Article  Google Scholar 

  • Taylor AH, Skinner CN (2003) Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecol Appl 13:704–719

    Article  Google Scholar 

  • Temple PJ, Bytnerowicz A, Fenn ME, Poth MA (2005) Air pollution impacts in the mixed conifer forests of southern California. In: Kus BE, Beyers JL (eds) Planning for biodiversity: bringing research and management together. USDA Forest Service Gen Tech Rep PSW-195, Albany, pp 145–164

    Google Scholar 

  • Tepley AJ, Thompson JR, Epstein HE, Anderson-Teixeira KJ (2017) Vulnerability to forest loss through altered post-fire recovery dynamics in a warming climate in the Klamath Mountains. Glob Chang Biol:1–16

    Google Scholar 

  • Thompson JR, Spies TA (2009) Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For Ecol Manag 258(7):1684–1694

    Article  Google Scholar 

  • Thompson MP, Bowden P, Brough A, Scott JH, Gilbertson-Day J, Taylor A, Anderson J, Haas JR (2016) Application of wildfire risk assessment results to wildfire response planning in the southern Sierra Nevada, California, USA. Forests 7(3):64

    Article  Google Scholar 

  • Thorne JH, Morgan BJ, Kennedy JA (2008) Vegetation change over sixty years in the Central Sierra Nevada, California, USA. Madrono 55:223–237

    Article  Google Scholar 

  • Touchan R, Swetnam TW, Grissino-Mayer HD (1995) Effects of livestock grazing on pre-settlement fire regimes in New Mexico. In: Brown JK, Mutch RW, Spoon CW, Wakimoto RH (eds) Proceedings: symposium on fire in wilderness and park management, Missoula, Montana, march 1993. USDA Forest Service Gen Tech Rep INT-320, Ogden, pp 268–272

    Google Scholar 

  • Tubbesing CL, Fry DL, Roller GB, Collins BM, Fedorova VA, Stephens SL, Battles JJ (2019) Strategically placed landscape fuel treatments decrease fire severity and promote recovery in the northern Sierra Nevada. For Ecol Manag 436:45–55

    Article  Google Scholar 

  • Tyler CM, Odion DC, Callaway RM (2007) Dynamics of woody species in the California grassland. In: Stromberg M, Corbin J, D’Antonio C (eds) California grasslands ecology and management. University of California Press, Berkeley, pp 169–179

    Google Scholar 

  • Underwood EC, Safford HD, Molinari NA, Keeley JE (2018) Valuing chaparral: ecological, socioeconomic, and management perspectives. Springer, Cham

    Book  Google Scholar 

  • USDA (2019) Inyo National Forest Land and resource management plan. USDA Forest Service, Pacific Southwest Region, Vallejo

    Google Scholar 

  • Valliere JM, Irvine IC, Santiago L, Allen EB (2017) High N, dry: experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought. Glob Chang Biol 23:4333–4345

    Article  PubMed  Google Scholar 

  • Van de Water KM, Safford HD (2011) A summary of fire frequency estimates for California vegetation before euro-American settlement. Fire Ecol 7:26–58

    Article  Google Scholar 

  • van Wagtendonk J (1995) Large fires in wilderness areas. In: Brown JK, Mutch RW, Spoon CW, Wakimoto RH (eds) Proceedings: symposium on fire and wilderness in park management, Missoula, Montana, march 1993. USDA Forest Service Gen Tech Rep INT-320, Ogden, pp 113–116

    Google Scholar 

  • van Wagtendonk JW, Cayan DR (2008) Temporal and spatial distribution of lightning strikes in California in relation to large-scale weather patterns. Fire Ecol 4:34–56

    Article  Google Scholar 

  • van Wagtendonk JW, Lutz JA (2007) Fire regime attributes of wildland fires in Yosemite National Park, USA. Fire Ecol 3(2):34–52

    Article  Google Scholar 

  • van Wagtendonk JW, van Wagtendonk KA, Those AE (2012) Factors associated with the severity of intersecting fires in Yosemite National Park, California, USA. Fire Ecol 8(1):11–31

    Article  Google Scholar 

  • van Wagtendonk JW, Fites-Kaufman JA, Safford HD, North MP, Collins B (2018a) Sierra Nevada bioregion. In: van Wagtendonk JW, Sugihara NG, Stephens SL, Thode AE, Shaffer KE, Fites-Kaufman J (eds) Fire in California’s ecosystems, 2nd edn. University of California Press, Berkeley, pp 249–278

    Chapter  Google Scholar 

  • van Wagtendonk JW, Sugihara NG, Stephens SL, Thode AE, Shaffer KE, Fites-Kaufman J (eds) (2018b) Fire in California’s ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Varner JM, Jules ES (2017) The enigmatic fire regime of coast redwood forests and why it matters. In: Standiford RB, Valachovic Y (eds) Coast redwood science symposium—2016: past successes and future direction. Proceedings of a workshop. USDA Forest Service Gen Tech Rep PSW-258, Albany, pp 15–18

    Google Scholar 

  • Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S, Mahy G, Negreiros D, Overbeck GE, Veldman RG, Zaloumis NP, Putz FE (2015) Toward an old-growth concept for grasslands, savannas, and woodlands. Front Ecol Environ 13(3):154–162

    Article  Google Scholar 

  • Wangler MJ, Minnich RA (1996) Fire and succession in pinyon-Juniper woodlands of the San Bernardino Mountains, California. Madrono 43:493–514

    Google Scholar 

  • Weixelman DA, Hill B, Cooper DJ, Berlow EL, Viers JH, Purdy SE, Merrill AG, Gross SE (2011) A field key to meadow hydrogeomorphic types for the Sierra Nevada and southern Cascade Ranges in California. USDA Forest Service Publ R5-TP-034, Vallejo, California

    Google Scholar 

  • Welch KR, Safford HD, Young TP (2016) Predicting conifer establishment post wildfire in mixed conifer forests of the North American mediterranean-climate zone. Ecosphere 7(12):e01609

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943

    Article  CAS  PubMed  Google Scholar 

  • White AM, Manley PN, Tarbill GL, Richardson TW, Russell RE, Safford HD, Dobrowski SZ (2015) Avian community responses to post-fire forest structure: implications for fire management in mixed conifer forests. Anim Conserv 19:256–264

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:280–338

    Article  Google Scholar 

  • Wigand PE (2017) Southwest North America. In: Earth systems and environmental sciences. Elsevier Scientific Publishing Company, New York

    Google Scholar 

  • Williams RE, Roundy BA, Hulet A, Miller RF, Tausch RJ, Chambers JC, Matthews J, Schooley R, Eggett D (2017) Pretreatment tree dominance and conifer removal treatments affect plant succession in sagebrush communities. Rangel Ecol Manag 70:759–773

    Article  Google Scholar 

  • Williams AP, Cook ER, Smerdon JE, Cook BI, Abatzoglou JT, Bolles K, Baek SH, Badger AM, Livneh B (2020) Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368:314–318

    Article  CAS  PubMed  Google Scholar 

  • Wills RD, Stuart JD (1994) Fire history and stand development of a Douglas fir hardwood forest in northern California. Northwest Sci 68(3):205–212

    Google Scholar 

  • Winford EM, Stevens JT, Safford HD (2015) Fuel treatment impacts on the ecology of yellow pine and mixed conifer forests: a synthesis. Calif Agric 69(3):150–156

    Article  Google Scholar 

  • Young DJ, Stevens JT, Earles JM, Moore J, Ellis A, Jirka AL, Latimer AM (2017) Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol Lett 20(1):78–86

    Article  PubMed  Google Scholar 

  • Young DJ, Meyer M, Estes B, Gross S, Wuenschel A, Restaino C, Safford HD (2020) Forest recovery following extreme drought in California, USA: natural patterns and effects of pre-drought management. Ecol Appl 30(1):e02002

    Article  PubMed  Google Scholar 

  • Zedler PH (1995) Fire frequency in southern California shrublands: biological effects and management options. In: Keeley JE, Scott T (eds) Brushfires in California wildlands: ecology and resource management. International Association of Wildland Fire, Fairfield, Washington, DC, pp 101–112

    Google Scholar 

  • Zedler PH, Gautier CR, McMaster GS (1983) Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64:809–818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh D. Safford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Safford, H.D. et al. (2021). Fire Ecology of the North American Mediterranean-Climate Zone. In: Greenberg, C.H., Collins, B. (eds) Fire Ecology and Management: Past, Present, and Future of US Forested Ecosystems. Managing Forest Ecosystems, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-73267-7_9

Download citation

Publish with us

Policies and ethics