Skip to main content

PID Controller Design

  • Chapter
  • First Online:
Industrial PID Controller Tuning

Abstract

Proportional–Integral–Derivative (PID) controller tuning is central in the process control field, but selecting the correct parameters is far from trivial since it needs to take into account multiple considerations such as performance, robustness, and topology, etc. This chapter gives an overview of PID controller tuning. Analytical tuning methods are presented in order to have the most fundamental mathematical description of a tuning rule. Then, the chapter explores the tuning based on the minimization of performance criteria which are then applied to integral cost functions. The particular solution to this problem is explored in detail in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Sawyer P (1995) A multiobjective design algorithm: application to the design of SISO control systems. Comput Chem Eng 19(2):241–248. https://doi.org/10.1016/0098-1354(94)00044-O

  • Alcantara S, Pedret C, Vilanova R, Zhang WD (2010) Simple analytical min-max model matching approach to robust proportional-integrative-derivative tuning with smooth set-point response. Ind Eng Chem Res 49(2):690–700

    Google Scholar 

  • Alcantara S, Vilanova R, Pedret C (2013) PID control in terms of robustness/performance and servo/regulator trade-offs: a unifying approach to balanced autotuning. J Process Control 23(4):527–542

    Google Scholar 

  • Alfaro VM, Vilanova R (2012) Model-reference robust tuning of 2DoF PI controllers for first- and second-order plus dead-time controlled processes. J Process Control 22(2):359–374. https://doi.org/10.1016/J.JPROCONT.2012.01.001, https://www.sciencedirect.com/science/article/pii/S0959152412000042

  • Alfaro VM, Vilanova R (2013a) Robust tuning of 2DoF five-parameter PID controllers for inverse response controlled processes. J Process Control 23(4):453–462. https://doi.org/10.1016/j.jprocont.2013.01.005, https://www.sciencedirect.com/science/article/pii/S0959152413000152

  • Alfaro VM, Vilanova R (2013b) Simple robust tuning of 2DoF PID controllers from a performance/robustness trade-off analysis. Asian J Control 15(6):1700–1713. https://doi.org/10.1002/asjc.653

  • Arrieta O, Vilanova R (2012) Simple servo/regulation proportional-integral-derivative (PID) tuning rules for arbitrary Ms-based robustness achievement. Ind Eng Chem Res 51(6):2666–2674

    Google Scholar 

  • Arrieta O, Visioli A, Vilanova R (2010) PID autotuning for weighted servo/regulation control operation. J Process Control 20(4):472–480. https://doi.org/10.1016/j.jprocont.2010.01.002

  • Arrieta O, Vilanova R, Rojas J, Meneses M (2016) Improved PID controller tuning rules for performance degradation/robustness increase tradeoff. Electr Eng 98(3):233–243

    Article  Google Scholar 

  • Åström K, Hägglund T (1984) Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20(5):645–651. https://doi.org/10.1016/0005-1098(84)90014-1

  • Chen D, Seborg DE (2002) PI/PID controller design based on direct synthesis and disturbance rejection. Ind Eng Chem Res 41:4807–4822

    Article  Google Scholar 

  • Chien IL, Fruehauf PS (1990) Consider IMC tuning to improve controller performance. Chem Eng Prog 86:33–41

    Google Scholar 

  • Chiha I, Liouane N, Borne P (2012) Tuning PID controller using multiobjective ant colony optimization. Appl Comput Intell Soft Comput 2012:1–7. https://doi.org/10.1155/2012/536326

  • Corripio AB (2001) Tuning of industrial control systems, 2nd edn. ISA - The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC 27709, USA

    Google Scholar 

  • Dahlin EG (1968) Designing and tuning digital controllers. Instrum Control Syst 41(6):77–81

    Google Scholar 

  • Gambier A, Badreddin E (2007) Multi-objective optimal control: an overview. In: 2007 IEEE international conference on control applications, pp 170–175. https://doi.org/10.1109/CCA.2007.4389225

  • Herreros A, Baeyens E, Peran JR (2002) Design of PID-type controllers using multiobjective genetic algorithms. ISA Trans 41(4):457–472

    Article  Google Scholar 

  • Ho WK, Hang CC, Cao LS (1995) Tuning PID controllers based on gain and phase margin specifications. Automatica 31(3):497–502

    Article  MathSciNet  Google Scholar 

  • Huang L, Wang N, Zhao JH (2008) Multiobjective optimization for controller design. Acta Autom Sin 34(4):472–477. https://doi.org/10.3724/SP.J.1004.2008.00472, https://linkinghub.elsevier.com/retrieve/pii/S1874102908600245

  • López AM, Miller JA, Smith CL, Murrill PW (1967) Tuning controllers with error-integral criteria. Instrum Technol 14:57–62

    Google Scholar 

  • O’Dwyer A (2009) Handbook of PI and PID controller tuning rules, 3rd edn. Imperial College Press, London

    Google Scholar 

  • Pierezan J, Ayala HH, Da Cruz LF, Freire RZ, Dos S Coelho L (2014) Improved multiobjective particle swarm optimization for designing PID controllers applied to robotic manipulator. In: IEEE SSCI 2014 - 2014 IEEE symposium series on computational intelligence - CICA 2014: 2014 IEEE symposium on computational intelligence in control and automation, Proceedings, pp 1–8. https://doi.org/10.1109/CICA.2014.7013255

  • Ragazzini JR, Franklin GF (1958) Sampled-data control systems. McGraw-Hill, New York

    Google Scholar 

  • Rivera DE, Morari M, Skogestad S (1986) Internal model control. 4. PID controller design. Ind Eng Chem Des Dev 25:252–265

    Article  Google Scholar 

  • Rovira AJA, Murrill P, Smith CL (1969) Tuning controllers for setpoint changes. Instrum Control Syst 42:67–69

    Google Scholar 

  • Sabina Sánchez H, Visioli A, Vilanova R (2017) Optimal Nash tuning rules for robust PID controllers. J Frankl Inst 354(10):3945–3970. https://doi.org/10.1016/j.jfranklin.2017.03.012

  • Shamsuzzoha M, Lee M (2008) Analytical design of enhanced PID filter controller for integrating and first order unstable processes with time delay. Chem Eng Sci 63:2717–2731

    Article  Google Scholar 

  • Shinskey FG (1994) Feedback controllers for the process industries. McGraw-Hill Professional, New York

    Google Scholar 

  • Shinskey FG (2002) Process control: as taught vs as practiced. Ind Eng Chem Res 41(16):3745–3750. https://doi.org/10.1021/ie010645n

  • Skogestad S (2003) Simple analytic rules for model reduction and PID controller tuning. J Process Control 13(4):291–309. https://doi.org/10.1016/S0959-1524(02)00062-8

  • Toivonen HT, Totterman S (2006) Design of fixed-structure controllers with frequency-domain criteria: a multiobjective optimisation approach. IEE Proc D, Control Theory Appl 153(1)

    Google Scholar 

  • Vilanova R (2008) IMC based robust PID design: tuning guidelines and automatic tuning. J Process Control 18:61–70

    Google Scholar 

  • Vilanova R, Visioli A (2012) PID control in the third millennium. Advances in industrial control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2

  • Vilanova R, Arrieta O, Ponsa P (2018) Robust PI/PID controllers for load disturbance based on direct synthesis. ISA Trans 81(June):177–196. https://doi.org/10.1016/j.isatra.2018.07.040

  • Visioli A (2001) Optimal tuning of PID controllers for integrating and unstable processes. IEE Proc - Control Theory Appl 148(1):180–184

    Article  MathSciNet  Google Scholar 

  • Zhou X, Zhou J, Yang C, Gui W (2018) Set-point tracking and multi-objective optimization-based PID control for the goethite process. IEEE Access 6(2):36,683–36,698. https://doi.org/10.1109/ACCESS.2018.2847641

  • Zhuang M, Atherton DP (1993) Automatic tuning of optimum PID controllers. IEE Proc D, Control Theory Appl 140(3):216–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José David Rojas .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rojas, J.D., Arrieta, O., Vilanova, R. (2021). PID Controller Design. In: Industrial PID Controller Tuning. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-030-72311-8_4

Download citation

Publish with us

Policies and ethics