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Abstract. This paper presents amethod for online vibration analysis and a simple
test bench analogue for the solder pumping system in an industrial wave-soldering
machine at a Siemens factory. A common machine fault is caused by solder build-
up within the pipes of the machine. This leads to a pressure drop in the system,
which is replicated in the test bench by restricting the flow of water using a
gate valve. The pump’s vibrational response is recorded using an accelerometer.
The captured data is passed through an online Bayesian Changepoint Detection
algorithm, adapted from existing literature, to detect the point at which the change
in flow rate affects the pump, and thus the PCB assembly capability of themachine.
This information can be used to trigger machine maintenance operations, or to
isolate the vibrational response indicative of the machine fault.

Keywords: Predictive maintenance · Bayesian changepoint detection ·
Industrial application

1 Introduction

This paper is a follow up to an offline fault detection algorithm applied to the presented
machine use case [1]. It describes an online, non-disruptive technique to detect amachine
fault in a wave-soldering machine in Printed Circuit Board (PCB) manufacturing. This
machine works by maintaining a constant flow of solder in the form of a set wave
height, over which PCBs are passed in order to connect large numbers of through-hole
components efficiently. The fault in question is solder build-up in the machine pipes,
which was considered the most common recurring machine fault in the wave-soldering
process by Siemens Congleton. As time passes there is a buildup of solder dross in the
pipes, which leads to a pressure drop and reduced solder flow rate. Due to the resultant
reduced solder wave height, PCBs passing over the wave are left unsoldered, needing
repairs and touch ups. The response to these is manual adjustment of the wave height
by increasing the pump power. This can be performed a set number of times before full
machine maintenance is performed. This process is reactive and repeated on a weekly to
monthly basis depending on the solder quality and machine uptime. The project brief set
by Siemens requires a non-disruptive and low-cost solution to monitor the machine. The
goal is to improve the fault detection rate and reduce the number of unsoldered products.
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Awareness of a machine’s state at any given time is valuable for making predictive
maintenance decisions. Costly maintenance and machine downtime can be minimized
effectively by implementing early and accurate fault detection [2]. This is particularly
valuable during the current push towards Industry 4.0 (I4.0) [3] and is enabled by the
increased prevalence of Industrial Internet of Things (IIoTs) allowing for a greater ability
of factories to gather and process machine data [4]. However, the financial and time
costs of directly replacing and upgrading machines can dissuade a lot of companies
from investing in these technologies. As such, a “wrap and re-use” approach is generally
taken instead [5]. This concept of minimal disruption to existing machine setups and
production lines, alongside the extraction of new data, without machine downtime is a
key motivator for this paper and the proposed methodology.

Due to its age and the hostile internal environment, the wave-soldering machine use
case presented in this paper is significantly limited in the usable data that can be collected
from it. As such, pump vibrations are used for the vibration analysis in this paper as
access to other components is effectively impossible. Pump vibration monitoring is
not unique, and many examples can be found in literature [6, 7]. Techniques include
comparing recorded pump vibrations against a model of the expected vibrations [8] and
using pump vibrations to predict cavitation by training an Artificial Neural Network
(ANN) [9]. Similarly, time-frequency analysis of vibrations have been used to diagnose
wear in pump valve plates [10]. These analyses can notifying operators when pump
maintenance needs to take place.in a timely manner, and are particularly effective at
detecting issues such as cavitation, resonance and misaligned or warped components.

However, pump vibration analysis is not (to the author’s knowledge) used to monitor
general system health and predict faults that occur outside of the pump itself. This is
largely assessed using pipe vibrations [11, 12], which can provide insights into general
system performance, or be used to locate discrete blockages downstream of pumps [13].
In the motivating scenario, access to the pipes is unavailable, and solder build-up does
not form a localized blockage. Any solution needs to have low complexity so that it
can be implemented on a low-cost microcontroller. Additionally, there is no pre-existing
vibration data with which to establish baseline readings.

This paper uses online sequential Bayesian Changepoint Detection (BCD) based on
an existing algorithm [14] and assesses its suitability on a test bench. The use case fault
can be presented as an unsupervised segmentation problem as the machine transitions
from a functional to a non-functional state. BCD is particularly suitable for this type of
problem [15]. It provides a measurement of the probability that, based on the collected
information, a change in behaviour has occurred at a certain point [16, 17]. This can then
directly notify machine operators of the change in machine state, or be used to isolate the
vibrational response of the pump at the point where the solder build-up is affecting the
flow rate. In rare cases where the deterioration of the pipe state is instantaneous rather
than gradual (such as in the case of seal failure), the change in vibrational response
will still be able to inform machine operators of the need for maintenance. Successful
applications in literature include the assessment of climate records to locate changepoints
in climate regimes [17], detecting faults and failures in valves in an Unmanned Aerial
Vehicle (UAV) fuel system [18], and detecting changes in the behaviour of a user of a text-
messaging service [16].Online applications ofBCDare used to process live data [19] and
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Fig. 1. Wave SolderingMachine process diagram. Dotted arrows represent the movement of data.
Solid arrows represent themovement of physical parts. The green box represents the non-disruptive
paper contribution. (Color figure online)

predict the likelihood of newly recorded data being part of a “current run” between two
changepoints. BCD has also been used for online signal segmentation of epileptic brain
activity [20] as well as activity recognition in a home [21]. The variety of applications
demonstrates the flexibility of BCD. Alongside the number of changepoints, BCD can
also provide an indication of the size of the changes [17], which can highlight significant
events. The computational cost of this approach increases as the number of time steps
increase, although this can be managed by implementing a maximum length of time
for assessment, and storing and reusing previous calculations [14]. Another drawback
of this approach is a sensitivity to the prior distribution assigned to the changepoints
present in the system.

2 Methodology

The research methodology as illustrated in Fig. 1 aims to use data analytics for improved
process control inwave soldering. The data analytics approach is based on non-disruptive
data extraction and processing using online sequential Bayesian Changepoint Detection.
A test bench setup has been developed to replicate the wave-soldering machine behavior
as the industrial machine and environment is not suitable for development. To keep it
manageable in a laboratory environment, water is used instead of solder. The difference
between the vibrational characteristics of water and solder should not affect the results of
the BCD so long as the deterioration of the pipe leads to a change in measured vibrations
that the BCD can detect. The experimental set-up and data collection are discussed in
Sects. 2.1 and 2.2. As this is virtually identical setup to the setup presented in [1], these
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sections will largely remain as presented in that earlier work. The BCD formulation is
discussed in Sect. 2.3.

2.1 Test Bench Setup

The test bench presented in this paper considers the behaviour of a pump moving water
through a closed system. The flow rate is controlled by a gate valve, which is closed
in discrete increments and goes from completely open to completely closed. It mimics
the effects of solder dross build up in a wave soldering machine, which takes place over
several weeks. As such, the steady state behaviour of the pump is themost relevant to this
investigation. The schematic for this can be seen in Fig. 2, with a photo of the realised
test bench in Fig. 3.

Accelerometer

Pump

Valve

Water Tank

Flowmeter

Processor

Fig. 2. Test bench schematic

Fig. 3. Test bench photo.Yellow: gate valve; blue: pump and accelerometer; red: flowmeter (Color
figure online)

As the valve is closed, the change in the fluid’s flow rate is monitored using the flow
rate sensor YF-S201, connected to an Arduino. The vibration of the pump is recorded,
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using an accelerometer (LSM9DS1), at each increment to build up its response profile.
This data is then processed at a Raspberry Pi 3B, and the results can be displayed in real
time or uploaded to online networks, including any available IIoTs.

2.2 Data Collection from the Test Bench

The change in flowrate as the valve is closed is shown in Fig. 4. There is a small drop
in the flow rate until the valve is approximately 70% before a transition period, and an
almost linear drop to no flow from approximately 80% closed onwards. The minimal
initial change is a result of the lowflow rates used in this experiment. Pump vibrations are
recorded with a sampling rate of 350 Hz. Each collected sample is 10,000 data points in
size. The accelerometer has a range of±2 g, a sensitivity of 0.061 mg/LSB, and collects
samples in the X, Y and Z axis. This is then converted into the absolute acceleration.

Fig. 4. Flow rate vs. valve closure

A fast Fourier transform (FFT) algorithm is used to extract the frequency and ampli-
tude data from the vibrations [6]. Figures 5 and 6 show the results of the FFT on the
vibration data recorded from an open and shut valve respectively. The difference between
the two is clearly visible, as the peak frequency shifts to the left. Additionally, it is clear
that a lot of noise is present in the system – as would be present in an industrial setting.
The solder in the use case might result in different vibrational characteristics. Despite
this, the solder blockage should still result in a change in the recorded vibrations over
time, which can be detected by the BCD algorithm. This is a significant benefit of the
proposed methodology: as long as the input changes in a way that can be detected, the
BCD algorithm will be able to assess the probability that a changepoint has occurred at
a given point in time. This reduces the need for calibration procedures, which can be
expensive and time consuming.
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Fig. 5. FFT of pump vibrations while valve is open

Fig. 6. FFT of pump vibrations while valve is closed

2.3 Online Bayesian Changepoint Detection

Figure 7 presents some of the pump data gathered by the accelerometer. Analysis of the
time-domain vibration data has shown that it is not suitable for the analysis – it does
not vary significantly enough across the different valve states to be a useful feature for
predicting the current state. The mean of the amplitude of the time-domain data is shown
to remain roughly constant throughout. However, the plotted features extracted from the
FFT (peak frequency and maximum amplitude) can be seen to respond to the change in
valve state. As such, these are the features used in the BCD algorithm presented.

The algorithm is based on a simplified version of the sequential BCD algorithm
described in [14], modified to detect a single changepoint in the datasets used. The
simplified equations are presented below, and [14] should be referenced for additional
detail and an extended version of this algorithm. As the algorithm processes the peak
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Fig. 7. Data extraction from recorded pump vibrations

frequencies and maximum amplitudes in the same way, the following example will be
presented for only the amplitude. An initial assumption is made about the data model: in
this case, a linear regressionmodel is used to predict the distribution of the data. Notably,
other models can be used, depending on experience with the data.

A =
∑m

l=1
βlVl + ε (1)

Equation (1) presents the linear regressionmodel used to represent the data gathered,
where A is the amplitude of the pump vibrations and Vl is the level of valve closure. β l

is the lth regression coefficient and ε is the random error term. The assumptions made
about β and ε are the same as in [14], with the same conjugate priors assigned here for
both.

f
(
Ai:j

) = f
(
Ai:j|V

)
(2)

Assuming that this regression model applies to the data between the start of the
dataset up until the changepoint, and from the changepoint to the end of the dataset, for
each possible subset of the data i:j, the probability of the data given the regression model
is calculated using Eq. (2) and stored.

P1
(
A1:j

) =
∑j−1

v=1
f (A1:v)f (Av+1:j) (3)

In Eq. (3), the probability density of the first j data points containing the changepoint
is calculated and stored. Starting at the beginning of the time series, two non-overlapping
subsets of data (assumed to be independent as per [22]) are pieced together. By mul-
tiplying together the probabilities of the two subsets (calculated in (2)) and summing
over all of the placements of the changepoint, the probability density of the data can be
calculated.
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The final quantity that needs to be specified is the prior distribution of the location
of the changepoint. By using an uninformative prior distribution which assumes that
the location of the changepoint is equally likely at any datapoint, bias in the algorithm
can be avoided. From here, sampling from within the distributions defined above can be
performed to ascertain the location of the changepoint and the regression parameters for
the subsets of data either side of it.

This is extended in [14] to search for additional changepoints up to a defined max-
imum number of changepoints kmax . This is outside of the scope of this paper, but is
achieved by extending Eq. (3) such that the term f(A1:v) contains k-1 changepoints when
calculating the probability of the location of the kth changepoint. The prior distribution
for the number of changepoints is specified, and sampling for changepoints between 0
and kmax takes places before sampling for the locations of the change ponts. Additional
tuning can be done based on the values of the linear regression model used, as described
in [14, 17]. A minimum distance between changepoints can also be specified.

The described algorithm will locate a changepoint in a single set of data of a set
length. To expand it efficiently to process incoming data points, the matrices storing the
results of Eqs. (2) and (3) are expanded. New rows and columns are added to hold the
new probabilities calculated for each newly generated subset of data (by Eq. (2)). A new
column is added for the new probability density P1(A1:N ) where N is the most recently
added datapoint. The full implementation details can be found in [14].

3 Results and Discussion

Figure 4 shows that the flow rate reduction as a result of the valve closure is minimal
until the valve is approximately 70% shut. A short transition period can then be seen
until the valve is about 80% shut. The flow rate reduction from that point on is nearly
linear until it reaches 0 l/s. During the experiment, a total of 260 pump vibration samples
were collected as the valve went from completely open to completely closed.

Figure 8 plots the extracted amplitudes at against the resultant posterior probability of
the changepoint’s location as calculated by the algorithm. It suggests that a changepoint
has taken place as the valve is 70% closed and shows a high certainty over a small area.
This corresponds with the start of the transitional flow rate period in Fig. 4. A plot of
the linear model inferred by the algorithm can also be seen in green in Fig. 8. It follows
the collected data quite closely up until the last few readings. Had there been additional
samples collected afterwards, the algorithm would have adjusted the inferred model to
better match the data.

Performing the same analysis on the peak frequencies gives the results plotted in
Fig. 9. In this case, the changepoint is detected later, when the valve is approximated
80% closed, and the posterior probability is lower and spread over a larger area. It
corresponds more closely with the end of the transitional period of flow rate noted in
Fig. 4. The inferred model follows the extracted frequencies very closely.

Plotting the posterior probabilities of the changepoint as calculated from the ampli-
tude and frequencies extracted from the pump vibrations against the flow rate produced
by the pump as the valve is closed produces Fig. 10. By applying this algorithm to the two
different sources of data extracted from the pump vibrations, it has been demonstrated
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Fig. 8. Predicted changepoint based on extracted amplitudes. The inferred linear model is
represented in green. (Color figure online)

Fig. 9. Predicted changepoint based on extracted frequencies. The inferred linear model is
represented in green. (Color figure online)

that the state of this system can be assessed by the vibrational response of the pump.
Using the amplitude leads to an earlier detection of a changepoint, which is valuable in
processes sensitive to changes in the monitored parameters. The frequency leads to a
later detection of the changepoint, more valuable in processes that do not require imme-
diate maintenance or are less sensitive to changes. The wave soldering machine use case
presented in this paper falls into the former category and benefits from early detection
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of a change in flow rate so that maintenance can be performed before faulty products
are released.

Flow Rate
Change Point – Amplitude
Change Point – Frequency 

1

0.8

0.6

0.4

0.2

0

Fig. 10. Predicted changepoints plotted against the flow rate

4 Conclusions

Presented in this paper is an online BCD algorithm adapted from existing literature and
applied to an industrial use case. A test bench analogue is used to simulate pipe blockage
due to solder build-up in awave-solderingmachine. The pipe state is indirectlymonitored
using a cheap, non-disruptive device that collects vibration data from the pump feeding
the system. The collected data has two features extracted from it, the maximum pump
vibrational amplitude and peak frequency as the valve is closed. The BCD algorithm
then generates the likelihood of a changepoint having occurred in the flow rate as a result
of the pipe blockage. This information is processed online and can be used to identify the
current machine state (differentiating between a faulty and non-faulty state) and informs
machine operators of the need for maintenance.

This work will be expanded upon in the future with data collected directly from the
wave-soldering machine, to assess the suitability of the algorithm and non-disruptive
methodology in an industrial environment, as well as the accuracy of the test bench
analogue. Additional tests with an accelerometer capable of a faster sampling rate could
also be valuable, to ensure that information isn’t being lost at higher frequencies the
current hardware cannot detect. Integration with local IIoT and cloud platforms is also
key to ensuring the data is accessible and useful.
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