Skip to main content

Portable Olfactometric Platform for Scent Tea Classification

  • Conference paper
  • First Online:
Hybrid Intelligent Systems (HIS 2020)

Abstract

Electronic Noses (ENs) are analytical systems whose operation is based on emulating the sense of smell of mammals and insects. ENs have demonstrated their effectiveness during the last two decades when used in the food and environmental industries. They have been used in tasks such as quality control, determination of contaminants, classification of products, to name a few. On the other hand, olfactometric systems can be used to evaluate the smell’s reaction to controlled stimulus. However, conventional olfactometric devices are meant to be used with biological systems. This work shows the results of the analysis of tea samples (dry commercial tea bags) carried out using a custom portable olfactometric platform to stimulate a custom EN system based on Metal Oxide Gas Sensors (MOGS) and an Artificial Neural Network (ANN). The obtained results show a classification accuracy greater than 80%, which denotes that the developed devices and experimental protocol are suitable for evaluating tea samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merriam-Webster.com dictionary. https://www.merriam-webster.com/dictionary/olfactometer. Accessed 21 Nov 2020

  2. Gardner, J.W., Bartlett, P.N.: A brief history of electronic noses. Sens. Actuators B Chem. 18, 210–211 (1994)

    Article  Google Scholar 

  3. Sankaran, S., Khot, L.R., Panigrahi, S.: Biology and applications of olfactory sensing system: a review. Sens. Actuators B Chem. 171–172, 1–17 (2012)

    Article  Google Scholar 

  4. Peris, M., Escuder-gilabert, L.: Electronic noses and tongues to assess food authenticity and adulteration. Trends Food Sci. Technol. 58, 40–54 (2016)

    Google Scholar 

  5. Valdez, L., Gutiérrez, J.M.: Portable olfactometric platform. In: Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), pp. 3–8. IEEE, Madrid, Spain (2016)

    Google Scholar 

  6. Reddy, G.V.P.: Plant volatiles mediate orientation and plant preference by the predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae). Biol. Control 25, 49–55 (2002)

    Article  Google Scholar 

  7. Adhikary, P., Mukherjee, A., Barik, A.: Role of surface wax alkanes from Lathyrus sativus L. seeds for attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 59, 113–119 (2014)

    Google Scholar 

  8. Vigouroux, M., Bertrand, B., Farget, V., Plailly, J., Royet, J.P.: A stimulation method using odors suitable for PET and fMRI studies with recording of physiological and behavioral signals. J. Neurosci. Methods 142, 35–44 (2005)

    Article  Google Scholar 

  9. Joly, M., Michel, B., Deputte, B., Verdier, J.M.: Odor discrimination assessment with an automated olfactometric method in a prosimian primate. Microcebus Murinus. Physiol. Behav. 82, 325–329 (2004)

    Article  Google Scholar 

  10. Sommer, J.U., Maboshe, W., Griebe, M., Heiser, C., Hörmann, K., Stuck, B.A., Hummel, T.: A mobile olfactometer for fMRI-studies. J. Neurosci. Methods 209, 189–194 (2012)

    Article  Google Scholar 

  11. Popp, R., Sommer, M., Müller, J., Hajak, G.: Olfactometry in fMRI studies: odor presentation using nasal continuous positive airway pressure. Acta Neurobiol. Exp. (Wars) 64, 171–176 (2004)

    Google Scholar 

  12. Gotow, N., Hoshi, A., Kobayakawa, T.: Expanded olfactometer for measuring reaction time to a target odor during background odor presentation. Heliyon 5, e01254 (2019)

    Article  Google Scholar 

  13. Tichy, H., Zeiner, R., Traunmüller, P., Martzok, A., Hellwig, M.: Developing and testing of an air dilution flow olfactometer with known rates of concentration change. J. Neurosci. Methods 341, 108794 (2020)

    Article  Google Scholar 

  14. Karunanayaka, K., Saadiah, H., Shahroom, H., David Cheok, A.: Methods to develop a low cost laboratory olfactometer for multisensory, psychology, and neuroscience experiments. In: Proceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society 2017-Jan, pp. 2882–2887 (2017)

    Google Scholar 

  15. Lundström, J.N., Gordon, A.R., Alden, E.C., Boesveldt, S., Albrecht, J.: Methods for building an inexpensive computer-controlled olfactometer for temporally-precise experiments. Int. J. Psychophysiol. 78, 179–189 (2010)

    Article  Google Scholar 

  16. Johnson, B.N., Sobel, N.: Methods for building an olfactometer with known concentration outcomes. J. Neurosci. Methods 160, 231–245 (2007)

    Article  Google Scholar 

  17. Jonsson, A., Winquist, F., Schnurer, J., Sundgren, H., Lundstrom, I.: Electronic nose for microbial quality classification of grains. Int. J. Food Microbiol. 35, 187–193 (1997)

    Article  Google Scholar 

  18. Ampuero, S., Bosset, J.O.: The electronic nose applied to dairy products: a review. Sens. Actuators B Chem. 94, 1–12 (2003)

    Article  Google Scholar 

  19. Lozano, J., Arroyo, T., Santos, J.P., Cabellos, J.M., Horrillo, M.C.: Electronic nose for wine ageing detection. Sens. Actuators B Chem. 133, 180–186 (2008)

    Article  Google Scholar 

  20. Chen, Q., Liu, A., Zhao, J., Ouyang, Q.: Classification of tea category using a portable electronic nose based on an odor imaging sensor array. J. Pharm. Biomed. Anal. 84, 77–83 (2013)

    Article  Google Scholar 

  21. Li, M., Wang, H., Sun, L., Zhao, G., Huang, X.: Application of electronic nose for measuring total volatile basic nitrogen and total viable counts in packaged pork during refrigerated storage. J. Food Sci. 81, M906–M912 (2016)

    Article  Google Scholar 

  22. Branciari, R., Valiani, A., Trabalza-Marinucci, M., Miraglia, D., Ranucci, D., Acuti, G., Esposto, S., Mughetti, L.: Consumer acceptability of ovine cheese from ewes fed extruded linseed-enriched diets. Small Rumin. Res. 106, S43–S48 (2012)

    Article  Google Scholar 

  23. Wang, Q., Jin, G., Jin, Y., Ma, M., Wang, N., Liu, C., He, L.: Discriminating eggs from different poultry species by fatty acids and volatiles profiling: comparison of SPME-GC/MS, electronic nose, and principal component analysis method. Eur. J. Lipid Sci. Technol. 116, 1044–1053 (2014)

    Article  Google Scholar 

  24. Lorenzen, P.C., Walte, H.G., Bosse, B.: Development of a method for butter type differentiation by electronic nose technology. Sens. Actuators B Chem. 181, 690–693 (2013)

    Article  Google Scholar 

  25. Huang, L., Liu, H., Zhang, B., Wu, D.: Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food Bioprocess Technol. 8, 359–370 (2015)

    Article  Google Scholar 

  26. Li, S., Ma, C., Liu, Z., Gong, G., Xu, Z., Xu, A., Hua, B.: Flavour analysis of stirred yoghurt with cheddar cheese adding into milk. Food Sci. Technol. Res. 20, 939–946 (2014)

    Google Scholar 

  27. Qu, G., Omotoso, M.M., Gamal El-Din, M., Feddes, J.J.R.: Development of an integrated sensor to measure odors. Environ. Monit. Assess. 144, 277–283 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Molina, J., Valdez, L.F., Gutiérrez, J.M. (2021). Portable Olfactometric Platform for Scent Tea Classification. In: Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, TP. (eds) Hybrid Intelligent Systems. HIS 2020. Advances in Intelligent Systems and Computing, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-73050-5_66

Download citation

Publish with us

Policies and ethics