Skip to main content

Mathematical Models of Morphogen Gradients and Growth Control

  • Chapter
  • First Online:
Systems Biology
  • 1276 Accesses

Abstract

Morphogen gradients provide positional information in many developing systems. Morphogens are diffusible molecules produced from localized sources; they diffuse through tissues and are cleared. The spatial concentration gradient of morphogen-receptor complexes induces spatially graded differences in cell signaling, which lead to different stable cell fates and visual tissue patterns during development. The formation of morphogen gradients is among the most fundamental biological processes during development, regeneration, and disease. In this chapter, we introduce mathematical models for the dynamics of morphogen gradients and methods to analyze morphogen gradients and the robustness of the steady state.

Science may be described as the art of systematic oversimplification.

—Karl Popper

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969)

    Article  Google Scholar 

  2. Wolpert, L.: Positional information and patterning revisited. J. Theor. Biol. 269, 359–365 (2011)

    Article  Google Scholar 

  3. Lander, A.D.: How cells know where they are. Science 339, 923–927 (2013)

    Article  Google Scholar 

  4. Briscoe, J., Small, S.: Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142, 3996–4009 (2015)

    Article  Google Scholar 

  5. Wartlick, O., Mumcu, P., Jülicher, F., Gonzalez-Gaitan, M.: Understanding morphogenetic growth control–lessons from flies. Nat. Rev. Mol. Cell Biol. 12, 594–604 (2011a)

    Article  Google Scholar 

  6. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lander, A.D.: Pattern, growth, and control. Cell 144, 955–969 (2011)

    Article  Google Scholar 

  8. Morelli, L.G.L., Uriu, K.K., Ares, S.S., Oates, A.C.A.: Computational approaches to developmental patterning. Science 336, 187–191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Maini, P.K., Woolley, T.E., Baker, R.E., Gaffney, E.A., Lee, S.S.: Turing’s model for biological pattern formation and the robustness problem. Interf. Focus 2, 487–496 (2012)

    Article  Google Scholar 

  10. Umulis, D.M., Othmer, H.G.: The role of mathematical models in understanding pattern formation in developmental biology. Bull. Math. Biol. 77, 817–845 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wartlick, O., Kicheva, A., González-Gaitán, M.: Morphogen gradient formation. Cold Spring Harb. Perspect. Biol. 1, a001255–a001255 (2009)

    Article  Google Scholar 

  12. Wolpert, L., Tickle, C.: Principles of Development. Academic Press, Oxford (2010)

    Google Scholar 

  13. Dessaud, E., Ribes, V., Balaskas, N., Yang, L.L., Pierani, A., Kicheva, A., Novitch, B.G., Briscoe, J., Sasai, N.: Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog. PLoS Biol. 8, (2010)

    Google Scholar 

  14. Smith, J.: Forming and interpreting gradients in the early Xenopus embryo. Cold Spring Harb Perspect Biol 1, (2009)

    Google Scholar 

  15. Smith, J., Hagemann, A., Saka, Y., Williams, P.: Understanding how morphogens work. Philos. Trans. R. Soc. London B Biol. Sci. 363, 1387–1392 (2008)

    Google Scholar 

  16. Kam, R.K.T., Deng, Y., Chen, Y., Zhao, H.: Retinoic acid synthesis and functions in early embryonic development. Cell Biosci. 2, 11 (2012)

    Article  Google Scholar 

  17. Affolter, M., Basler, K.: The decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat. Rev. Genet. 8, 663–674 (2007)

    Article  Google Scholar 

  18. Nellen, D., Burke, R., Struhl, G., Basler, K.: Direct and long-range action of a Dpp morphogen gradient. Cell 85, 357–368 (1996)

    Article  Google Scholar 

  19. Teleman, A.A., Cohen, S.M.: Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000)

    Article  Google Scholar 

  20. Theisen, H., Syed, A., Nguyen, B.T., Lukacsovich, T., Purcell, J., Srivastava, G.P., Iron, D., Gaudenz, K., Nie, Q., Wan, F.Y.M., Waterman, M.L., Marsh, J.L.: Wingless directly represses DPP morphogen expression via an Armadillo/TCF/Brinker complex. PLoS ONE 2, e142–e510 (2007)

    Article  Google Scholar 

  21. Gurdon, J.B., Bourillot, P.Y.: Morphogen gradient interpretation. Nature 413, 797–803 (2001)

    Article  Google Scholar 

  22. Tabata, T.: Genetics of morphogen gradients. Nat. Rev. Genet. 2, 620–630 (2001)

    Article  Google Scholar 

  23. Kicheva, A., González-Gaitán, M.: The decapentaplegic morphogen gradient: a precise definition. Curr. Opinion Cell Biol. 20, 137–143 (2008)

    Article  Google Scholar 

  24. Crozatier, M., Glise, B., Vincent, A.: Patterns in evolution: veins of the Drosophila wing. Trends Genet. 20, 498–505 (2004)

    Article  Google Scholar 

  25. Zecca, M., Basler, K., Struhl, G.: Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121, 2265–2278 (1995)

    Article  Google Scholar 

  26. Nellen, D., Affolter, M., Basler, K.: Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell 78, 225–237 (1994)

    Article  Google Scholar 

  27. Schwank, G., Dalessi, S., Yang, S.-F., Yagi, R., de Lachapelle, A.M., Affolter, M., Bergmann, S., Basler, K.: Formation of the long range Dpp morphogen gradient. PLoS Biol. 9, (2011)

    Google Scholar 

  28. Lei, J., Lo, W.-C., Nie, Q.: Mathematical models of morphogen dynamics and growth control. Annals Math Sci. Appl. 1, 427–471 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Entchev, E.V., Schwabedissen, A., González-Gaitán, M.: Gradient formation of the TGF-beta homolog Dpp. Cell 103, 981–991 (2000)

    Article  Google Scholar 

  30. Lander, A.D., Nie, Q., Wan, F.Y.M.: Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002)

    Article  Google Scholar 

  31. Lander, A., Nie, Q., Wan, F.: Spatially distributed morphogen production and morphogen gradient formation. Math. Biosci. Eng 2, 239–262 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lander, A., Wan, F., Elledge, H., Mizutani, C., Bier, E., Nie, Q.: (2005b). Diverse paths to morphogen gradient robustness. submitted for publicaiton

    Google Scholar 

  33. Bollenbach, T., Pantazis, P., Kicheva, A., Bokel, C., Gonzalez-Gaitan, M., Julicher, F.: Precision of the Dpp gradient. Development 135, 1137–1146 (2008)

    Google Scholar 

  34. Kicheva, A., Pantazis, P., Bollenbach, T., Kalaidzidis, Y., Bittig, T., Jülicher, F., González-Gaitán, M.: Kinetics of morphogen gradient formation. Science 315, 521–525 (2007)

    Article  Google Scholar 

  35. Sattinger, D.H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21, 979–1000 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lei, J., Wan, F.Y.M., Lander, A., Nie, Q.: Robustness of signaling gradient in drosophila wing imaginal disc. Discrete Contin. Dyn. Syst. B 16, 835–866 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Lou, Y., Nie, Q., Wan, F.Y.M.: Nonlinear Eigenvalue problems in the stability analysis of morphogen gradients. Studies Appl. Math. 113, 183–215 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lou, Y., Nie, Q., Wan, F.Y.M.: Effects of Sog on Dpp-receptor binding. SIAM J. Appl. Math. 65, 1748–1771 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vergas, B.: Leaky boundaries and morphogen gradietns. PhD thesis, Department of Mathematics, University of California, Irvine (2006)

    Google Scholar 

  40. Eldar, A., Rosin, D., Shilo, B.-Z., Barkai, N.: Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell 5, 635–646 (2003)

    Article  Google Scholar 

  41. Akiyama, S., Takahashi, S., Kimura, T., Ishimori, K., Morishima, I., Nishikawa, Y., Fujisawa, T.: Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering. Proc. Natl. Acad. Sci. USA 99, 1329–1334 (2002)

    Article  Google Scholar 

  42. Belenkaya, T.Y., Han, C., Yan, D., Opoka, R.J., Khodoun, M., Liu, H., Lin, X.: Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119, 231–244 (2004)

    Article  Google Scholar 

  43. Häcker, U., Nybakken, K., Perrimon, N.: Heparan sulphate proteoglycans: the sweet side of development. Nat. Rev. Mol. Cell Biol. 6, 530–541 (2005)

    Article  Google Scholar 

  44. Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, S.B.: Spatial regulation of wingless morphogen distribution and signaling by Dally-like protein. Dev. Cell 7, 513–523 (2004)

    Article  Google Scholar 

  45. The, I., Bellaiche, Y., Perrimon, N.: Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633–639 (1999)

    Article  Google Scholar 

  46. Yan, D., Lin, X.: Shaping morphogen gradients by proteoglycans. Cold Spring Harb Perspect. Biol. 1, a002493–a002493 (2009)

    Article  Google Scholar 

  47. Kirkpatrick, C.A., Selleck, S.B.: Heparan sulfate proteoglycans at a glance. J. Cell Sci. 120, 1829–1832 (2007)

    Article  Google Scholar 

  48. Lin, X.: Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131, 6009–6021 (2004)

    Article  Google Scholar 

  49. Matsuo, I., Kimura-Yoshida, C.: Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis. Philos. Trans. R. Soc. London B Biol. Sci. 369, 20130545 (2014)

    Google Scholar 

  50. Lander, A.D., Nie, Q., Wan, F.Y.M.: Membrane-associated non-receptors and morphogen gradients. Bull. Math. Biol. 69, 33–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lei, J., Song, Y.: Mathematical model of the formation of morphogen gradients through membrane-associated non-receptors. Bull. Math. Biol. 72, 805–829 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lei, J.: Mathematical model of the Dpp gradient formation in drosophila wing imaginal disc. Chinese Sci. Bull. 55, 984–991 (2010)

    Article  Google Scholar 

  53. Lei, J., Wang, D., Song, Y., Nie, Q., Wan, F.Y.M.: Robustness of Morphogen gradients with "bucket brigade" transport through membrane-associated non-receptors. Discrete Contin. Dyn. Syst. B 18, 721–739 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Mizutani, C.M., Nie, Q., Wan, F.Y., Zhang, Y.-T., Vilmos, P., Sousa-Neves, R., Bier, E., Marsh, J.L., Lander, A.D.: Formation of the BMP activity gradient in the Drosophila embryo. Dev. Cell 8, 915–924 (2005)

    Article  Google Scholar 

  55. Shimmi, O., Umulis, D., Othmer, H., Oconnor, M.: Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the blastoderm embryo. Cell 120, 873–886 (2005)

    Article  Google Scholar 

  56. Zhang, Y.-T., Lander, A.D., Nie, Q.: Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo. J. Theor. Biol. 248, 579–589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Bollenbach, T., Kruse, K., Pantazis, P., González-Gaitán, M., Jülicher, F.: Robust formation of morphogen gradients. Phys. Rev. Lett. 94, 4 (2005)

    Google Scholar 

  58. Bollenbach, T., Kruse, K., Pantazis, P., González-Gaitán, M., Jülicher, F.: Morphogen transport in epithelia. Phys. Rev. E 75, 16 (2007)

    Google Scholar 

  59. Pfeiffer, S., Vincent, J.-P.: Signalling at a distance: transport of wingless in the embryonic epidermis of Drosophila. Semin. Cell Dev. Biol. 10, 303–309 (1999)

    Article  Google Scholar 

  60. Kerszberg, M., Wolpert, L.: Mechanisms for positional signalling by morphogen transport: a theoretical study. J. Theor. Biol. 191, 103–114 (1998)

    Article  Google Scholar 

  61. Zhou, S., Zhou, S.S., Lo, W.-C.W., Lo, W.-C., Suhalim, J.L.J., Suhalim, J.L., Digman, M.A.M., Digman, M.A., Gratton, E.E., Gratton, E., Nie, Q.Q., Nie, Q., Lander, A.D.A., Lander, A.D.: Free extracellular diffusion creates the Dpp morphogen gradient of the Drosophila wing disc. Curr. Biol. 22, 668–675 (2012)

    Article  Google Scholar 

  62. Bergmann, S., Sandler, O., Sberro, H., Shnider, S., Schejter, E., Shilo, B.-Z., Barkai, N.: Pre-steady-state decoding of the bicoid morphogen gradient. PLoS Biol. 5, (2007)

    Google Scholar 

  63. Richards, D.M., Saunders, T.E.: Spatiotemporal analysis of different mechanisms for interpreting morphogen gradients. Biophy. J. 108, 2061–2073 (2015)

    Article  Google Scholar 

  64. Wartlick, O., Mumcu, P., Jülicher, F., Gonaález-Gaitán, M.: Response to comment on dynamics of Dpp signaling and proliferation control. Science 335, 401 (2012)

    Google Scholar 

  65. McHale, P., Rappel, W.-J., Levine, H.: Embryonic pattern scaling achieved by oppositely directed morphogen gradients. Phys. Biol. 3, 107–120 (2006)

    Article  Google Scholar 

  66. Morishita, Y., Iwasa, Y.: Optimal placement of multiple morphogen sources. Phys. Rev. E 77, (2008)

    Google Scholar 

  67. Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.-Z., Barkai, N.: Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–8 (2002)

    Article  Google Scholar 

  68. Shilo, B.-Z., Haskel-Ittah, M., Ben-Zvi, D., Schejter, E.D., Barkai, N.: Creating gradients by morphogen shuttling. Trends Genet. 29, 339–347 (2013)

    Article  Google Scholar 

  69. Félix, M.-A., Barkoulas, M.: Pervasive robustness in biological systems. Nat. Rev. Genet. 16, 483–496 (2015)

    Article  Google Scholar 

  70. Lander, A.D., Lo, W.-C., Nie, Q., Wan, F.Y.M.: The measure of success: constraints, objectives, and tradeoffs in morphogen-mediated patterning. Cold Spring Harb. Perspect. Biol. 1, a002022–a002022 (2009b)

    Article  Google Scholar 

  71. Umulis, D., O’Connor, M.B., Othmer, H.G.: Robustness of embryonic spatial patterning in Drosophila melanogaster. Curr. Top Dev. Biol. 81, 65–111 (2008)

    Article  Google Scholar 

  72. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000)

    Article  Google Scholar 

  73. von Dassow, G., Odell, G.M.: Design and constraints of theDrosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. J. Exp. Zool. 294, 179–215 (2002)

    Article  Google Scholar 

  74. Lander, A.D.: Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256 (2007)

    Article  Google Scholar 

  75. Lo, W.-C., Zhou, S., Wan, F.Y.M., Lander, A.D., Nie, Q.: Robust and precise morphogen-mediated patterning: trade-offs, constraints and mechanisms. J. R. Soc. Interf. 12, 20141041 (2015)

    Google Scholar 

  76. Morimura, S., Maves, L., Chen, Y., Hoffmann, F.M.: decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression. Dev. Biol. 177, 136–151 (1996)

    Article  Google Scholar 

  77. White, R., Nie, Q., Lander, A.D., Schilling, T.: Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol. 5, (2007)

    Google Scholar 

  78. Emberly, E.: Optimizing the readout of morphogen gradients. Phys. Rev. E 77, (2008)

    Google Scholar 

  79. Houchmandzadeh, B., Wieschaus, E., Leibler, S.: Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802 (2002)

    Article  Google Scholar 

  80. Gregor, T., Tank, D.W., Wieschaus, E.F., Bialek, W.: Probing the limits to positional information. Cell 130, 153–164 (2007)

    Article  Google Scholar 

  81. Tostevin, F., ten Wold, P.R., Howard, M.: Fundamental limits to position determination by concentration gradients. PLoS Comput. Biol. 3, (2007)

    Google Scholar 

  82. He, F., Ren, J., Wang, W., Ma, J.: Evaluating the Drosophila bicoid morphogen gradient system through dissecting the noise in transcriptional bursts. Bioinformatics 28, 970–975 (2012)

    Article  Google Scholar 

  83. Holloway, D.M., Lopes, F.J.P., da Fontoura Costa, L., Travençolo, B.A.N., Golyandina, N., Usevich, K., Spirov, A.V.: Gene expression noise in spatial patterning: hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation. PLoS Comput. Biol. 7, e1001069–e1001069 (2010)

    Google Scholar 

  84. Zhang, L., Radtke, K., Zheng, L., Cai, A.Q., Schilling, T.F., Nie, Q.: Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain. Mol. Syst. Biol. 8, 613 (2012)

    Google Scholar 

  85. Reeves, G.T., Fraser, S.E.: Biological systems from an engineer’s point of view. PLoS Biol. 7, e21–e21 (2009)

    Article  Google Scholar 

  86. Lopes, F.J.P., Vieira, F.M.C., Holloway, D.M., Bisch, P.M., Spirov, A.V.: Spatial bistability generates hunchback expression sharpness in the Drosophila embryo. PLoS Comput. Biol. 4, (2008)

    Google Scholar 

  87. Akiyama, T., Kamimura, K., Firkus, C., Takeo, S., Shimmi, O., Nakato, H.: Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Dev. Biol. 313, 408–419 (2008)

    Article  Google Scholar 

  88. Kushner, T., Simonyan, A., Wan, F.Y.M.: A new approach to feedback for robust signaling gradients. Studies Appl. Math. 133, 18–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  89. Simonyan, A., Wan, F.Y.: Transient feedback and robust signaling gradients. Int. J. Numer. Anal. Model. 13, 179–204 (2016)

    MathSciNet  MATH  Google Scholar 

  90. Buchmann, A., Alber, M., Zartman, J.J.: Sizing it up: the mechanical feedback hypothesis of organ growth regulation. Semin. Cell Dev. Biol. 35, 73–81 (2014)

    Article  Google Scholar 

  91. Day, S.J., Lawrence, P., a.: Measuring dimensions: the regulation of size and shape. Development 127, 2977–2987 (2000)

    Google Scholar 

  92. Schwank, G., Basler, K.: Regulation of organ growth by morphogen gradients. Cold Spring Harb. Perspect. Biol. 2, (2010)

    Google Scholar 

  93. Lawrence, P.A., Morata, G.: The early development of mesothoracic compartments in Drosophila. An analysis of cell lineage and fate mapping and an assessment of methods. Dev. Biol. 56, 40–51 (1977)

    Google Scholar 

  94. Martin, F.A., Morata, G.: Compartments and the control of growth in the Drosophila wing imaginal disc. Development 133, 4421–4426 (2006)

    Article  Google Scholar 

  95. Averbukh, I., Ben-Zvi, D., Mishra, S., Barkai, N.: Scaling morphogen gradients during tissue growth by a cell division rule. Development 141, 2150–2156 (2014)

    Article  Google Scholar 

  96. Wartlick, O., Mumcu, P., Kicheva, A., Bittig, T., Seum, C., Jülicher, F., González-Gaitán, M.: Dynamics of Dpp signaling and proliferation control. Science 331, 1154–1159 (2011b)

    Article  Google Scholar 

  97. Rogulja, D., Irvine, K.D.: Regulation of cell proliferation by a morphogen gradient. Cell 123, 449–461 (2005)

    Article  Google Scholar 

  98. Aegerter-Wilmsen, T., Aegerter, C.M., Hafen, E., Basler, K.: Model for the regulation of size in the wing imaginal disc of Drosophila. Mech. Dev. 124, 318–326 (2007)

    Article  Google Scholar 

  99. Aegerter-Wilmsen, T., Heimlicher, M.B., Smith, a. C., de Reuille, P. B., Smith, R. S., Aegerter, C. M. and Basler, K.: Integrating force-sensing and signaling pathways in a model for the regulation of wing imaginal disc size. J. Cell Sci. 125, 3221–31 (2012)

    Google Scholar 

  100. Shraiman, B.I.: Mechanical feedback as a possible regulator of tissue growth. Proc. Natl. Acad. Sci. USA 102, 3318–23 (2005)

    Article  Google Scholar 

  101. Gregor, T., Bialek, W., de Ruyter van Steveninck, R.R., Tank, D.W., Wieschaus, E.F.: Diffusion and scaling during early embryonic pattern formation. Proc Natl Acad Sci USA 102, 18403–18407 (2005)

    Google Scholar 

  102. Lauschke, V.M., Tsiairis, C.D., Francois, P., Aulehla, A.: Scaling of embryonic patterning based on phase-gradient encoding. Nature 493, 101–105 (2013)

    Article  Google Scholar 

  103. Umulis, D.M., Shimmi, O., O’Connor, M.B., Othmer, H.G.: Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. Dev. Cell 18, 260–274 (2010)

    Article  Google Scholar 

  104. Umulis, D.M., Othmer, H.G.: Mechanisms of scaling in pattern formation. Development 140, 4830–43 (2013)

    Article  Google Scholar 

  105. Othmer, H.G., Pate, E.: Scale-invariance in reaction-diffusion models of spatial pattern formation. Proc. Natl. Acad. Sci. USA 77, 4180–4184 (1980)

    Article  Google Scholar 

  106. Crampin, E.J., Gaffney, E., a. and Maini, P. K., : Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120 (1999)

    Google Scholar 

  107. Fried, P., Iber, D.: Dynamic scaling of morphogen gradients on growing domains. Nat. Commun. 5, 5077–77 (2013)

    Article  Google Scholar 

  108. Freeman, M.: Morphogen gradients, in theory. Dev. Cell 2, 689–690 (2002)

    Article  Google Scholar 

  109. Shvartsman, S.Y., Baker, R.E.: Mathematical models of morphogen gradients and their effects on gene expression. Dev. Biol. 1, 715–730 (2012)

    Google Scholar 

  110. Buttitta, L., a., Edgar, B. a.: How size is controlled: from Hippos to Yorkies. Nat. Cell Biol. 9, 1225–1227 (2007)

    Google Scholar 

  111. Cho, E., Irvine, K.D.: Action of fat, four-jointed, dachsous and dachs in distal-to-proximal wing signaling. Development 131, 4489–4500 (2004)

    Article  Google Scholar 

  112. Thompson, B.J., Cohen, S.M.: The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 (2006)

    Article  Google Scholar 

  113. Hardway, H., Mukhopadhyay, B., Burke, T., Hichman, T.J., Forman, R.: Modeling the precision and robustness of hunchback border during drosophila embryonic development. J. Theor. Biol. 254, 390–9 (2008)

    Article  MATH  Google Scholar 

  114. Umulis, D.M., Othmer, H.G.: The importance of geometry in mathematical models of developing systems. Curr. Opinion Genet. Dev. 22, 547–52 (2012)

    Article  Google Scholar 

  115. Arias, A.M., Hayward, P.: Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7, 34–44 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhi Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, J. (2021). Mathematical Models of Morphogen Gradients and Growth Control. In: Systems Biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-73033-8_7

Download citation

Publish with us

Policies and ethics