
Usage Patterns Identification Using Graphs
and Machine Learning

Ovidiu-Dan Sonea(B)

Babes-Bolyai University, Cluj-Napoca, Romania
ovidiu.dan.sonea@gmail.com

Abstract. During the past years, the number of platforms that are introducing
a subscription plan is steadily increasing. This phenomenon helps support the
developers as well as continuing to provide quality content. Since not so many
individuals are willing to spend money or some simply do not have the means,
they resort to sharing an account that has a subscription plan. This behavior can,
in some instances, be harmful for the developers and, even if it is not, any provider
can benefit from knowing what type of clients they have. The solution depicted
and explored in this article will focus on using data that is easily available and
structuring it in a way that can provide insight into each account activity.

1 Introduction

Since sharing credentials is very easy and many people don’t see it as a problem, this
practice continues to expand. This phenomenon leads many content creators to be inter-
ested in developing a way of identifying shared accounts but often it is not enough just
to know if an account is shared or not; content creators want to know how an account
is shared. This means that the algorithm must also classify users into patterns that are
predefined by the provider to suite their needs. In the end, based on the constrains of
each pattern and other metrics calculated, mostly using graph theory, the algorithm pro-
vides a sharing probability for each account. Most providers have access to massive
amounts of data which, most likely, means that they have the necessary tools to identify
password sharing, they just have not found an efficient way processing at the data in
order to solve this problem. Given that the algorithm, which will be detailed in the next
pages, uses only information that most content providers already have access to, it can
be easily implemented successfully on a large number of platforms.

Although there are several solutions that are implemented, these approaches cannot
provide a definitive answer for the problem previously described. A few examples are:

1. Fraud Detection attempts to identify individual events/transactions as “fraudulent”
do not work in our case, while we need to label the entire subscriber activity as
“shared” or not.

2. “Anomalies” spotted within a subscriber activity are not necessarily an indication for
account sharing, while sharing can happen with no visible anomalies if the account
is shared from the beginning.

It is necessary to detect usage patterns. Having only the label “shared” or “not shared” is
insufficient, because the content creator may want to allow certain types of sharing that
c© The Author(s) 2021
M. Cochez et al. (Eds.): GKR 2020, LNAI 12640, pp. 84–92, 2021.
https://doi.org/10.1007/978-3-030-72308-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72308-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-72308-8_6


Usage Patterns Identification Using Graphs and Machine Learning 85

do not harm their business. An example from the streaming industry can be a teenager
that went to college and is sharing an account with his/her parents.

2 The Problem

The problems that demand a solution are identifying accounts that are shared and clas-
sifying users into usage patterns. The end goal is to give providers insights on their
subscribers so they can take action on the users from a certain usage pattern. The solu-
tion should also be implemented in a reliable and testable way.

3 Approach

In solving this problem we used several graph theory algorithms to structure the data
in a way that ensures the validity of our assumptions and assures that the data was not
corrupted in a prior step.

The proposed solution will analyse the subscriber’s activity during a given time
period, classify the subscriber into a known usage pattern and it will provide a password
sharing probability. Moving forward, we will describe the capabilities and functions of
the proposed solution on an example from the TV industry.

The raw data, that will be inserted in the algorithm, observes the activity of real users
during a month. This data was collected and provided by a client from the industry and
contains the following fields: user id (as defined in the clients database), the coordinates
at which an event took place, device type, device id and the time at which an event
occured. All the data gathered in a time interval will be processed and the end result for
each user will be:

– Number of devices – the number of unique devices per subscriber per analysed time
interval;

– Location clusters – that are determined by finding common locations between sub-
scriber’s devices. The devices that have been seen in a common location will be
considered to belong to the same cluster. But at the same time, two devices can be
in the same cluster even though they do not have common locations, but they are
connected through the locations of other devices from that cluster;

– Type of location clusters – mobile or static cluster;
– The minimum distance between location clusters – the sum of distances between the
closest points of different clusters;

– The minimum number of persons behind an account – determined by looking at
the subscriber’s activity in a chronological order and analysing successive events
which are produced by different devices. Here we are determining the cases where
the usage cannot be made by a single person.

Based on the detailed criteria, each subscriber will be labeled into a single usage pattern
and after that, they will be given an account sharing probability. The table that follows
shows how this particular client has chosen to define the patters in order to extract infor-
mation they considered valuable. The algorithm allows for the patterns to be defined in



86 O.-D. Sonea

Table 1. Detailed view of Usage patterns defined criteria

Usage pattern label Devices Cluster configuration Min. distance
between all
clusters

1. Single location usage Less than 5 Only one location N/A

2. Traveling User Less than 5 1 static cluster or/and 1
mobile cluster, or 2
mobile clusters

Unspecified

3. Large Family More than 4 but
less than 21

Less than 3 and at
most 1 static

Less than
100Km

4. Multiple houses at close
distance

Unspecified 2 or 3 static clusters
and the total number
less than 5

Less than
100Km

5. Heavy usage across
multiple locations

Unspecified 3 or more static and
the total number more
than 5

More than
100 km

6. Multiple distant
locations

Unspecified 2 or more static but the
total number less than
5

Unspecified

7. Concurrent usage from
different locations

Less than 5 1 static cluster or/and 1
mobile cluster, or 2
mobile clusters

Unspecified

8. Secondary location Less than 8 2 clusters and at most
one static

Unspecified

9. Few clusters close to
each other

Unspecified Less than 4 clusters but
at most one static

Less than
100 km

10. Multiple clusters close
to each other

Unspecified More than 3 but at
most one static

Less than
100 km

11. Few clusters distant
from each other

Unspecified Less than 4 clusters but
at most one static

More than
100 km

12. Multiple clusters on
multiple distant location

Unspecified More than 3 but at
most 1 static

More than
100 km

many ways without them affecting its performance. There are, however, a few limita-
tions when it comes to defining these usage patterns. The limitations are: the defined
patterns must be mutually exclusive, meaning that a subscriber must fit into only one
pattern and that the entire pool of subscribers must be fitted into the defined patterns
(there can’t be subscribers that don’t have a pattern assigned).

4 Implementation

The algorithm is structured in way in which it achieves the intended goal by following
nine steps (Table 2).



Usage Patterns Identification Using Graphs and Machine Learning 87

Step 1. This step mainly deals with the input processing by reading the raw data from
the specified time period and filtering out inputs that might not be relevant for the algo-
rithm.
Step 2. After the input is validated, the data must be arranged in a meaningful way for
it to provide the desired results. This means grouping entries by users and sorting them
in chronological order. For the algorithm to be more efficient, this step also deals with
data compression. Meaning that, if there are multiple consecutive entries from the same
device, they will be considered as being a single event with the starting date of the most
recent and the end date of the last entry from the consecutive sequence.
Step 3. A square matrix is created with the size being the number of devices squared.
This matrix represents a way to track which devices are being used by different persons.
If such a case is found, the values in the matrix corresponding to the found devices will
be marked with “1”. Additionally, we create a buffer that contains events which span at
most 48 h (we assumed that in this time period you can physically get to any two points
in the United States). In this buffer, we recreate the activity of the subscriber by adding
each event from the chronological event array, one by one, and check if it is physically
possible. We have two ways of analysing if the activity is done by one person or more.
The first one is by looking at two consecutive events and the second one is by checking
three or more events (maximum is determined by the number of events in buffer) and
analysing them with a machine learning algorithm (we used XGBoost Classifier with
the objective of logistic regression). Choosing which consecutive events are analysed
(and how) is a challenge by itself, since there can be multiple occurrences of the same
device in buffer. To solve this, we created an occurrence array in which we store the last
occurrence of each device. If a device that is already in the buffer is added again, then
we analyse with a XGBoost algorithm the loop created by the two devices, as well as
the whole buffer. For an example please look at Fig. 1.
Step 4. At this point, we can start calculating the minimum number of persons that is
needed for the subscribers activity to be physically possible. Having the matrix from
Step 3, we can consider it to be a graph represented as a matrix where we know that
the values of one indicate that the devices corresponding to the line and the column

Table 2. List of used terms.

Term Description

Static device A device that has very low mobility (e.g.: GameConsole, SetTopBox, TV,
etc.)

Mobile device A device that has high mobility (e.g.: MobilePhone, Tablet, Laptop, etc.)

Cluster A cluster is created by finding common locations between devices. The
devices that have been seen in a common location will be considered to
belong in the same cluster. Two devices can be in the same cluster even
though they do not have common locations but can be connected through the
locations of other devices

Mobile cluster A cluster that has no static devices

Static cluster A cluster that has at least one static device



88 O.-D. Sonea

Fig. 1. Graphical representation of Step 3

are used by different persons. At the same time, in graph theory, we can say that these
two vertices are adjacent. At this point, the problem can be solved by a simple Graph
Coloring algorithm [1]. To ensure that an optimal solution is found, we need to apply
the algorithm from each vertex since this problem is NP-complete. From an efficiency
point of view, this would seem extreme and inefficient, but we deal with small graphs,
and in our experiments we had no issues. On average, in the data we had, the number
of devices per account was around four, and only in extreme cases the count exceeded
thirty. The end result will contain all the optimal solutions of coloring the graph, since,
in most cases, it is not just one. Translating from graph theory, this means we found the
minimum number of persons and all the possible ways of pairing a person with one or
more devices.
Step 5. In this part of the algorithm, we implemented a method that is able to quantify
how connected is the activity of a user. This quantifier is represented by the number of
clusters, a term which was previously explained. Since we know the locations visited
by a device, we can consider each device as being a graph and the visited locations as



Usage Patterns Identification Using Graphs and Machine Learning 89

the vertices of this graph. Now, we have multiple graphs with common vertices but we
don’t know which of these vertices are mutual. If two graphs have a common vertex,
that means they can be considered as one big graph. In the end, each remaining graph
translates to a cluster. To solve this problem in an efficient way, we devised an algorithm
based on a balanced binary search tree [2]. The information, contained in the nodes that
create the tree, represents the location (which serves as a search key) and the device id
(which is unique for an account). We add, one by one, all the locations that were vis-
ited by a user and if that location already exists in the tree, we know which device was
already seen there. By having an array where we keep track of such cases, in the end,
we can determine all the clusters. The previously mentioned array has the size equal to
the number of devices. Each value in the array represents the index of a cluster in which
a device is positioned.
Step 6. Each device has a degree of mobility, these degrees being “mobile” or “static”,
based on the type of the device. Using the result from Step 5 we can determine which
cluster is mobile and which one is static. A static cluster has at least one static device
and a mobile cluster does not have any static devices. If a subscriber has two or more
distinct static clusters, we can safely label this account as being shared. Having the
processed clusters at this step, we can also calculate the minimum distance between all
clusters. To do this, we have to find the closest locations between each two clusters and
after that, apply the Dijkstra algorithm [5] to create a minimum spanning tree. The sum
of all remaining edges represents the minimum distance between all clusters.
Step 7. By using the results from Step 4 and 5, we can find distinct persons belonging to
one or more clusters that have not visited other clusters and have never been in contact
with the persons belonging to those clusters. In this instance, we can safely assume that
we detected account sharing but, because Step 4 does not always return a single solution,
we must check that the number of cases where we identified account sharing, divided to
the total number of cases, is 1, before labeling an account as shared. The result of the
division will be taken into account when calculating the sharing probability.
Step 8. Using the results from the steps above, we determined some thresholds that
create a pattern and fit each subscriber in the corresponding usage pattern.
Step 9. In the end, using a machine learning algorithm (XGBoost Regressor with the
objective of linear regression) a sharing probability is calculated. The algorithm takes
into account the number of clusters, the number of devices, minimum number of per-
sons, the usage pattern and the number obtained from Step 7.

5 Technologies

We decided to put XGBoost [4] at the core of this algorithm since it is very efficient,
flexible, and it can learn really quickly. This was highly important because we didn’t
had any pre-labeled data and creating multiple thousands of repetitive entries in order
to train a neural network would have been really difficult and time consuming. Using
this approach we only had to label about one thousand for each model. All mentioned
factors make the implementation of these types of gradient boosted decision trees to be
the perfect solution for this problem.

The model used at Step 3 has an XGBClassifier with a structure as displayed in
Table 3(a). The end result for this model was achieving an accuracy of 91.87% for the



90 O.-D. Sonea

Table 3. XGBClassifier Structures

(a) Step 3 (b) Step 9

Parameter name Value Parameter name Value

max depth 1 max depth 1

min child weight 3 min child weight 1

learning rate 0.065 learning rate 0.05

n estimators 500 n estimators 700

Objective binary:logistic Objective reg:linear

Gamma 0 Gamma 0

Subsample 0.9 Subsample 0.4

colsample bytree 0.7 colsample bytree 0.5

colsample bylevel 1 colsample bylevel 1

scale pos weight 1 scale pos weight 1

training data and an accuracy of 93.24% for the validation data, which means that there
was no over fitting.

For the model at Step 9 we used XGBRegressor with the specifications shown in
Table 3(b). The accuracy for the training data was 89.22% and for the validation data
93.11%. For both models, the evaluation metric used was area under the curve(auc) [3].
During the tests made to find an optimal model for these tasks, we obtained an accuracy
close to 100% for the training data but, for the validation, the accuracy was much lower,
meaning that the model just learned the results.

6 Results and Analysis

We had access to a large data set. The Figs. 2, 3 and 4 are created from a data set with
more than 13 million subscribers. Each subscriber had one or more events, meaning
that, at least for the situations it was tested for, the algorithm produces results that can
be considered to reflect reality.

Looking at Fig. 2, we notice that most users are classified as having either less than
20%, either 100% sharing probability, meaning that the algorithm is fairly certain of
it’s prediction. This is very important, since it would be troublesome to predict a high
probability to a user that is not sharing the account.

Observing Fig. 3, it is obvious how unbalanced the distribution of patterns is. How-
ever, looking at Fig. 4, this represents good news for the provider of this data since the
patterns that have the highest number of users represent a low risk of sharing.

Overall, 10% of shared accounts may not seem as a large number. However, taking
into consideration that these users share their account with at least another person, it
means that, if all those who benefit from sharing would get a subscription, the number
of subscribers would increase with at least 10%. From a marketing point of view, this
is a considerable and very favorable percentage for providers.



Usage Patterns Identification Using Graphs and Machine Learning 91

Fig. 2. Sharing probability distribution

Fig. 3. Pattern distribution where the bar index represents the pattern from Table 1

Fig. 4. Average sharing score for each pattern where the bar index represents the pattern from
Table 1



92 O.-D. Sonea

7 Conclusion

Looking at the results, we are satisfied with the overall performance since we found a
way to identify account sharing in a reliable way. Not only this, but we can actually
determine multiple types of sharing. Moreover, the implementation of this algorithm
is simple and can be done by other providers since this type of data is easily avail-
able. Even though the presented solution does not identify all accounts which are being
shared, we consider this to be a step in the right direction. With further research, we
are confident that more usage patterns will emerge and as a consequence the number of
shared accounts might increase.

Acknowledgements. I would like to thank Dr. Christian Săcărea for his kindness, help and time
invested in making this article possible.

References

1. Aslan, M., Baykan, N.: A performance comparison of graph coloring algorithms. Int. J. Intell.
Syst. Appl. Eng. 4, 1–1 (2016)

2. Austern, M., Stroustrup, B., Thorup, M., Wilkinson, J.: Untangling the balancing and search-
ing of balanced binary search trees. Softw. Pract. Exper. 33, 1273–1298 (2003)

3. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning
algorithms. Patt. Recogn. 30(7), 1145–1159 (1997)

4. Chen, T., Guestrin, C: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785–794. ACM, New York (2016)

5. Javaid, A.: Understanding Dijkstra algorithm. SSRN Electron. J. (2013). https://doi.org/10.
2139/ssrn.2340905

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.2139/ssrn.2340905
https://doi.org/10.2139/ssrn.2340905
http://creativecommons.org/licenses/by/4.0/

	Usage Patterns Identification Using Graphs and Machine Learning
	1 Introduction
	2 The Problem
	3 Approach
	4 Implementation
	5 Technologies
	6 Results and Analysis
	7 Conclusion
	References




