Skip to main content

Investigation of the Influence of Transport Processes on Chemical Reactions in Bubbly Flows Using Space-Resolved In Situ Analytics and Simultaneous Characterization of Bubble Dynamics in Real-Time

  • Chapter
  • First Online:
Reactive Bubbly Flows

Abstract

For investigations of concentration profiles around bubbles in millichannels as Taylor flow and in bubble columns two in situ real-time process analysis systems were developed. The first system uses laser Raman spectroscopy combined with real-time digital holography. The Raman part of the system is based on a custom pulsed high-energy laser. With this process analysis system, it is possible to measure concentrations of many chemical compounds selectively, with a spatial resolution in the micrometer range during a 10 µs laser pulse. Due to the two combined principles, the determination of the position of a measured local concentration relative to the gas bubble is possible and has been demonstrated. The second real-time process analysis system is especially suited for colored chemical reactions. The system is based on real-time UV/VIS 2D tomography such that with time the third dimension of a 3D concentration profile in the bubble wake can be determined. It consists of fast line sensors illuminated by a laser light sheet. This light sheet originates from a laser spot moving around one third of the bubble column repeatedly. This system is applicable to freely ascending single bubbles as well as bubbly flows in bubble columns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haase S, Murzin DY, Salmi T (2016) Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow. Chem Eng Res Des 113:304–329. https://doi.org/10.1016/j.cherd.2016.06.017

    Article  Google Scholar 

  2. Tanaka S, Karstens S, Fujioka S, Schlüter M, Terasaka K (2019) Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt. Chem Eng J 378. https://doi.org/10.1016/j.cej.2019.03.122

  3. Timmermann J, Hoffmann M, Schlüter M (2016) Influence of bubble bouncing on mass transfer and chemical reaction. Chem Eng Technol 39(10):1955–1962. https://doi.org/10.1002/ceat.201600299

    Article  Google Scholar 

  4. Gupta R, Fletcher DF, Haynes BS (2010) Taylor flow in microchannels: a review of experimental and computational work. J Comput Multiph Flows 2(1):1–32. https://doi.org/10.1002/ceat.201100643

    Article  Google Scholar 

  5. Angeli P, Gavriilidis A (2008) Hydrodynamics of Taylor flow in small channels: a review. Mech Eng J 222(5):737–751. https://doi.org/10.1243/09544062JMES776

    Article  Google Scholar 

  6. Kastens S, Timmermann J, Strassl F, Rampmaier RF, Hoffmann A, Herres-Pawlis S, Schlüter M (2017) Test system for the investigation of reactive Taylor bubbles. Chem Eng Technol 40(8):1494–1501. https://doi.org/10.1002/ceat.201700047

    Article  Google Scholar 

  7. Larkin PJ (ed) (2011) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, Amsterdam. ISBN 978-1-28-311412-7

    Google Scholar 

  8. Lewis IR, Edwards HGM (eds) (2001) Handbook of Raman spectroscopy: from the research laboratory to the process line. In: Practical spectroscopy series, vol 28. Marcel Dekker, New York. ISBN 0-8247-0557-2

    Google Scholar 

  9. Chrimes AF, Khoshmanesh K, Stoddart PR, Mitchella A, Kalantar-zadeh K (2013) Microfluidics and Raman microscopy: current applications and future challenges. Chem Soc Rev 42:5880–5906. https://doi.org/10.1039/C3CS35515B

    Article  Google Scholar 

  10. Fräulin C, Rinke G, Dittmeyer R (2014) Characterization of a new system for space-resolved simultaneous in situ measurements of hydrocarbons and dissolved oxygen in microchannels. Microfluid Nanofluid 16(1–2):149–157. https://doi.org/10.1007/s10404-013-1223-8

    Article  Google Scholar 

  11. Schurr D, Guhathakurta J, Simon S, Rinke G, Dittmeyer R (2017) Characterization of a raman spectroscopic and holographic system for gas‐liquid flows in microchannels. Chem Eng Technol 40:1400–1407. https://doi.org/10.1002/ceat.201600622

  12. Guhathakurta J, Schurr D, Rinke G, Dittmeyer R, Simon S (2017) Simultaneous in situ characterisation of bubble dynamics and a spatially resolved concentration profile: a combined Mach-Zehnder holography and confocal Raman-spectroscopy sensor system. J Sens Sens Syst 6(1):223–236. https://doi.org/10.5194/jsss-6-223-2017

    Article  Google Scholar 

  13. Hessel V, Hardt S, Lowe H, Schonfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J 49:566–577. https://doi.org/10.1002/aic.690490304

  14. Hessel V, Löwe H, Müller A, Kolb G (2005) Mixing of miscible fluids. In: Chemical micro process engineering. Wiley-VCH, Weinheim. https://doi.org/10.1002/3527603581.ch1b

  15. Schurr D, Strassl F, Liebhäuser P, Rinke G, Dittmeyer R, Herres-Pawlis S (2016) Decay kinetics of sensitive bioinorganic species in a SuperFocus mixer at ambient conditions. React Chem Eng 1:485–493. https://doi.org/10.1039/C6RE00119J

    Article  Google Scholar 

  16. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612–619. https://doi.org/10.1364/JOSAA.1.000612

    Article  Google Scholar 

  17. Everall NJ (2000) Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl Spectrosc 54:773–782. https://doi.org/10.1366/0003702001950382

    Article  Google Scholar 

  18. Everall NJ (2000) Confocal Raman microscopy: why the depth resolution and spatial accuracy can be much worse than you think. Appl Spectrosc 54(10):1515–1520. https://doi.org/10.1366/0003702001948439

    Article  Google Scholar 

  19. Schurr D, Guhathakurta J, Simon S, Rinke G, Dittmeyer R (2017) Characterization of a Raman spectroscopic and holographic system for gas-liquid flows in microchannels. Chem Eng Technol 40(8):1400–1407. https://doi.org/10.1002/ceat.201600622

    Article  Google Scholar 

  20. Merker D, Böhm L, Oßberger M, Klüfers P, Kraume M (2017) Mass transfer in reactive bubbly flows—a single-bubble study. Chem Eng Technol 40(8):1391–1399. https://doi.org/10.1002/ceat.201600715

  21. Hlawitschka MW, Oßberger M, Backes C, Klüfers P, Bart HJ (2017) Reactive mass transfer of single NO bubbles and bubble bouncing in aqueous ferrous solutions—a feasibility study. Oil Gas Sci Technol – Rev. IFP Energies nouvelles 72(2):1–11. https://doi.org/10.2516/ogst/2017006

  22. Miska A, Norbury J, Lerch M, Schindler S (2017) Dioxygen activation: potential future technical applications in reactive bubbly flows. Chem Eng Technol 40(8):1522–1526. https://doi.org/10.1002/ceat.201600684

    Article  Google Scholar 

  23. Hoffmann A, Wern M, Hoppe T, Witte M, Haase R, Liebhäuser P, Glatthaar J, Herres-Pawlis S, Schindler S (2016) Hand in hand: experimental and theoretical investigations into the reactions of copper(i) mono- and bis(guanidine) complexes with dioxygen. Eur J Inorg Chem 29:4744–4751. https://doi.org/10.1002/ejic.201600906

    Article  Google Scholar 

  24. Miska A, Schurr D, Rinke G, Dittmeyer R, Schindler S (2018) From model compounds to applications: kinetic studies on the activation of dioxygen using an iron complex in a SuperFocus mixer. Chem Eng Sci 190:459–465. https://doi.org/10.1016/j.ces.2018.05.064

    Article  Google Scholar 

  25. Paul M, Teubner M, Grimm-Lebsanft B, Golchert C, Meiners Y, Senft L, Keisers K, Liebhäuser P, Rösener T, Biebl F, Buchenau S, Naumova M, Murzin V, Krug R, Hoffmann A, Pietruszka J, Ivanović-Burmazović I, Rübhausen M, Herres-Pawlis S (2020) Exceptional substrate diversity in oxygenation reactions catalyzed by a bis(μ-oxo) copper complex. Chem Eur J 26(34):7556–7562. https://doi.org/10.1002/chem.202000664

    Article  Google Scholar 

  26. Felis F, Strassl F, Laurini L, Dietrich N, Billet A-M, Roig V, Herres-Pawlis S, Loubière K (2019) Using a bio-inspired copper complex to investigate reactive mass transfer around an oxygen bubble rising freely in a thin-gap cell. Chem Eng Sci 207:1256–1269. https://doi.org/10.1016/j.ces.2019.07.045

    Article  Google Scholar 

  27. Paul M, Strassl F, Hoffmann A, Hoffmann M, Schlüter M, Herres-Pawlis S (2018) Reaction systems for bubbly flows. Eur J Inorg Chem 20–21:2101–2124. https://doi.org/10.1002/ejic.201800146

    Article  Google Scholar 

  28. Benders S, Strassl F, Fenger B, Blümich B, Herres-Pawlis S, Küppers M (2018) Imaging of copper oxygenation reactions in a bubble flow. Magn Reson Chem 56(9):826–830. https://doi.org/10.1002/mrc.4742

    Article  Google Scholar 

  29. Schlüter M, Billet A-M, Herres-Pawlis S (2017) Special issue: reactive bubbly flows. Chem Eng Technol 40(8):1379–1528

    Google Scholar 

  30. Strassl F, Grimm-Lebsanft B, Rukser D, Biebl F, Biednov M, Brett C, Timmermann R, Metz F, Hoffmann A, Rübhausen M, Herres-Pawlis S (2017) Oxygen activation by copper complexes with an aromatic bis(guanidine) ligand. Eur J Inorg Chem 2017(27):3350–3359. https://doi.org/10.1002/ejic.201700528

    Article  Google Scholar 

  31. Oppermann A, Laurini L, Etscheidt F, Hollmann K, Strassl F, Hoffmann A, Schurr D, Dittmeyer R, Rinke G, Herres-Pawlis S (2017) Detection of copper bisguanidine NO adducts by UV-vis spectroscopy and a SuperFocus mixer. Chem Eng Technol 40(8):1475–1483. https://doi.org/10.1002/ceat.201600691

    Article  Google Scholar 

  32. Pinsent BRW, Pearson L, Roughton FJW (1956) The kinetics of combination of carbon dioxide with hydroxide ions. Trans Faraday Soc 52:1512–1520. https://doi.org/10.1039/TF9565201512

    Article  Google Scholar 

  33. Knuutila H, Svendsen HF, Juliussen O (2009) Kinetics of carbonate based CO2 capture systems. Energy Procedia 1(1):1011–1018. https://doi.org/10.1016/j.egypro.2009.01.134

    Article  Google Scholar 

  34. Darmana D, Henket RLB, Deen NG, Kuipers JAM (2007) Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: chemisorption of CO2 into NaOH solution, numerical and experimental study. Chem Eng Sci 62(9):2556–2575. https://doi.org/10.1016/j.ces.2007.01.065

    Article  Google Scholar 

  35. Wang X, Conway W, Burns R, McCann N, Maeder M (2010) Comprehensive study of the hydration and dehydration reactions of carbon dioxide in aqueous solution. J Phys Chem 114(4):1734–1740. https://doi.org/10.1021/jp909019u

    Article  Google Scholar 

  36. Knuutila H, Juliussen O, Svendsen HF (2010) Kinetics of the reaction of carbon dioxide with aqueous sodium and potassium carbonate solutions. Chem Eng Sci 65(23):6077–6088. https://doi.org/10.1016/j.ces.2010.07.018

    Article  Google Scholar 

  37. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of international conference on medical image computing computer-assisted intervention, vol 9351. Springer, Cham, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  38. Misra D (2019) Mish: a self regularized non-monotonic neural activation function. arXiv preprint arXiv:1908.08681

  39. Wu Y, He K (2018) Group normalization. In: Proceedings of ECCV, pp 3–19

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—priority program SPP 1740 “Reactive Bubbly Flows” (237189010) for the project RI 2512/1-1, SI 587/11-1 and SI 587/11-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jajnabalkya Guhathakurta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guhathakurta, J. et al. (2021). Investigation of the Influence of Transport Processes on Chemical Reactions in Bubbly Flows Using Space-Resolved In Situ Analytics and Simultaneous Characterization of Bubble Dynamics in Real-Time. In: Schlüter, M., Bothe, D., Herres-Pawlis, S., Nieken, U. (eds) Reactive Bubbly Flows. Fluid Mechanics and Its Applications, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-72361-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72361-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72360-6

  • Online ISBN: 978-3-030-72361-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics