Skip to main content

Abstract

The cost of thermal energy represents one of the largest items of production cost of ceramic manufacturing and the CO2 emissions resulting from this industrial activity are very significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuviella- Suárez C, Peiró JJB, Borge-Diez D, Colmenar-Santos A (2019) Exergoeconomics in the sanitary-ware industry to reduce energy and water consumptions. AIP Conf Proc 2190(1):020061. https://doi.org/10.1063/1.5138547

  2. Ciacco EFS, Rocha JR, Coutinho AR (2017) The energy consumption in the ceramic tile industry in Brazil. Appl Therm Eng 113:1283–1289. https://doi.org/10.1016/j.applthermaleng.2016.11.068

    Article  Google Scholar 

  3. Scott CA, Sugg ZP (2015) Global energy development and climate-induced water scarcity—physical limits, sectoral constraints, and policy imperatives. Energies 8(8):8211–8225. https://doi.org/10.3390/en8088211

    Article  Google Scholar 

  4. Monfort E, Mezquita A, Vaquer E, Celades I, Sanfelix V, Escrig A (2014) 8.05 - ceramic manufacturing processes: energy, environmental, and occupational health issues. In: Hashmi S, Batalha GF, Van Tyne CJ, Yilbas B (eds) Comprehensive materials processing. Elsevier, Oxford, pp 71–102

    Google Scholar 

  5. Vuckovic G, Vukic M, Stojilkovic M (2012) Avoidable and unavoidable exergy destruction and exergoeconomic evaluation of the thermal processes in a real industrial plant. Therm Sci 16(Suppl. 2):S433–S446. https://doi.org/10.2298/TSCI120503181V

    Article  Google Scholar 

  6. Dincer I, Rosen MA, Al-Zareer M (2018) 5.5 exergy management. In: Dincer I (ed) Comprehensive energy systems. Elsevier, Oxford, pp 166–201

    Google Scholar 

  7. Kita H, Himoto I, Yamashita S (2016) Exergetic aspects of green ceramic processing. In: Singh M, Ohji T, Asthana R (eds) Green and sustainable manufacturing of advanced material. Elsevier, Oxford, pp 77–98

    Chapter  Google Scholar 

  8. Ferrer S, Mezquita A, Aguilella VM, Monfort E (2019) Beyond the energy balance: exergy analysis of an industrial roller kiln firing porcelain tiles. Appl Therm Eng 150:1002–1015. https://doi.org/10.1016/j.applthermaleng.2019.01.052

    Article  Google Scholar 

  9. Caglayan H, Caliskan H (2018) Investigation of the energy recovery in the burners of the ceramic factory kiln. Energy Proc 144:118–124. https://doi.org/10.1016/j.egypro.2018.06.016

    Article  Google Scholar 

  10. Gomez RS et al (2019) Natural gas intermittent kiln for the ceramic industry: a transient thermal analysis. Energies 12(8):1568. https://doi.org/10.3390/en12081568

    Article  Google Scholar 

  11. Ros-Dosdá T, Fullana-i-Palmer P, Mezquita A, Masoni P, Monfort E (2018) How can the European ceramic tile industry meet the EU’s low-carbon targets? A life cycle perspective. J Clean Prod 199:554–564. https://doi.org/10.1016/j.jclepro.2018.07.176

    Article  Google Scholar 

  12. Mezquita A, Monfort E, Ferrer S, Gabaldón-Estevan D (2017) How to reduce energy and water consumption in the preparation of raw materials for ceramic tile manufacturing: dry versus wet route. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.04.082

    Article  Google Scholar 

  13. LIFE_ENVIP.pdf (2012). http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4630&docType=pdf. Accessed 02 Dec 2016

  14. Caglayan H, Şöhret Y, Caliskan H (2018) Thermo-ecologic evaluation of a spray dryer for ceramic industry. Energy Proc 144:164–169. https://doi.org/10.1016/j.egypro.2018.06.022

    Article  Google Scholar 

  15. Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry. European Commission, August 2007 (2007). http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf. Accessed 02 Dec 2016

  16. Cuviella-Suárez C, Colmenar-Santos A, Borge-Diez D, López-Rey Á (2018) Management tool to optimize energy and water consumption in the sanitary-ware industry. J Clean Prod 197, Part 1:280–296. https://doi.org/10.1016/j.jclepro.2018.06.195

  17. Bi R, Chen C, Tang J, Jia X, Xiang S (2019) Two-level optimization model for water consumption based on water prices in eco-industrial parks. Resour Conserv Recycl 146:308–315. https://doi.org/10.1016/j.resconrec.2019.04.004

    Article  Google Scholar 

  18. Cuviella-Suárez C, Colmenar-Santos A, Borge-Diez D, López-Rey Á (2019) Heat recovery in sanitary-ware industry applied to water and energy saving by multi-effect distillation. J Clean Prod 213:1322–1336. https://doi.org/10.1016/j.jclepro.2018.12.269

    Article  Google Scholar 

  19. Tonn B, Frymier PD, Stiefel D, Skinner LS, Suraweera N, Tuck R (2014) Toward an infinitely reusable, recyclable, and renewable industrial ecosystem. J Clean Prod 66:392–406. https://doi.org/10.1016/j.jclepro.2013.11.008

    Article  Google Scholar 

  20. da Silva AC, Méxas MP, Quelhas OLG (2017) Restrictive factors in implementation of clean technologies in red ceramic industries. J Clean Prod 168:441–451. https://doi.org/10.1016/j.jclepro.2017.09.086

    Article  Google Scholar 

  21. van Vugt M, Moye A, Sivakumar S (2019) Computational modelling approaches to meditation research: why should we care? Curr Opin Psychol 28:49–53. https://doi.org/10.1016/j.copsyc.2018.10.011

    Article  Google Scholar 

  22. Brailsford SC, Eldabi T, Kunc M, Mustafee N, Osorio AF (2019) Hybrid simulation modelling in operational research: a state-of-the-art review. Eur J Oper Res 278(3):721–737. https://doi.org/10.1016/j.ejor.2018.10.025

    Article  MathSciNet  MATH  Google Scholar 

  23. Amini SH, Remmerswaal JAM, Castro MB, Reuter MA (2007) Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J Clean Prod 15(10):907–913. https://doi.org/10.1016/j.jclepro.2006.01.010

    Article  Google Scholar 

  24. Rosen MA (2002) Clarifying thermodynamic efficiencies and losses via exergy. Exergy Int J 2(1):3–5. https://doi.org/10.1016/S1164-0235(01)00054-1

    Article  Google Scholar 

  25. Caglayan H, Caliskan H (2018) Energy, exergy and sustainability assessments of a cogeneration system for ceramic industry. Appl Therm Eng 136:504–515. https://doi.org/10.1016/j.applthermaleng.2018.02.064

    Article  Google Scholar 

  26. Ceramic Technology Sanitary-ware, 2010th edn. SACMI IMOLA S.C. (2010)

    Google Scholar 

  27. Tsatsaronis G, Cziesla F, Gao Z (2003) Avoidable thermodynamic inefficiencies and costs in energy conversion systems. Part 1: methodology. In: Proceedings of ECOS 2003, January 2003, vol 2, pp 809–814

    Google Scholar 

  28. Ahmadi M, Baniasadi E, Ahmadikia H (2017) Process modeling and performance analysis of a productive water recovery system. Appl Therm Eng 112:100–110. https://doi.org/10.1016/j.applthermaleng.2016.10.067

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cuviella-Suárez .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuviella-Suárez, C., Borge-Diez, D., Colmenar-Santos, A. (2021). Exergoeconomic Analysis. In: Water and Energy Use in Sanitary-ware Manufacturing. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-72491-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72491-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72490-0

  • Online ISBN: 978-3-030-72491-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics