
An Automated Deductive Verification Framework
for Circuit-building Quantum Programs

Christophe Chareton1,2,�, Sébastien Bardin2, François Bobot2,
Valentin Perrelle2, and Benoît Valiron1

1 LMF, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
firstname.lastname@lri.fr

2 CEA, LIST, Université Paris-Saclay, Palaiseau, France
firstname.lastname@cea.fr

Abstract. While recent progress in quantum hardware open the door
for significant speedup in certain key areas, quantum algorithms are still
hard to implement right, and the validation of such quantum programs
is a challenge. In this paper we propose Qbricks, a formal verification
environment for circuit-building quantum programs, featuring both para-
metric specifications and a high degree of proof automation. We propose
a logical framework based on first-order logic, and develop the main tool
we rely upon for achieving the automation of proofs of quantum specifi-
cation: PPS, a parametric extension of the recently developed path sum
semantics. To back-up our claims, we implement and verify parametric
versions of several famous and non-trivial quantum algorithms, including
the quantum parts of Shor’s integer factoring, quantum phase estimation
(QPE) and Grover’s search.

Keywords: deductive verification, quantum programming, quantum circuits

1 Introduction

1.1 Quantum computing. Quantum programming is seen as a potential
revolution for many computing applications: cryptography [61], deep learning [7],
optimization [23,22], solving linear systems [33], etc. In all of these domains,
current quantum algorithms beat the best known classical algorithms by either
quadratic or even exponential factors. In parallel to the rise of quantum algo-
rithms, the design of quantum hardware has moved from lab-benches [14] to
programmable, 50-qubits machines designed by industrial actors [4,38] reaching
the point where quantum computers beat classical computers for specific tasks
[4]. This has stirred a shift from a theoretical standpoint on quantum algorithms

Classical
controller Quantum

memory

Instructions

Feedback

Fig. 1: The hybrid model

to a more programming-oriented view with
the question of their concrete coding and im-
plementation [66,65,55].

In this context, an important problem is
the adequacy between the mathematical de-
scription of an algorithm and its concrete im-
plementation as a program.
© The Author(s) 2021
N. Yoshida (Ed.): ESOP 2021, LNCS 12648, pp. 148–177, 2021.
https://doi.org/10.1007/978-3-030-72019-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72019-3_6&domain=pdf

An Automated Deductive Verification Framework for Quantum Programs 149

1.2 The hybrid model. The vast majority of quantum algorithms are des-
cribed within the quantum co-processor model [42], i.e. a hybrid model where a
classical computer controls a quantum co-processor holding a quantum memory
(cf. Figure 1). The co-processor is able to apply a fixed set of elementary opera-
tions (buffered as quantum circuits) to update and query (measure) the quantum
memory. Importantly, while measurement allows one to retrieve classical (proba-
bilistic) information from the quantum memory, it also modifies it (destructive
effect). The quantum memory state is represented by a linear combination of
possible concrete values, generalizing the classical notion of probabilities to the
complex case, and the core of a quantum algorithm consists in successfully set-
ting the memory in a specific quantum state.

Major quantum programming languages such as Quipper [30], Liqui|〉 [67],
Q# [64], ProjectQ [63], Silq [8], and the rich ecosystem of existing quantum
programming frameworks [55] follow this hybrid model. Such circuit-building
quantum languages are the current consensus for high-level executable quantum
programming languages.

1.3 The problem with quantum algorithms. Starting from an initial
state, a quantum algorithm typically describes a series of high-level operations
which, once composed, realize the desired state. Each high-level operation may
itself be described in a similar way, until one reaches elementary operations
(quantum gates). Describing an algorithm therefore requires both to list these
elementary operations, or quantum circuit, and to specify the circuit’s behavior.

A major issue is then to verify that the quantum circuit generated by the
code written as an implementation of a given algorithm is indeed a run of this
algorithm, and that the circuit has indeed the specified characteristics of shape
(for instance: a polynomial size).

While testing and debugging are the common verification practice in clas-
sical programming, they become extremely complicated in the quantum case:
debugging and assertion checking are problematic due to the destructive aspect
of quantum measurement, the probabilistic nature of quantum algorithms seri-
ously impedes system-level quantum testing, and classical emulation of quantum
algorithms is (strongly believed to be) intractable. On the other hand, nothing
prevents a priori the formal verification [15] of quantum programs.

1.4 Goal and challenges. Our goal is to provide an automated formal ve-
rification framework for circuit-building quantum programs. Such a framework
should satisfy the following principles: (1) Parametricity: it should allow para-
metric (i.e. scale-invariant) specifications and proofs, so as to enable the generic
specification and verification of parametrized implementations. This is crucial as
quantum algorithms always describe parametrized families of circuits; (2) Proof
automation: it should, as far as possible, provide automatic proof means in order
to ease adoption.

Prior works on quantum formal verification do not fully reach these goals
together, as they are either not parametric, or not automated. Model-checking
methods [27,70] are fully automatic but not parametric – moreover they are
highly scale-sensitive. Recently, Amy [1,2] developed a powerful framework for

150 C. Chareton et al.

reasoning over quantum circuits, the path-sums symbolic representation. Thanks
to their good compositional properties, reasoning with path-sums is well auto-
mated and can scale up to large problem instances (up to 100 qubits). Yet, the
method is not parametric and only addresses fixed-size circuits. On the other
side of the spectrum, several approaches deal with parametricity but sacrifice
automation as they generate proof obligations in higher-order logic, supported
with proof assistants such as Coq or Isabelle/HOL. One can cite the approach of
Boender et al. [10], Qwire [53,58], SQIR [35,34] or QHL [68,71,46,69,45]. Com-
bined with the use of the standard matrix semantics for quantum circuits —
that we show in Section 8 cumbersome for automation — only very few realistic
quantum programs have been verified in a parametric way [45,35,34].

1.5 Proposal. We propose Qbricks, an automated formal verification frame-
work for circuit-building quantum programs, featuring parametric specification
together with a high degree of proof automation.

We bring two key innovations along the road: (Key 1) we propose the new
parametrized path-sums (PPS) symbolic representation of families of quantum
circuits, extending path-sums [1] to the parametric case while keeping good com-
positional properties. PPS prove extremely useful both as a specification mecha-
nism and as an automation mechanism; (Key 2) we carefully tune together our
programming language (Qbricks-DSL) and specification logic (Qbricks-Spec)
so that the corresponding verification problem remains automatable in practice
— first-order proof obligations — while the framework is still expressive enough
to write, specify and verify realistic quantum programs (Shor order finding —
Shor-OF [61], QPE [41,16], Grover [31]).

1.6 Contributions. We bring the following contributions.

– A flexible symbolic representation for reasoning about quantum states, buil-
ding upon the recent path-sum symbolic representation [1,2]. Our repre-
sentation, called parametrized path-sums (PPS), retains the compositional
and closure properties of regular path-sums while allowing genericity and
parametricity of both specifications and proofs. Especially, first-order logic
together with PPS provide a unified and powerful way to reason about many
essential quantum concepts (Section 5.2) and fit well with the standard way
of describing quantum algorithms. We are the first to highlight this connec-
tion and make PPS a “first-class” concept, where prior works are limited to
standard path sums, or rely on the standard matrix semantics;

– A programming and verification framework, that is: on one hand, a core
domain-specific language (Qbricks-DSL, Section 4) for describing fami-
lies of quantum circuits, with enough expressive power to describe parame-
tric circuits from non-trivial quantum algorithms; and on the other hand, a
first-order logical (domain-specific) specification language (Qbricks-Spec,
Section 5), tightly integrated with PPS and Qbricks-DSL to specify prop-
erties of parametrized programs representing families of quantum circuits.
The careful interplay between these two components yields first-order proof
obligations, and thus is a key aspect of proof automation;

An Automated Deductive Verification Framework for Quantum Programs 151

– A dedicated proof engine: we introduce the Hybrid Quantum Hoare Logic
(HQHL) deduction system for deductive verification over circuit-building
quantum programs. It is tightly coupled with PPS and produces proof obli-
gations in the Qbricks-Spec logic (Section 6);

– This framework is embedded in the Why3 deductive verification tool [9,24]
as a DSL (Section 7), and provides proof automation mechanisms dedicated
to the quantum case. This material is grounded in standard mathematics
theories (linear algebra, arithmetic, complex numbers, binary operations,
etc.) with 450+ definitions and 1,000+ lemmas. All lemmas have been proved
in Why3, and the whole framework is publicly available;

– We present in Section 8 the first ever verified parametric implementation of
the quantum part of Shor’s factoring algorithm [61] (Order Finding, includ-
ing the polynomial complexity of the circuits produced by our implemen-
tation and probability requirements), as well as verified parametric imple-
mentations of other major quantum algorithms: Quantum Phase Estima-
tion (QPE) [41,16]3, Grover’s (search) algorithm [31] and Quantum Fourier
Transform (QFT) [18]. Our method achieves a high level of proof automation
(96% on Shor-OF), significantly reducing proof effort (factor 13.6x vs. QHL
on Grover, factors 7.7x and 6.4x vs. SQIR on resp. QPE and Grover).

Additional technical material can be found in the online extended versione [13].
Implementation and benchmarks are available online[54].

1.7 Discussion. The scope of this paper is limited to proving properties of
circuit-building quantum programs. We do not claim to support right now the
interactions between classical data and quantum data (referred to as “classical
control” in the literature), nor the probabilistic side-effect resulting from the
measurement. Still, we are already able to target realistic implementations of
famous quantum algorithms, and thanks to equational theories for complex and
real number we can automatically reason on the probabilistic outcome of a mea-
surement. Also, we do not claim any novelty in the proofs for Shor-OF, QPE or
Grover by themselves, but rather the first highly-automated parametric correct-
ness proofs of the circuits produced by programs implementing them, and the
first parametric correctness proofs of an implementation of Shor-OF.

2 Background: Quantum Algorithms and Programs

While in classical computing, the state of a bit is either 0 or 1, in quantum
computing [50] the state of a quantum bit (or qubit) is described by amplitudes
over the two elementary values 0 and 1 (denoted in the Dirac notation with
|0〉 and |1〉), i.e. linear combinations α0|0〉 + α1|1〉 where α0 and α1 are any
complex values satisfying |α0|2 + |α1|2 = 1. In a sense, amplitudes are general-
ization of probabilities. More generally, the state of a qubit register of n qubits

3 QPE is a major quantum building block, at the heart of, e.g., HHL [33] logarithmic
linear system solving algorithm or quantum simulation [28].

152 C. Chareton et al.

(“qubit-vector”) is any superposition of the 2n elementary bit-vectors (“basis el-
ement”, where a bit-vector k ∈ {0..2n − 1} is denoted |k〉n), that is any |u〉n =∑2n−1

k=0 αk|k〉n such that
∑2n−1

k=0 |αk|2 = 1. For example, in the case of two qubits,
the basis is |00〉, |01〉, |10〉 and |11〉 (also abbreviated |0〉2, |1〉2, |2〉2 and |3〉2).
Such a (quantum state) vector |k〉n is called a ket of length n (and dimension
2n).

Technically speaking, we say that the quantum state of a register of n qubits
is represented by a normalized vector in a Hilbert space of finite dimension
2n (a.k.a. finite-dimensional Hilbert space), whose basis is generated by the
Kronecker product (a.k.a. tensor product, denoted ⊗) over the elementary bit-
vectors. For instance, for n = 2: |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉 and |1〉 ⊗ |1〉 act as
definitions for |00〉, |01〉, |10〉 and |11〉.

2.1 Quantum data manipulation. The core of a quantum algorithm con-
sists in manipulating a qubit register through two main classes of operations.
(1) Quantum gate. Local operation on a fixed number of qubits, whose action
consists in the application of a unitary map to the corresponding quantum state
vector i.e. a linear and bijective operation preserving norm and orthogonality.
The fact that unitary maps are bijective ensures that every unitary gate ad-
mits an inverse. Unitary maps over n qubits are usually represented as 2n × 2n

matrices. (2) Measurement. The retrieval of classical information out of the
quantum memory. This operation is probabilistic and modifies the state of a
quantum register: measuring the n-qubit system

∑2n−1
k=0 αk|k〉n returns the bit-

vector k of length n with probability |αk|2. Quantum gates might be applied in
sequence or in parallel: sequence application corresponds to map composition (or,
equivalently, matrix multiplication), while parallel application corresponds to the
Kronecker product, or tensor product, of the original maps — or, equivalently,
the Kronecker product of their matrix representations.4

|0〉 . . .H

...

...

. . .

|0〉 . . .H

.

.

U20 U21 U2n−1

invert(QFT (n))

•

•

•

|v〉

|0〉 . . .H

.

.

U20 U21 U2n−1

invert(QFT (n))

•

•

•

|v〉

Fig. 2: The circuit for QPE

2.2 Quantum circuits. In a
way similar to classical Boolean
functions, the application of quan-
tum gates can be written in a dia-
grammatic notation: quantum cir-
cuits. Qubits are represented with
horizontal wires and gates with
boxes. Circuits are built composi-
tionally, from a given set of atomic
gates and by a small set of circuit

4 Given two matrices A (with r rows and c columns) and B, their Kronecker product

is the matrix A ⊗ B =

⎛⎜⎝a11B . . . acB

..
.

..
.

..
.

ar1B . . . arcB

⎞⎟⎠. This operation is central in quantum

information representation. It enjoys a number of useful algebraic properties such as
associativity, bilinearity or the equality (A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D), where ·
denotes matrix multiplication.

An Automated Deductive Verification Framework for Quantum Programs 153

combinators, including: parallel and sequential compositions, circuit inverting,
controlling, iteration, ancilla creation, etc. As an example of a quantum circuit,
we show in Figure 2 the bird’s-eye view of the circuit for QPE, the (quantum)
phase estimation algorithm, a standard primitive in many quantum algorithms.
QPE is parametrized by n (a number of wires) and U (a unitary oracle) and is
built as follows. First, a register of n qubits is initialized in state |0〉, while an-
other one is initialized in state |v〉n. Then comes the circuit itself: a structured
sequence of quantum gates, using the unary Hadamard gate H, the circuits
U2i (realizing U to the power 2i) and the reversed Quantum Fourier Transform
inverse(QFT (n)) . Sub-circuits U2i and inverse(QFT (n)) are both defined
in a similar way.

Here, one should simply note two things: (1) the circuit is made of parallel
compositions of Hadamard gates and of sequential compositions of controlled
U2i (the controlled operation is depicted with vertical lines and symbol •); (2)
the circuit is parametrized by n and by U . This is very common: in general,
a quantum algorithm constructs a circuit whose size and shape depend on the
parameters of the problem. It describes a family of quantum circuits.

2.3 Reasoning on circuits and the matrix semantics. Quantum circuits
essentially describe unitary operators [50] acting on Hilbert spaces. In finite di-
mension, unitary matrices faithfully represent unitary operators: it has been the
original mathematical formalism for circuits – coined here as the matrix seman-
tics. If this representation is well-adapted for representing simple high-level cir-
cuit combinators such as the action of control or inversion, it is not well-suited
for specifying the behavior of many complex circuits coming from the litera-
ture. Because of this cumbersomeness, textbook descriptions of circuits make
use of an informal representation: operators are described by their action on a
basis vector (see, for example the description of Shor-OF in [50, p. 232]). This
is however understood as a shortcut notation for matrices which remains the
main medium for reasoning on circuits. Formal approaches to quantum compu-
tation [35,34,53,58,68,71,46,69,45] witness this prevalence of matrices as circuit
representation.

2.4 Path-sum representation. Path sums [1,2] are a recent symbolic repre-
sentation. Its strength is to formalize the notation used in quantum algorithm
literature (eg, [50]). A unitary operator U is written as U : |x〉 �→ PS(x) where
x is a bit vector and PS(x) is defined with the syntax of Fig. 3. In the Figure,
addition and multiplication over real are denoted rescpectively with + and ·,
and x[i] is the ith projection of bit vector x. The term n is an integer index,
characterizing the range of the path-sum. Then each term k ∈ �0, 2n� in the
path-sum is defined through:

1. the phase polynomial Pk(x) – a real value building complex scalar e2·π·i·Pk(x);
2. the basis-ket function φk(x), defining the ket-vector |φk(x)〉 this scalar value

applies to.

This representation is closed under functional composition and Kronecker prod-
uct. For instance, if U is defined as in Fig. 3 and if V sends y to PS′(y) defined

154 C. Chareton et al.

PS(x) ::=
1√
2
n

2n−1∑
k=0

e2·π·i·Pk(x)|φk(x)〉

P (x) ::=
x[j]

2k
| P (x) · P (x) | P (x) + P (x)

|φ(x)〉 ::= |b[1](x)〉 ⊗ . . .⊗ |b[n](x)〉
b[j](x) ::= x[j′] | ¬b[j′](x) | b[j′](x) ∧ b[j′′](x) | b[j′](x) XOR b[j′′](x) | tt | ff

Fig. 3: Syntax for regular path-sums [2,1]

as 1√
2
n′

∑2n
′−1

k=0 e2·π·i·P
′
k(y)|φ′

k(y)〉, then U ⊗ V sends |x〉 ⊗ |y〉 to

1
√
2
n+n′

2n+n′−1∑
j=0

e2·π·i(Pj/2n (x)+P ′
j%2n (y))|φj/2n(x)〉 ⊗ |φ′

j%2n(y)〉 (1)

which is in the form shown in Figure 3. The compositionality of this semantics is
used by Amy [2] to prove the equivalence of large circuit instances. Nonetheless,
its main limitation stands in the fact that path-sums only address fixed-size
circuits. Albeit a compositional tool, useful to automate proofs, it cannot be
used for proving properties of parametrized circuit-building quantum programs.

This paper proposes an extension of path-sum semantics to address the para-
metric verification of quantum programs.

3 Introducing PPS

In this section, we introduce the main logical apparatus of our framework: pa-
rametrized path-sums. We first present a motivating example and then discuss
the construction.

A circuit Cn defined as

H H · · · H︸ ︷︷ ︸
n gates

Precondition: n ≥ 0 is even.

Post-conditions:
{
Cn sends |x〉 to |x〉
Cn consists of n gates.

Fig. 4: Motivating Example

3.1 Motivating example. Let us
consider the n-indexed family of circuits
consisting of n Hadamard gates, in se-
quence, as shown in Figure 4. Sequencing
two Hadamard gates can easily be shown
equivalent to the identity operation. In
other word, when fed with |0〉, if n is even
the circuit outputs |0〉. Albeit small, this
circuit family together with its simple spe-
cification exemplifies the typical framework we aim at in the context of certifi-
cation of quantum programs.

– The description of the circuit family is parametrized by a classical parameter
(here, the non-negative integer n);

An Automated Deductive Verification Framework for Quantum Programs 155

– The pre-condition imposes both constraints (here, the evenness of n) and
soundness conditions (here, the non-negativeness of n) on the parameters;

– The post-condition can both refer to the semantics of the circuit result and
to its form and shape (here, its size).

The circuit family presented in Figure 4 will be used in the rest of the paper as
a running, toy example for Qbricks. In particular, we show in Example 1 how
to code it in our framework and how to express the specification in Example 4.
Its parametrized implementation in Qbricks is three lines of code long and its
specifications takes six lines. It is proved by recurrence over the parameter n,
the induction step requiring two calls for lemmas (depending on the evenness of
parameter n).

3.2 Parametrizing path-sums. In order to formalize the semantics of the
example of Fig. 4, we aim at generalizing path-sums.

Illustration. For a fixed n, the circuit Cn implements either the identity
(when n is even), in which case the path-sum is PSId(x) =

1√
2
0

∑20−1
k=0 e2iπ·0|x〉

or the Hadamard gate (when n is odd), in which case the path sum is PSH(x) =
1√
2
1

∑21−1
k=0 e2iπ

k·x
2 |k〉 A candidate parametric path-sum for the family of circuits

{Cn}n from Figure 4 could then be written in factorized form as

PSn(x) =
1

√
2
n%2

2n%2−1∑
k=0

e2iπ
(n%2)·k·x

2 |if even(n) thenx else k〉. (2)

Generalization. In general, parametrized Path Sums (PPS) are defined over
a language of typed terms with possibly free (typed) variables. At the very
minimum the language has to be equipped with Boolean values (to handle the
values of the ket-vector) and integers (for instance to handle the range).

Given such a language, a PPS is a path-sum where the range, the phase
polynomial and the basis-ket can in general be explicit, open terms referring to
external parameters. Formally, a pps is defined as a function inputting a set of
parameters p and outputting:

– a parametrized integer pps_width(h, p), featuring the number of qubits the
target circuit is acting on — its width;

– another parametrized integer pps_range(h, p), abbreviated as r(h, p). It in-
dicates the range of the sum (defined as the set BVr(h,p) of bit vectors of
length r(h, p));

– a basis ket function pps_ket(h, p), generalizing term φ from Table 3. For
any pair (x, y), of a bit vector x of length pps_width(h, p) (standing for an
input basis vector) and a bit vector of length r(h, p), it returns a bit vector
of length pps_width(h, p) (standing for an output basis vector);

– a parametrized angle function pps_angle(h, p)(x, y), generalizing the phase
polynomial P from Table 3. For any pair (x, y) such as above, it returns a
real value θ.

156 C. Chareton et al.

Then, the behaviour of a parametrized quantum circuit C(p) is described as
the i/o function inputting a basis ket |x(p)〉 of length the width of C(p) and
outputting the parametrized sum term:

pps_apply(h, p)(|x(p)〉) =
1

√
2
r(h,p)

∑
y∈BVr(h,p)

e2iπ∗pps_angle(h,p)(x,y)|pps_ket(h, p)(x, y)〉

For sake of readability, we often ommit the explicit mention of the parameters.
For instance, the PPS P induced by (2) is parametrized by the integer n. It
is such that for any int n, pps_width(P, n) = 1 and pps_range(P, n) = n%2.
Furthermore for any bit vectors x, y of lengths 1 and n%2, pps_ket(P, n)(x, y)
is equal to x if n is even and to y otherwise, and pps_angle(P, n)(x, y) = n%2 ·
x[0] · y[0]. One then gets expression (2) by applying pps_apply(P, p).

Hence, the term language needed for describing PPS of otherwise sophisti-
cated families of quantum circuits can afford to be minimal: first-order typed
terms equipped with an equational theory are enough. We also find out that
first-order, predicate logic is suitable for specifying the properties of quantum
programs: there is no need for higher-order logic such as the ones of Coq or
Isabelle/HOL. This is the key to automation.

4 Qbricks-DSL

Qbricks-DSL is the (domain-specific) language of our framework. It is designed
as a first-order, functional language aimed at circuit description. Measurement
is out of the scope of the language, and all Qbricks-DSL expressions are ter-
minating. We follow a very simple strategy for circuit building: we use a regular
inductive datatype for circuits, where the data constructors are elementary gates,
sequential and parallel composition, and ancilla creation. In particular, unlike
Quipper [30] or Qwire [53], a quantum circuit is not a function acting on qubits:
it is a simple, static object. Nonetheless, as illustrated by our experimentations
(Section 8), this does impede neither expressiveness nor parametricity.

Furthermore, even if the language does not feature measurement, it is no-
netheless possible to reason on probabilistic outputs of circuits, if we were to
measure the result of a circuit. Indeed, this can be expressed in a regular theory
of real and complex numbers (See Section 6.5).

4.1 Syntax of Qbricks-DSL. Qbricks-DSL is a small first-order func-
tional, call-by-value language with a special datatype circ as the medium to
build and manipulate circuits. The core of Qbricks-DSL can be presented as
the simply-typed calculus presented in Figure 6. The basic data constructors
for circ are CNOT, SWAP, ID, the Hadamard superposition gate H, phase shift
gate Ph(e) and the parametrized rotation Rz(e). The constructors for high-level
circuit operations are sequential composition SEQ, parallel composition PAR and
ancilla creation/termination ANC (see Figure 5 for details).

An Automated Deductive Verification Framework for Quantum Programs 157

Ph(n)

H

Rz(n)

CNOT

PAR(M,N)

SEQ(M,N)

M

N

M N
ANC(M)

M
|0〉

M1
M3

M2

M4

M5

M6

M7

M5

M6

M7

M3

M4

M1

M2

invert

M1
M3

M2

M4

M5

M6

M7

ctl

Fig. 5: Circuit combinators

Expression e ::= x | c | f(e1, . . . , en) | let 〈x1, . . . , xn〉= e in e′ |
if e1 then e2 else e3 | iter f e1 e2

Data Constructor c ::= n | tt | ff | 〈e1, . . . , en〉 | CNOT | SWAP | ID | H | Ph(e) | Rz(e) |
ANC(e) | SEQ(e1, e2) | PAR(e1, e2)

Function f ::= fd | fc

Declaration d ::= let fd(x1, . . . , xn) = e
Type A ::= bool | int | � | A1 × · · · × An | circ.
Value v ::= x | n | tt | ff | 〈v1, . . . , vn〉 |

CNOT | SWAP | ID | H | Ph(n) | Rz(n) | ANC(v) | SEQ(v1, v2) | PAR(v1, v2)
Context C[−] ::= [−] | f(v1, . . . vi−1, C[−], ei+1, . . . , en) |

let 〈x1, . . . , xn〉=C[−] in e′ | ifC[−] then e2 else e3 |
iter f C[−] e | iter f v C[−] | 〈v1, . . . vi−1, C[−], ei+1, . . . , en〉 |
CNOT | ID | H | Ph(C[−]) | Rz(C[−]) | ANC(C[−]) |
SEQ(C[−], e) | SEQ(v, C[−]) | PAR(C[−], e) | PAR(v, C[−])

Fig. 6: Syntax for Qbricks-DSL

On top of circ, the type system of Qbricks-DSL features the type of inte-
gers int (with constructors n, one for each integer n), the type of Booleans bool
(with constructors tt and ff) and the type of n-ary products (with constructor
〈e1, . . . , en〉). This type system is not meant to be exhaustive and it can be ex-
tended with usual constructs such as floats, lists and other user-defined inductive
datatypes — its embedding into WhyML makes it easy to use such types. The
term constructs are limited to function calls, let-style composition, test with
if-then-else and simple iteration: iter f n a stands for f(f(· · · f(a) · · ·)),
with n calls to f . We again stress that this could easily be extended — we just
do not need it.

The language is first-order: this is reflected by the types A of expressions.
The type of a function is given by the types of its arguments and the type of its
output. The type of a function with inputs of types Ai and output of type B is
written A1 × · · · × An → B.

A function f is either a function fd defined with a declaration d or a constant
function fc. The functions defined by declarations must not be mutually recur-
sive: this small, restricted language only features iteration. Constant functions
consist in integer operators (+, ∗, −, etc), Boolean operators (∧, ∨, ¬, →, etc),

158 C. Chareton et al.

Γ, x : A � x : A
Γ � f : A1 × · · · ×An → B Γ � ei : Ai

Γ � f(e1, . . . , en) : B
Γ � ei : Ai

Γ � 〈e1, . . . , en〉 : A1 × · · · ×An

Γ � e1 : A1 × · · · ×An Γ, x1 : A1, . . . , xn : An � e2 : B

Γ � let 〈x1, . . . , xn〉= e1 in e2 : B

Γ � e1 : bool Γ � e2 : A Γ � e3 : A

Γ � if e1 then e2 else e3 : A

f : A → A Γ � e1 : int Γ � e2 : A

Γ � iter f e1 e2 : A

Fig. 7: Typing rules for Qbricks-DSL

comparison operators (<, ≤, ≥, > ,=, �= : int×int→ bool) and high-level cir-
cuit operators: ctl, invert : circ→ circ for controlling and inverting circuits,
and width, size : circ → int for counting the number of input and output
wires, and the number of gates (not counting ID nor SWAP) in the circuit C. See
Figure 5 for the intuitive definition of circuit combinators.

The typing rules are the usual ones, summarized for convenience in Table 7.

4.2 Operational semantics. As any other regular functional programming
language, Qbricks-DSL is equipped with an operational semantics based on
beta-reduction and substitution. We define a notion of value and applicative
context as in Fig. 6. We then define a rewriting strategy as the relation defined
with C[e]→ C[e′] whenever e→ e′ is one of the rule of Table 8. The table is split
into the rules for the language constructs and the rules defining the behavior of
the constant functions. We only give a subset of the latter rules. For instance,
the arithmetic operations are defined in a canonical manner, and the Boolean
and comparison operators are defined in a similar manner on values of type int
and bool. The rules for the constant functions acting on circuits are also for the
most part straightforward: the size of a sequence is the sum of the sizes of the
compounds for instance. The rules which we do not provide are the ones for the
control operation ctl: the intuition behind their definition can be found in [13].
For the elementary gates, any definition can be used (see e.g. [50]), as long as it
can be written with the chosen set of gates. One just has to adjust the lemmas
referring to ctl in Qbricks-Spec. Similarly, the inverse of elementary gates are
not given: we can choose the usual ones from the literature —and this definition
is then parametrized by the choice of gates.

4.3 Properties. The targeted low-level representation for an expression of
type circ is a value made of the circuit data constructors presented in Ta-
ble 6: a value v of type circ is made out of the grammar SEQ(v1, v2) | ANC(v) |
PAR(v1, v2) | CNOT | SWAP | ID | H | Ph(n) | Rz(n). Since recursions are reduced to
finite iterations, we can derive the following lemma through a simple inductive
reasoning:

An Automated Deductive Verification Framework for Quantum Programs 159

Language constructs
Assuming that there is a declaration f(x1, . . . , xn) � e.

f(v1, . . . , vn) → e[x1 := v1, . . . , xn := vn]
let 〈x1, . . . , xn〉 = 〈v1, . . . , vn〉 in e → e[x1 := v1, . . . , xn := vn]

if tt then e1 else e2 → e1
if ff then e1 else e2 → e2

when n ≤ 0: iter f n a → a
when n > 0: iter f n a → f(iter f n− 1 a)

Constant functions (subset of the rules)
n+m → n+m
n−m → n−m
n ∗m → n ∗m

size(ID) → 0
size(SWAP) → 0

size(g) → 1 (g other gate)
size(SEQ(v1, v2)) → size(v1) + size(v2)
size(PAR(v1, v2)) → size(v1) + size(v2)

size(ANC(v)) → size(v)

width(CNOT) → 2
width(SWAP) → 2

width(g) → 1 (g other gate)
width(SEQ(v1, v2)) → width(v1)
width(PAR(v1, v2)) → width(v1) + width(v2)

width(ANC(v)) → width(v)− 1
invert(SEQ(v1, v2)) → SEQ(invert(v2), invert(v1))
invert(PAR(v1, v2)) → PAR(invert(v1), invert(v2))

invert(ANC(v)) → ANC(invert(v))
Table 8: Operational semantics for Qbricks-DSL

Lemma 1 (Safety properties and normalization). Provided that � e : A
is a closed expression, and provided that all the functions in e recursively admit
(external) definitions, then either e is a value or it reduces. If Γ � e : A and
e→ e′, then Γ � e′ : A. Finally, the reduction strategy (→) is normalizing: there
does not exist an infinite reduction sequence e1 → e2 → . . . "	

Example 1. The example of Section 3.1 can be written in Qbricks-DSL as

let aux(x) = SEQ(x, H)
let main(n) = iter aux n ID

The function aux inputs a circuit and appends a Hadamard gate at the end. The
function main then inputs an integer parameter n and iterates the function aux
to obtain n Hadamard in sequence. In particular, one can show that for instance

main 4→∗ SEQ(SEQ(SEQ(SEQ(ID, H), H), H), H),

that is, a sequence of 4 Hadamard gates.

4.4 Universality and usability of the chosen circuit constructs. A uni-
versal (resp. pseudo-universal) set of elementary gates is such that they can be
composed thanks to sequence or parallelism so as to perform (resp. approach ar-
bitrarily close) any unitary matrix. In Qbricks-DSL, we chose the small pseudo-
universal elementary set {CNOT, SWAP, ID, H}∪

⋃
n∈N{Ph(n), Rz(n), }. Other gates

can then be defined as macros on top of them. If one aims at using Qbricks
inside a verification compilation tool-chain, these macros can for instance be the
gates of the targeted architecture.

160 C. Chareton et al.

4.5 Validity of circuits. A circuit is represented as a rigid rectangular shape
with a fixed number of input and output wires. In particular, there is a notion
of validity: a circ object only makes sense provided two constraints:

– in SEQ(C1, C2), the two circuits C1 and C2 should have the same width. For
instance, SEQ(CNOT, H) is not valid. This is a simple syntactic constraint;

– in ANC(C), the circuit C should have n+1 wires. Moreover, if given as input
a vector where the last qubit is in state |0〉, its output should also leave this
qubit in state |0〉. This condition is, on the other hand, a semantic constraint.

Note that even these syntactic constraints cannot be checked by a simple typing
procedure, because of the higher-order reasoning involved here: the constraints
must hold for any value of the parameters. All these constraints apply on pa-
rametrized circuits. They translate into constraints for the parameters of their
related PPS and are expressed in our domain-specific logical specification lan-
guage, Qbricks-Spec. They are meant to be sent as proof obligations to a proof
engine.

Example 2. Note how the circuit generated by main in Example 1 is not neces-
sarily a valid circuit (although in this case it is). This is one of the constraints
that can be handled by Qbricks-Spec, as shown in Example 4.

4.6 Denotational semantics. As all expressions in Qbricks-DSL are ter-
minating, one can use regular sets as denotational semantics for the language.
In order to be able to handle the definitions coming up in Section 5, we in-
clude in the denotation of each type an “error” element ⊥ We therefore define
the denotation of basic types as the set of their values: [|bool|] = {tt, ff,⊥},
[|int|] = Z ∪ {⊥} and [|circ|] = {v | � v : circ} ∪ {⊥}. Product types are
defined as the set-product: [|A1 × · · · × An|] = ([|A1|] × · · · × [|An|]) ∪ {⊥} and
[|�|] = {�,⊥}, the singleton set. Finally, functions are defined as set-functions
from the input set to the output set. The denotation of the language constructs
are the usual one in a semantics based on sets ; for the constant functions, the
definitions are the canonical ones: arithmetic operations maps to arithmetic ope-
rations for instance. In Qbricks-DSL, everything is well-defined and ⊥ is only
attainable from ⊥. For instance, ⊥+ x = ⊥.

Note that in the denotational semantics one can build non-valid circuits. For
instance, the circuit SEQ(CNOT, H) is a member of [|circ|]. This is to be expected
as we have the following property:

Lemma 2 (Soundness). Provided that � e : A, we have [|e|] ∈ [|A|] \ {⊥}.
Moreover, provided that e→ e′ then we have [|e|] = [|e′|]. "	

It is however possible to formalize the notion of syntactically valid circuits
as a subset of [|circ|].

Definition 1. We define the (syntactic) unary relation Vsyntax on [|circ|] as
follows: Each one of the gates belongs to Vsyntax; if C1 and C2 belongs to Vsyntax
then so does PAR(C1, C2); if moreover 2 ≤ [|width|](C1) then ANC(C1) belongs to
Vsyntax and if [|width|](C1) = [|width|](C2) then SEQ(C1, C2) belongs to Vsyntax.

An Automated Deductive Verification Framework for Quantum Programs 161

5 Qbricks-Spec

The language Qbricks-DSL is only aimed at manipulating circuits. The reaso-
ning features of Qbricks —and the PPS introduced in Section 3— are defined
in the logic and the specification tools offered within Qbricks-Spec.

5.1 Syntax of Qbricks-Spec. We define Qbricks-Spec as a first-order,
predicate logic with the following syntax.

Formula φ, ψ ::= φ ∨ ψ | φ ∧ ψ | ¬φ | φ→ ψ |
R(ê1, . . . , ên) | ê1 = ê2

First-order expression ê ::= x | c(ê1, . . . , ên) | f(ê1, . . . , ên) | f�(ê1, . . . , ên).

The first-order expressions ê form a subset of Qbricks-DSL: they are restricted
to variables and (formal) function calls to other first-order expressions. Unlike
regular, general expressions —meant to be computational vehicles— these first-
order expressions only aim at being reasoned upon. The function names are then
expanded with counterpart logical functions f�. Among these new functions, we
introduce one function iterf : int × A → A for each function f : A → A,
standing for the equational counterpart of the iteration5. The logic functions
are defined equationally in the logic: see Section 6.4 for details. The relation R
ranges over a list of constant relations over first-order expressions. In Qbricks-
Spec, we identify relations and functions of return type bool. A special relation
is the equality: we explicitly introduce it in the syntax to emphasize the fact
that Qbricks-Spec is meant to deal with equational theories.

The type system of Qbricks-Spec is extended with opaque types, equipped
with constant functions and relations to reason upon them. They come with
no computational content: the aim is purely to be able to express and prove
specification properties of programs. This is why we do not incorporate them in
Qbricks-DSL’s type system.

The opaque types we consider in Qbricks-Spec are complex, real, pps,
ket and bitvector. The operators and relations for these new types are given
in Table 9. Note that in the rest of the paper we will omit the cast operations
i_to_r and r_to_c. We will also use a declared exponentiation function [−][−]

overloaded with types complex × int → complex and real × int → real. For
any integer n and boolean b, constructor bv_cst buildsthe bit vector of length n
and constant value b. Other functions for types complex, real and bitvector
are standard. Types pps and ket are novel and form the main reasoning vehicle
in Qbricks-Spec.

5.2 The types pps and ket. In short, the type pps encodes our parametrized
path sum (PPS) representation for expressions of type circ in Qbricks-DSL,
while ket encodes the notion of ket-vector. As these types are pure reasoning
apparatuses, we only need them in Qbricks-Spec and they are defined uniquely
through an equational theory.

5 This is required to stay within the grammar of terms of Qbricks-Spec.

162 C. Chareton et al.

complex and real
i, π : complex

i_to_r : int → real
r_to_c : real → complex

Re, Im, abs : complex → real
e[] : complex → complex

−c,+c, ∗c, /c : complex× complex → complex
−r,+r, ∗r, /r : real× real → real√

− : real → real
bitvector

bv_length : bitvector → int
bv_cst : int× bool → bitvector
bv_get : bitvector× int → bool
bv_set : bitvector× int× bool → bitvector

pps
pps_width : pps → int
pps_range : pps → int
pps_angle : pps× bitvector× bitvector → real

pps_ket : pps× bitvector× bitvector → bitvector
pps_apply : pps× ket → ket
pps_equiv : pps× pps → bool

circ_to_pps : circ → pps
ket

ket_length : ket → int
ket_get : ket× bitvector → complex

bv_to_ket : bitvector → ket
+k,−k,⊗k : ket× ket → ket

∗k : complex× ket → ket

Table 9: Primary operators for Qbricks-Spec

The type pps is equipped with four opaque accessors: pps_width, pps_width,
pps_width, pps_ket and pps_angle acting on pps from Section 3.2 and with
the function circ_apply. If path-sums compose nicely, a given linear map does
not have a unique representative path-sum (partly due to the fact that phase
polynomials are equal modulo 2π). To capture this equivalence, we introduce the
constant relation pps_equiv. In order to relate circuits and PPS, we introduce
the constant function circ_to_pps: it returns one possible PPS that represents
the input circuit. The chosen PPS is built in a constructive manner on the
structure of the circuit. A useful relation is (− �−) relating a circuit and a PPS:
it is defined as (c � h) � pps_equiv(circ_to_pps(c), h). Another useful macro
is function circ_apply : circ× ket→ ket, defined as

circ_apply(C, k) � pps_apply(circ_to_pps(C), k)

The type ket is equipped with standard operations for manipulating ket-
vectors (Table 9). bv_to_ket turns a bit vector into a basis ket-vector ;
ket_length returns the number of qubits in the ket ; ket_get returns the am-
plitude of the corresponding basis ket-vector. The other operations are the usual
operations on vectors: addition, subtraction, tensors, scalar multiplication.

5.3 Denotational semantics of the new types. The denotational seman-
tics of real and complex are respectively the sets R∪{⊥} and C∪{⊥}, and the
denotation of the operators are the canonical ones. As for Section 4.6, ⊥ maps to
⊥, so for instance ⊥+r x = ⊥. The denotation of bitvector is defined as the set
of all bit-vectors, together with the “error” element ⊥. The constant functions are
mapped to their natural candidate definition, using ⊥ as the default result when
they should not be defined. So for instance, [|bv_cst|](−1, tt) = ⊥. An element
of ket is meant to be a ket-vector: we defined [|ket|] as the set of all possible
ket-vectors

∑2n

i=0 αn|bn〉m, for all possible m,n ∈ N, αn ∈ C and bit-vectors bn
of size m, together with the error element ⊥. Finally, pps is defined as the set of
formal path-sums, as defined in Section 3.2, together with the error element ⊥.
The denotation of the constant functions are defined as discussed in Section 5.2.
As an example, [|pps_range|] returns the range of the corresponding PPS. The

An Automated Deductive Verification Framework for Quantum Programs 163

map circ_to_pps builds a valid PPS out of the input circuit, or ⊥ if the circuit
is not valid.

The defined PPS follows the structure of the circuit. For instance, as shown
in Eq. (1) on Page 154 the PPS circ_to_pps(SEQ(C1, C2)) is the sequential
composition of the two PPS circ_to_pps(C1) and circ_to_pps(C2). This kind
of compositionality is what helps with automation.

5.4 Regular sequents in Qbricks-Spec. Formulas in Qbricks-Spec are
typed objects —and, as mentioned in Section 5.1 one can identify them with first-
order expressions of type bool. Due to this correspondence, we shall only say
that logic judgments in Qbricks-Spec are well-formed judgments of the form
Δ � φ where the well-formedness means that Δ � φ : bool is a valid typing
judgment in Qbricks-DSL. That being said, a well-formed judgment Δ � φ is
valid whenever it holds in the denotational semantics: for every instantiation σ
sending x : A in Δ to [|A|], the denotation [|φ|]σ is valid. In particular, the (free)
variables of φ can be regarded as universally quantified by the context Δ.

5.5 Parametricity of PPS. A regular path-sum is not parametric: it repre-
sents one fixed functional. So why did we chose [|pps|] to be a set of path-sums?
Let us consider an example.

Example 3. Consider the motivating example of Section 3.1 and its instantiation
in Example 1 on page 159. The function main describes a family of circuits
indexed by an integer parameter n. Now, consider the typing judgment

h : pps, n : int � (main(n) � h) : bool.

It can be regarded as a relation between PPS h and integers n, valid whenever h
represents main(n). Technically, this relation is not quite the graph of a function
(since several PPS might match the circuit main(n)).

5.6 Standard matrix semantics and correctness of PPS semantics.
Similarly to the type pps, Qbricks is endowed with a (logical) type matrix to
handle the matrix interpretation of circuits, together with various functions and
relations to reason on it. In particular, Qbricks features a function mat_get :
matrix×int×int→ complex, formalizing the access to a matrix element, and
a function circ_to_mat : circ→ matrix realizing the matrix corresponding to
a circuit. We then formally show, within our framework (proven in Why3), that
for any valid circuit C and ket k of length width(C), applying circ_to_pps(C)
on k is equivalent to multiplying it by circ_to_mat(C):

Theorem 1 (Soundness of PPS wrt matrix semantics).

C : circ, k : ket � ket_length(k) = width(C) ∧ valid(C)→
apply_mat(circ_to_matC, k) = pps_apply(circ_to_ppsC, k)

164 C. Chareton et al.

6 Reasoning on Quantum Programs

Thanks to the logic presented in Section 5.4, it is possible to write Qbricks-
Spec formulas and to express properties of terms of the restricted syntax of
Section 5.1. Provided that the regular sequents are simple enough, these can
automatically be handled with the use of SMT solvers.

In this section, we define a specific Hoare logic, Hybrid Hoare Logic (HQHL),
to express pre- and post-conditions for arbitrary Qbricks-DSL terms. We then
discuss the validity of such judgments and explain how to decompose them into
elementary, regular sequents (proof obligations). The claim —backed up by our
experiments in Section 8— is that the obtained sequents are in practice simple
enough to be dealt with automatically.

We do not present all HQHL rules here, but simply aim to give an intuition of
how and why one can rely on an automated deductive system to derive Qbricks-
Spec judgments. The complete set of HQHL rules is presented in [13].

6.1 HQHL judgments. In order to be able to express program specifica-
tions with pre- and post-conditions, we introduce Hybrid Quantum Hoare Logic
(HQHL) sequents of the form Δ � {φ}e{ψ} : A (we omit the type A when irrel-
evant or clear). The formula ψ can make use of a reserved free variable result
of type A. Such a sequent is then well-formed provided that Δ � φ : bool,
Δ, result : A � ψ : bool and Δ � e : A are valid typing judgments. Note how
the reserved free variable result is being added to Δ for typing ψ. For conve-
nience, as syntactic sugar we allow indexed variables resulti to stand for the
ith projection of a tuple.

The validity of an HQHL sequent can be defined semantically, similarly to
what was done in Section 5.4: Δ � {φ}e{ψ} : A is valid whenever it is both
well-formed and when for every instantiation σ sending x : A in Δ to [|A|] and
sending result to [|e|], the denotation [|φ→ ψ|]σ is valid.

In the following sections, we describe the deduction rules that we rely on
in Qbricks. They are designed to be used in a bottom-up strategy to break
down judgments into pieces reasoning on smaller terms. Along the way, there
is the need for introducing invariants and assertions. As usual, some of these
assertions can be derived by computing the weakest-preconditions: we do not
necessarily have to introduce every single one. When attaining a term of the
restricted grammar of Qbricks-Spec that cannot be further decomposed, one
can rely on the rule

Γ � φ→ ψ[result := ê]

Γ � {φ} ê {ψ} : A (f-o)

to generate a proof obligation as a regular sequent in Qbricks-Spec.

6.2 Deduction rules for term constructs. Figure 10 presents the deduc-
tion rules for the term constructs of Qbricks-DSL carrying a computational
content: iteration, tests, function evaluation, etc. We also present a standard
weakening rule (weaken) and an example of rule for rewriting: The deduction
rule (eq) states that whenever two expressions are equal one can substitute one

An Automated Deductive Verification Framework for Quantum Programs 165

Γ, x � {φ ∧ x ≤ 0} e2 {P [x, result]} Γ, x,y � {φ∧P [x, y]} f(y) {P [x+1, result]}
Γ � {φ} iter f ê1 e2 {P [ê1, result]} (iter)

Γ � {P}e1{Q[xi := resulti} Γ, x1, . . . , xn � {Q}e2{R}
Γ � {P}letx1, . . . , xn = e1 in e2{R}

(let)

Γ � {P}e1{Q[x := result} Γ, x � {Q ∧ x}e2{R} Γ, x � {Q ∧ ¬x}e3{R}
Γ � {P}if e1 then e2[x := e1] else e3[x := e1]{R}

(if)

∀i, Γ � {P}ei{Ri[result]}
Γ � {P}〈e1, . . . , e2〉{R1[result1] ∧ · · · ∧Rn[resultn]}

(tuple)

f(x1, . . . , xn) � e Γ � {P}e[x1 := e1, . . . , xn := en]{R}
Γ � {P}f(e1, . . . , en){R}

(decl)

Γ � P → P ′ Γ � {P ′} e {Q′} : A Γ, result : A � Q′ → Q

Γ � {P}e{Q} : A
(weaken)

Γ � e1 = e2 : A Γ � {P [e1]} e[e1] {Q[e1]} : A

Γ � {P [e2]} e[e2] {Q[e2]} : A
(eq)

Fig. 10: Deduction rules for Qbricks: HQHL rules for term constructs

for the other inside a HQHL judgment. Finally, we can derive from the seman-
tics the usual substitution rules. For instance, provided that Γ, x : A � ψ and
Γ � ê : A then Γ � ψ[x := ê]. Note that in the rules, the first-order expressions
of the form ê are from the restricted grammar of terms of Qbricks-Spec.

6.3 Deduction rules for pps. The main tools to relate circuits and PPS are
the constant function circ_to_pps, its relational counterpart (− �−), and the
declared function circ_apply. They can be specified inductively on the structure
of the input circuit. The complete set of rules for circ_to_pps and (− �−) can
be found in [13].

Compositionality of SEQ. For instance, one can derive the deduction rules
for circ_apply applied to SEQ from Table 11. These rules can be used in a
bottom-up manner to derive composable, elementary properties of circuits out
of sub-circuits. In the table, we abbreviate pps_acc(circ_to_pps(−)) with Cacc,
for acc ∈ {width, range, ket,angle} and, given two bit vectors x and y, x · y
denotes their concatenation.

Example of deduction rule for HAD. Using the notations from above, we
define the following axiom for function circ_to_pps applied to the gate HAD:

166 C. Chareton et al.

Prec-SEQ �
Γ � {φ}C1{C_width(result, {p}) = w}
Γ � {φ}C1{C_width(result, {p}) = w}

SEQw
Γ � {φ}SEQ(C1, C2){C_width(result, {p}) = w}

{Prec-SEQ} Γ � {φ1}C1{C_range(result, {p}) = r1({p})}
Γ � {φ2}C2{C_range(result, {p}) = r2({p})}

SEQr
Γ � {φ1 ∧ φ2}SEQ(C1, C2){C_range(result, {p}) = r1({p}) + r2({p})}

{Prec-SEQ}

Γ � {φ1}C1{C_angle(result, {p})(x, y1) = a1({p}, x, y1)}
Γ � {φ1}C1{C_ket(result, {p})(x, y1) = k1({p}, x, y1)}
Γ � {φ2}C2{C_angle(result, {p})(k1({p}, x, y1), y2)

= a2({p}, x, y1, y2)}
SEQa

Γ � {φ1 ∧ φ2}SEQ(C1, C2){C_angle(result, {p})(x, y1 · y2)
= a1({p}, x, y1) + a2({p}, x, y1, y2)}

{Prec-SEQ}
Γ � {φ1}C1{C_ket(result, {p})(x, y1) = k1({p}, x, y1)}
Γ � {φ2}C2{C_ket(result, {p})(k1({p}, x, y1), y2)

= k2({p}, x, y1 · y2)}
SEQk

Γ � {φ1 ∧ φ2}SEQ(C1, C2){C_ket(result, {p})(x, y1 · y2) = k2({p}, x, y1 · y2)

Fig. 11: Deduction rules for circ_apply on sequence of circuits

Γ, x, y : bitvector �{
bv_length(x) = 1
bv_length(y) = 1

}
HAD

⎧⎪⎪⎨⎪⎪⎩
C_width(result) = 1,
C_range(result) = 1,

C_angle(result, x, y) = x[0] ∗ y[0],
C_ket(result, x, y) = y

⎫⎪⎪⎬⎪⎪⎭
Example 4. Consider the motivating example of Section 3.1 and its instantiation
in Example 1. We can now give a specification to the function main, as follows:

n : int,m : int, x : ket � {n ≥ 0 ∧ ket_length(x) = 1 ∧ n = 2 ∗m}
main(n)

{circ_apply(result, x) = x} .

The fact that circ_apply is well-defined implies that C is valid.

6.4 Equational reasoning. The SMT solvers we aim at using to discharge
proof obligations require equational theories describing how to reason on the con-
stant functions that were introduced. Some of these equational theories, such as
bit-vectors and algebraic fields, are standard and well-known in verification. To-
gether with a few properties on square-root, exponentiation, real and imaginary
parts, the latter is all we need for real and complex: in quantum computation,

An Automated Deductive Verification Framework for Quantum Programs 167

the manipulations of real and complex numbers turn out to be quite limited –
we do not need anything related to real or complex analysis.

The main difficulty in the design of Qbricks has been to lay out equational
theories and lemmas for circ, pps and ket that can efficiently help in automa-
tically discharging proof obligations. Many of these equations and lemmas are
quite straightforward. For instance, we turn the rewriting rules of Table 8 into
equations, such as (x, y : circ) � width(PAR(x, y)) = width(x) + width(y), or
a : A,n : int � iterf (a, n + 1) = f(iterf (a, n)). These equations maps the
(syntactic) computational behavior of expressions into the logic.

Other equations express purely semantic properties. For instance,

Γ, k : ket � circ_apply(SEQ(C1, C2), k) =

circ_apply(C1, circ_apply(C2, k)) (3)

(together with a few hypotheses ensuring correct widths) can be derived from
Table 11 and is part of the equational theory.

6.5 Additional deductive rules. Qbricks provides additional reasoning
rules, that we do not have space enough to detail here. Upon them are:

Circuit complexity. Certifying the complexity of quantum implementations
(e.g., polynomial number of gates in the size of the input) is of primary impor-
tance as in mid-term, implementations will have to deal with limited hardware
capacities, hence the need for tight circuit constructions. We stress that, while
raised by several programming [30] or compilation works [48], this aspect of cer-
tification is not addressed by existing formal verification approaches [35,45,1].

Probabilities. The probability of obtaining a result by a measurement is corre-
lated with the amplitudes of the corresponding ket-basis vectors in the quantum
state of the memory. In Qbricks-Spec we define proba_partial_measure :
circ×ket×bitvector→ real meaning that when the input circuit is applied
to the input ket, if we were to measure the result the probability of obtaining
the given vector would be the result of the function.

Wire identification. In some situation, to add a gate in a circuit it is easier to
give the number (identifier) of the wire on which the gate applies (such as “apply
HAD on wire n”) instead of sequencing the circuit with Id⊗n−1 ⊗ HAD. This is for
instance the design chosen in QASM or SQIR [35].

In Qbricks it is possible to define such a macro with the use of a derived
constructor PLACE(C, k, n). For any circuit C and any integers k, n, if 0 ≤ k ≤
n−width(C), PLACE(C, k, n) applies C on wires k to k+width(C)−1. It is defined
as ID⊗k ⊗ C ⊗ ID⊗n−k−C_width(C), where for any 0 < i, IDi � iter par-ID (i −
1) ID and par-ID(C) � PAR(C, ID). Similarly, Qbricks also provides constructor
CONT(C, c, k, n) with additional index c in �0, n� and not in �k, k + width(c)�.
Using adequate qubit permutation, through combinations of PLACE and SWAP, it
applies PLACE(C, k, n) with control c.

168 C. Chareton et al.

7 Implementation

The framework described so far is implemented as a DSL embedded inside the
Why3 deductive verification platform [9,25], written in the WhyML program-
ming language. This allows us to benefit from several strengths of Why3, such as
efficient code extraction toward Ocaml, generation of proof obligations (to im-
plement the HQHL mechanism) and access to several proof means: SMT solvers,
interactive proof commands or export to proof assistants (Coq, Isabelle/HOL)
—although we do not use this latter option in our case-studies.

The development itself counts 17,000+ lines of code, including 400+ defini-
tions and 1700+ lemmas, all proved within Why3. Most of the development con-
cerns the (verified) mathematical libraries. They cover the mathematical struc-
tures at stake in quantum computing (complex numbers, Kronecker product,
bit-vectors, etc.), together with a formally verified collection of mathematical
results. Only two theorems are assumed (for any real x: if 0 ≤ x ≤ 1 then
sin(πx) ≤ πx, and x ≤ sin(π x

2)). Proving them requires function derivation
material, not available in Why3 so far. Hence we chose to assume these standard
results.

8 Case studies and experimental evaluation

We develop and prove parametric implementations of Grover’s search, the Quan-
tum Fourier Transform (QFT), the Quantum Phase Estimation (QPE) and the
first ever verified implementation of the quantum part of Shor’s algorithm (Shor-
OF). We also implemented Deutsch-Jozsa (DJ) for comparison.

8.1 Examples of formal specifications. Let us first introduce some of the
formal specifications we proved. The specification for QPE [41,16] is shown in
Figure 12(a). The procedure inputs a unitary operator U and an eigenvector
|v〉 of U and finds the ghost ([26]) eigenvalue e2πiΦv associated with |v〉. The
specification for Shor-OF [61] is shown in Figure 12(b). We developed a certi-
fied concrete implementation following the implementation proposed in [5] —a
reference in term of complexity.6 The specification for Grover [31] is shown in
Figure 12(c). Given a predicate with k true value in �0, 2n�, Grover’s algorithm
outputs one of these true values with good probability.

Each of these specifications makes use of specific functions that we do not
have the space to detail here (see [13] for details). We however want to note
two things. First, these specifications describe results of measurement (with the
dedicated functions proba_partial_measure_x). As discussed in Section 6.5,
if Qbricks-DSL is not able to handle measurement we are still able with
Qbricks-Spec to reason on the result of a measurement, as this is a simple
function over complex amplitudes. Another thing to note is that, for Shor-OF
and Grover, our specification discuss the polynomial size of the produced circuit.
6 A further refinement is possible [5], using a hybrid version of the Quantum Fourier

Transform, but it would require adding effective measure operation and classical
control to Qbricks.

An Automated Deductive Verification Framework for Quantum Programs 169

Γ, (f : pps), (C : circ), (|v〉 : ket), (k, n : int), (ghost θ : real), (j : ghost int) �(
(C � f) ∧ width(C) = n ∧ 0 < k ∧ Eigen(f, |v〉, e2πi∗θ)

)
QPE(C, k, n)(

proba_partial_measure_p(result, k|v〉, error < 1
2k+1) ≥ 4

π2 ∧
θ = j

2k
→ proba_partial_measure(result, |v〉, |j〉k) = 1

)
(a) Specification for our implementation of Quantum Phase estimation

Γ (a, b, n : int), (j : ghost int) �(
co_prime(a, b) ∧ 1 ≤ b < 2n ∧ 1 ≤ j < b ∧ aj%b = 1

)
Shor-circ(a, r, n)⎛⎜⎜⎜⎝

proba_partial_measure_p
(
|1〉n, error1 ≤ 1

2∗2n∗2

)
≥ 4

π2 ∧
proba_partial_measure_p

(
|1〉n, error2 ≤ 1

2∗2n∗2

)
≥ φ(r)

r
× 4

π2∧
size(result) = Shor-poly(n) ∧

ancillas(result) = n+ 2 ∧ width(result) = 3 ∗ n

⎞⎟⎟⎟⎠
(b) Specification for our implementation of Shor-OF algorithm

Γ, (C : circ), (f : int → bool), (n, i, k : int) �(
implements(C, f) ∧ 1 < n ∧ 1 ≤ k < 2n − 1 ∧ 1 ≤ i

∧ Card({j | 0 ≤ j < 2n ∧ f(j) = true}) = k

)
Grover(C, k, n)⎛⎜⎜⎝proba_partial_measuref (result, bv_cst (n, 0), f) = sin2

(
arcsin

(√
k
2n

)
(̇1 + 2i)

)
∧

size(result) = i ∗ (size(C) ∗ O(n)) ∧
width(result) = n ∧ ancillas(result) = 1

⎞⎟⎟⎠
(c) Specification for our implementation of Grover’s algorithm

Fig. 12: Specifications of the main implementations

8.2 Experimental evaluation. Different metrics about our formal develop-
ments are reported in Table 137: lines of decorated code, number of lemmas,
proof obligations (PO), automatically proven PO (within time limit 5 seconds)
and their percentage among POs, interactive commands we entered to discharge
them and time required for the automatic verification of these proofs.

Note that metrics for each implementation strictly concern the code that is
proper to it (eg., QPE contains calls to QFT but QPE line in Table 13 does not
include the QFT implementation. The whole Shor-OF development is reported
in the “Shor-OF full”.

Result. Qbricks did allow us to implement and verify in a parametric manner
the Shor-OF, QPE and Grover algorithms, at a rather smooth cost and with high
proof automation (95% on average, 95% for full Shor-OF).

8.3 Prior verification efforts. Before comparing our approach to prior at-
tempts (Table 14), we first introduce these cases.

7 Experiments were run on Linux, on a PC equipped with an Intel(R) Core(TM)
i7-7820HQ 2.90GHz and 15 GB RAM. We used Why3 version 1.2.0 with solvers
Alt-Ergo-2.2.0, CVC 3-2.4.1, CVC4-1.0, Z3-4.4.1.

170 C. Chareton et al.

#LoC + #Extr. #Def. #Lem. #POs Automation #Cmd Verif.
Spec # Aut. % Aut. time

DJ 57 11 2 1 72 61 >84% 39 1m19s
Grover 193 39 6 8 505 479 >94% 125 4m43s
QFT 65 18 3 0 62 53 >85% 37 1m11s
QPE 175 24 3 8 282 262 >92% 94 4m35s
Shor-OF 923 132 28 14 2473 2386 >96% 421 <18m
Shor-OF (full) 1163 174 34 22 2817 2701 >95% 552 <23m
Total 1423 224 42 31 3394 3241 >95% 716 <29m
#LoC + Spec.: lines of decorated code — # Extr.: lines of extracted code (OCaml)

#Aut.: automatically proven POs — #Cmd: interactive commands
#Verif. time: automated proof verification time

Table 13: Implementation & verification for case studies with Qbricks

Regular path-sums. [2,1] uses path sums for the verification of several circuits
of complexity similar to that of QFT (QFT, Hidden shift, generalized Toffoli,
etc). Yet, these experiments consider fixed circuits (up to 100 qubits) and the
technique cannot be applied to parametric families of circuits or circuit-building
languages.

QHL. Liu et al. [45] report about the parametric verification of Grover search
algorithm, on a restricted case 8 and in the high-level algorithm description for-
malism of QHL – especially QHL has no notion of circuit. So for instance one
cannot reason upon the size of a circuit within QHL.

SQIR. Finally, Hietala et al. [35] have presented a parametric (circuit-building)
implementation of the Deutsch-Jozsa algorithm in Coq, with two independent
full correctness proofs. Recently (Oct. 2020), the authors also presented para-
metrized versions of QFT, QPE and Grover algorithms [34].

8.4 Evaluation: benefits of PPS and Qbricks. So as to evaluate the
proof effort gain of using pps instead of matrices, Table 14 shows some com-
parison between our case studies implementations and equivalent proved imple-
mentations from the literature: the Grover algorithm implementation from [45]
in Isabelle/HOL and the implementations [35,34] using SQIR and Coq. As sup-
plementary comparison terms, we implemented Qbricks versions of both QFT
and Deutsch-Jozsa using exclusively matrices.

For example the Qbricks implementation of QFT with pps is 18 lines long,
with 47 lines of specifications and intermediary lemmas, and its proof required 37
additional interactive commands, hence Spec + Cmd = 84. In comparison, the
corresponding SQIR development uses 287 interactive commands (7.7x more).

Conclusion. Relying on PPS semantics and first-order logic instead of matri-
ces and higher-order logics strongly eases the proof effort. In term of command
8 The case in [45, p. 232] concerns cases where the number k of seeked values is equal

to 2j for a given integer j.

An Automated Deductive Verification Framework for Quantum Programs 171

Qbricks pps Qbricks Matrix
LoC Spec Cmd Spec+Cmd LoC Spec Cmd Spec+Cmd

DJ 11 46 39 85 11 129 131(>3.3x) 260(>3x)
QFT 18 47 37 84 18 172 106(>2.8x) 278 (>3.3x)
Grover 39 154 125 279
QPE 23 152 94 246

SQIR QHL
LoC Spec Cmd Spec+Cmd LoC Spec Cmd Spec+Cmd

DJ 10 39 222(>5.6x) 261(>3x)
QFT 10 44 287(>7.7x) 331(>3.9x)
Grover 15 121 805(>6.4x) 926(>3.3x) 90 1263 1712(>13.6x) 2975 (>10.6x)
QPE 40 86 726(>7.7x) 812(>3.3x)

#LoC.: lines of code – # Spec.: lines of spec. and lemmas – #Cmd: proof commands

Table 14: Compared implementations of case studies, using matrices and pps

lines, proofs are consistently at least 5.6x shorter than non Qbricks examples,
up to 13.6x for the case of Grover in QHL and 7.7x for QPE and QFT in SQIR.9

9 Related works

Formal verification of quantum circuits. Prior efforts regarding quantum
circuit verification [27,45,70,53,56,1,2,35,34] have been described throughout the
paper, especially in Sections 1, 3.1 and 8. Our technique is more automated than
those based on interactive proving [35,34,45], borrows and extends the path sum
representation [2] to the parametric case, and do consider a circuit-building
language rather than a high-level algorithm description language [45].

Quantum Languages and Deductive Verification. Liu et al. [45] intro-
duce Quantum Hoare Logic for high-level description of quantum algorithms.
QHL and our own HQHL are different, as the underlying formalisms have differ-
ent focus. While QHL deals with measurement and classical control, it does not
allow reasoning on the structure of the circuit. On the other hand, Qbricks does
not handle classical control, but it brings better proof automation and deduc-
tion rules for reasoning on circuits. Combining the two approaches is an exciting
research direction.

Verified Circuit Optimizations. Formal methods and other program analy-
sis techniques are also used in quantum compilation for verifying circuit optimi-
zation techniques [52,6,32,3,62,57,35]. Epecially, the ZX-calculus [17] represents

9 The difference with SQIR in the column “Spec+Cmd” is less stringent. By the way, it
turns out that SQIR syntax for specifications is often more succint, as eg, Qbricks
writes each precondition in a separated line, where Coq writes the same as a single-
line conjunction.

172 C. Chareton et al.

quantum circuits by diagrams amenable to automatic simplification through de-
dicated rewriting rules. This framework leads to a graphical proof assistant [40]
geared at certifying the semantic equivalence between circuit diagrams, with ap-
plication to circuit equivalence checking and certified circuit compilation and
optimization [21,20,39]. Yet, formal tools based on ZX-calculus are restricted to
fixed circuits, and parametrized approaches are so far limited to pen-and-paper
proofs [12].

Other quantum applications of formal methods. Huang et al. [36,37]
proposes a “runtime-monitoring like” verification method for quantum circuits,
with an annotation language restricted to structural properties of interest (e.g.,
superposition or entanglement). Similarly, [44] describes a projection based as-
sertion language for quantum programs. Verification of these assertions is led
by statistical testing instead of formal proofs. The recent Silq language [8] also
represents an advance in the way toward automation in quantum programming.
It automatizes uncomputation operations, enabling the programmer to abstract
from low level implementation details. Also specialized type systems for quan-
tum programming languages, based on linear logic [60,59,43] and dependent
types [51,53], have been developed to tackle the non-duplicability of qubits and
structural circuit constraints. Finally, formal methods are also at stake for the
verification of quantum cryptography protocols [49,29,11,47,19].

10 Conclusion

We address the problem of automating correctness proofs of quantum programs.
While relying on the general framework of deductive verification, we finely tune
our domain-specific circuit-building language Qbricks-DSL together with its
new logical specification language Qbricks-Spec in order to keep correctness
reasoning over relevant quantum programs within first-order theory. Also, we
introduce and intensively build upon parametrized path sums (PPS), a sym-
bolic representation for quantum circuits represented as functions transforming
quantum data registers. We develop verified parametric implementations of the
Shor-OF algorithm (first verified implementation) and other famous non-trivial
quantum algorithms (including QPE and Grover search), showing significant
improvement over prior attempts – when available.

Acknowledgments. This work was supported in part by the French National
Research Agency (ANR) under the research project SoftQPRO ANR17-CE25-
0009-02, and by the DGE of the French Ministry of Industry under the research
project PIA-GDN/QuantEx P163746- 484124.

An Automated Deductive Verification Framework for Quantum Programs 173

References

1. M. Amy. Formal Methods in Quantum Circuit Design. PhD thesis, University of
Waterloo, Ontario, Canada, 2019.

2. M. Amy. Towards large-scale functional verification of universal quantum circuits.
In P. Selinger and G. Chiribella, editors, Proceedings 15th International Conference
on Quantum Physics and Logic, QPL 2018, volume 287 of Electronic Proceedings
in Theoretical Computer Science, pages 1–21, Halifax, Canada, 2019. EPTCS.

3. M. Amy, M. Roetteler, and K. M. Svore. Verified compilation of space-efficient
reversible circuits. In R. Majumdar and V. Kuncak, editors, Proceedings of the
29th International Conference on Computer Aided Verification (CAV 2017), Part
II, volume 10427 of Lecture Notes in Computer Science, pages 3–21, Heidelberg,
Germany, 2017. Springer.

4. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. S. L. Brandao, D. A. Buell, et al. Quantum supremacy using a
programmable superconducting processor. Nature, 574(7779):505–510, 2019.

5. S. Beauregard. Circuit for shor’s algorithm using 2n+ 3 qubits. arXiv preprint
quant-ph/0205095, 2002.

6. D. Bhattacharjee, M. Soeken, S. Dutta, A. Chattopadhyay, and G. D. Micheli. Re-
versible pebble games for reducing qubits in hierarchical quantum circuit synthesis.
In Proceedings of the 49th IEEE International Symposium on Multiple-Valued Logic
(ISMVL 2019), pages 102–107, Fredericton, NB, Canada, 2019. IEEE.

7. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quan-
tum machine learning. Nature, 549(7671):195, 2017.

8. B. Bichsel, M. Baader, T. Gehr, and M. T. Vechev. Silq: a high-level quantum lan-
guage with safe uncomputation and intuitive semantics. In A. F. Donaldson and
E. Torlak, editors, Proceedings of the 41st ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, PLDI 2020, London,
UK, June 15-20, 2020, pages 286–300. ACM, 2020.

9. F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd Your
Herd of Provers. In Proceedings of Boogie 2011: First International Workshop
on Intermediate Verification Languages, Wroclaw, Poland, 53–64, 2011. Available
online as hal-00790310.

10. J. Boender, F. Kammüller, and R. Nagarajan. Formalization of quantum protocols
using coq. In C. Heunen, P. Selinger, and J. Vicary, editors, Proceedings of the 12th
International Workshop on Quantum Physics and Logic (QPL 2015), volume 195
of Electronic Proceedings in Theoretical Computer Science, pages 71–83, Oxford,
UK, 2015. EPTCS.

11. A. Broadbent. How to verify a quantum computation. Theory of Computing,
14(1):1–37, 2018.

12. T. Carette, D. Horsman, and S. Perdrix. SZX-calculus: Scalable graphical quantum
reasoning. In P. Rossmanith, P. Heggernes, and J. Katoen, editors, 44th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2019,
August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 55:1–55:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

13. C. Chareton, S. Bardin, F. Bobot, V. Perrelle, and B. Valiron. Toward certified
quantum programming. arXiv preprint arXiv:2003.05841, 2020.

14. I. L. Chuang, N. Gershenfeld, and M. Kubinec. Experimental implementation of
fast quantum searching. Physical review letters, 80(15):3408, 1998.

174 C. Chareton et al.

15. E. M. Clarke and J. M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

16. R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 454(1969):339–354, 1998.

17. B. Coecke and A. Kissinger. Picturing quantum processes. Cambridge University
Press, Cambridge, United Kingdom, 2017.

18. D. Coppersmith. An approximate fourier transform useful in quantum factoring.
arXiv preprint quant-ph/0201067, 1994.

19. T. A. Davidson. Formal verification techniques using quantum process calculus.
PhD thesis, University of Warwick, 2012.

20. N. de Beaudrap, R. Duncan, D. Horsman, and S. Perdrix. Pauli fusion: a computa-
tional model to realise quantum transformations from ZX terms. Available online
as arXiv:1904.12817, 2019.

21. A. Fagan and R. Duncan. Optimising Clifford circuits with Quantomatic. In
P. Selinger and G. Chiribella, editors, Proceedings of the 15th International Con-
ference on Quantum Physics and Logic (QPL 2018), volume 287 of Electronic Notes
In Theoretical Computer Science, pages 85–105, Halifax, Canada, 2018. EPTCS.

22. E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization
algorithm. Available online as arXiv:1411.4028, 2014.

23. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A
quantum adiabatic evolution algorithm applied to random instances of an np-
complete problem. Science, 292(5516):472–475, 2001.

24. J. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive
program verification. In W. Damm and H. Hermanns, editors, Proceedings of the
19th International Conference on Computer Aided Verification (CAV 2007), vol-
ume 4590 of Lecture Notes in Computer Science, pages 173–177, Berlin, Germany,
2007. Springer.

25. J. Filliâtre and A. Paskevich. Why3 - where programs meet provers. In M. Felleisen
and P. Gardner, editors, Proceedings of the 22nd European Symposium on Program-
ming Languages and Systems (ESOP 2013), Held as Part of the European Joint
Conferences on Theory and Practice of Software (ETAPS 2013), volume 7792 of
Lecture Notes in Computer Science, pages 125–128, Rome, Italy, 2013. Springer.

26. J.-C. Filliâtre, L. Gondelman, and A. Paskevich. The spirit of ghost code. Formal
Methods in System Design, 48(3):152–174, 2016.

27. S. J. Gay, R. Nagarajan, and N. Papanikolaou. QMC: a model checker for quantum
systems. In A. Gupta and S. Malik, editors, Proceeding of the 20th International
Conference on Computer Aided Verification (CAV 2008), volume 5123 of Lecture
Notes in Computer Science, pages 543–547, Princeton, NJ, USA, 2008. Springer.

28. I. M. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Reviews of Modern
Physics, 86(1):153, 2014.

29. A. Gheorghiu, T. Kapourniotis, and E. Kashefi. Verification of quantum computa-
tion: An overview of existing approaches. Theory of Computing Systems, 63(4):715–
808, 2019.

30. A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper:
A scalable quantum programming language. In H.-J. Boehm and C. Flanagan,
editors, Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, (PLDI’13), pages 333–342, Seattle, WA, USA, 2013.
ACM.

An Automated Deductive Verification Framework for Quantum Programs 175

31. L. K. Grover. A fast quantum mechanical algorithm for database search. In G. L.
Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing (STOC), pages 212–219, Philadelphia, Pennsylvania, USA,
1996. ACM.

32. W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli. SAT-based ex-
act synthesis: Encodings, topology families, and parallelism. To apprear in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
https://doi,org/10.1109/TCAD.2019.2897703, 2019.

33. A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems
of equations. Physical Review Letters, 103:150502, Oct 2009.

34. K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks. Proving quantum programs
correct. arXiv preprint arXiv:2010.01240, 2020.

35. K. Hietala, R. Rand, S.-H. Hung, X. Wu, and M. Hicks. A verified optimizer
for quantum circuits. Proceedings of the ACM on Programming Languages,
5(POPL):1–29, 2021.

36. Y. Huang and M. Martonosi. QDB: from quantum algorithms towards correct
quantum programs. In T. Barik, J. Sunshine, and S. Chasins, editors, Proceedings
of the 9th Workshop on Evaluation and Usability of Programming Languages and
Tools (PLATEAU@SPLASH 2018), volume 67 of OpenAccess Series in Informatics
(OASIcs), pages 4:1–4:14, Boston, Massachusetts, USA, 2018. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik.

37. Y. Huang and M. Martonosi. Statistical assertions for validating patterns and
finding bugs in quantum programs. In S. B. Manne, H. C. Hunter, and E. R.
Altman, editors, Proceedings of the 46th International Symposium on Computer
Architecture (ISCA 2019), pages 541–553, Phoenix, AZ, USA, 2019. ACM.

38. IBM Blog. On quantum supremacy. Blog Article10, 2019.
39. A. Kissinger and J. van de Wetering. Reducing t-count with the ZX-calculus.

Available online as arXiv:1903.10477, 2019.
40. A. Kissinger and V. Zamdzhiev. Quantomatic: A proof assistant for diagrammatic

reasoning. In A. P. Felty and A. Middeldorp, editors, Proceedings for the 25th Inter-
national Conference on Automated Deduction (CADE-25), volume 9195 of Lecture
Notes in Computer Science, pages 326–336, Berlin, Germany, 2015. Springer.

41. A. Y. Kitaev. Quantum measurements and the abelian stabilizer problem. Available
online as arXiv:quant-ph/9511026, 1995.

42. E. Knill. Conventions for quantum pseudocode. Technical report, Los Alamos
National Lab., NM (United States), 1996.

43. U. D. Lago, A. Masini, and M. Zorzi. Quantum implicit computational complexity.
Theoretical Computer Science, 411(2):377–409, 2010.

44. G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie. Projection-based runtime
assertions for testing and debugging quantum programs. Proc. ACM Program.
Lang., 4(OOPSLA):150:1–150:29, 2020.

45. J. Liu, B. Zhan, S. Wang, S. Ying, T. Liu, Y. Li, M. Ying, and N. Zhan. For-
mal verification of quantum algorithms using quantum hoare logic. In I. Dillig
and S. Tasiran, editors, Computer Aided Verification, pages 187–207, Cham, 2019.
Springer International Publishing.

46. T. Liu, Y. Li, S. Wang, M. Ying, and N. Zhan. A theorem prover for quantum
hoare logic and its applications. Available as arXiv:1601.03835, 2016.

10 https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/

176 C. Chareton et al.

47. U. Mahadev. Classical verification of quantum computations. In M. Thorup, editor,
Proceedings of the 59th IEEE Annual Symposium on Foundations of Computer
Science (FOCS 2018), pages 259–267, Paris, France, 2018. IEEE Computer Society.

48. G. Meuli, M. Soeken, M. Roetteler, and T. Häner. Enabling accuracy-aware quan-
tum compilers using symbolic resource estimation. Proc. ACM Program. Lang.,
4(OOPSLA), 2020.

49. R. Nagarajan and S. Gay. Formal verification of quantum protocols. Available
online as arXiv:quant-ph/0203086, 2002.

50. M. A. Nielsen and I. Chuang. Quantum computation and quantum information.
Cambridge University Press, Cambridge, United Kingdom, 2002.

51. L. Paolini, M. Piccolo, and M. Zorzi. qPCF: Higher-order languages and quantum
circuits. Journal of Automated Reasoning, 63(4):941–966, Dec 2019.

52. A. Parent, M. Roetteler, and K. M. Svore. REVS: a tool for space-optimized
reversible circuit synthesis. In I. Phillips and H. Rahaman, editors, Proceedings of
the 9th International Conference on Reversible Computation (RC 2017), volume
10301 of Lecture Notes in Computer Science, pages 90–101, Kolkata, India, 2017.
Springer.

53. J. Paykin, R. Rand, and S. Zdancewic. QWIRE: a core language for quantum
circuits. In G. Castagna and A. D. Gordon, editors, Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL’17), pages
846–858, Paris, France, 2017. ACM.

54. Qbricks repository. https://cchareton.github.io/Qbricks.
55. Quantum Computing Report. List of tools. Available online11, 2019.
56. R. Rand. Formally Verified Quantum Programming. PhD thesis, University of

Pennsylvania, 2018.
57. R. Rand, J. Paykin, D. Lee, and S. Zdancewic. ReQWIRE: Reasoning about

reversible quantum circuits. In P. Selinger and G. Chiribella, editors, Proceedings
15th International Conference on Quantum Physics and Logic (QPL 2018), volume
287 of Electronic Proceedings in Theoretical Computer Science, pages 299–312,
Halifax, Canada, 2018. EPTCS.

58. R. Rand, J. Paykin, and S. Zdancewic. QWIRE practice: Formal verification of
quantum circuits in coq. In B. Coecke and A. Kissinger, editors, Proceedings
14th International Conference on Quantum Physics and Logic (QPL 2017), volume
266 of Electronic Proceedings in Theoretical Computer Science, pages 119–132,
Nijmegen, The Netherlands, 2017. EPTCS.

59. N. J. Ross. Algebraic and Logical Methods in Quantum Computation. PhD thesis,
Dalhousie University, 2015.

60. P. Selinger and B. Valiron. A lambda calculus for quantum computation with
classical control. Mathematical Structures in Computer Science, 16:527–552, 2006.

61. P. W. Shor. Algorithms for quantum computation: Discrete log and factoring.
In Proceedings of the 35th Annual Symposium on Foundations of Computer Sci-
ence (FOCS’94), pages 124–134, Santa Fe, New Mexico, US., 1994. IEEE, IEEE
Computer Society Press.

62. M. Soeken, T. Häner, and M. Roetteler. Programming quantum computers using
design automation. Available online as arXiv:1803.01022, 2018.

63. D. S. Steiger, T. Häner, and M. Troyer. ProjectQ: an open source software frame-
work for quantum computing. Quantum, 2:49, Jan. 2018.

11 https://quantumcomputingreport.com/resources/tools/

https://cchareton.github.io/Qbricks

An Automated Deductive Verification Framework for Quantum Programs 177

64. K. M. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuch-
nikov, M. Mykhailova, A. Paz, and M. Roetteler. Q#: Enabling scalable quantum
computing and development with a high-level domain-specific language. Available
online as arXiv:1803.00652, 2018.

65. K. M. Svore and M. Troyer. The quantum future of computation. IEEE Computer,
49(9):21–030, 2016.

66. B. Valiron, N. J. Ross, P. Selinger, D. S. Alexander, and J. M. Smith. Programming
the quantum future. Communications of the ACM, 58(8):52–61, 2015.

67. D. Wecker and K. M. Svore. LIQUi|〉: A software design architecture and domain-
specific language for quantum computing. Available online as arXiv:1402.4467,
2014.

68. M. Ying. Floyd-hoare logic for quantum programs. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 33(6):19:1–19:49, 2011.

69. M. Ying. Toward automatic verification of quantum programs. Formal Aspects of
Computing, 31(1):3–25, 2019.

70. M. Ying, Y. Li, N. Yu, and Y. Feng. Model-checking linear-time properties of
quantum systems. ACM Transactions on Computational Logic, 15(3):22:1–22:31,
2014.

71. M. Ying, S. Ying, and X. Wu. Invariants of quantum programs: characterisations
and generation. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL 2017), pages 818–832, Paris, France, 2017.
ACM.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	An Automated Deductive Verification Framework for Circuit-building Quantum Programs
	1 Introduction
	1.1 Quantum computing
	1.2 The hybrid model.
	1.3 The problem with quantum algorithms.
	1.4 Goal and challenges.
	1.5 Proposal.
	1.6 Contributions.
	1.7 Discussion.

	2 Background: Quantum Algorithms and Programs
	2.1 Quantum data manipulation.
	2.2 Quantum circuits.
	2.3 Reasoning on circuits and the matrix semantics.
	2.4 Path-sum representation.

	3 Introducing PPS
	3.1 Motivating example.
	3.2 Parametrizing path-sums.

	4 Qbricks-DSL
	4.1 Syntax of Qbricks-DSL.
	4.2 Operational semantics.
	4.3 Properties.
	4.4 Universality and usability of the chosen circuit constructs.
	4.5 Validity of circuits.
	4.6 Denotational semantics.

	5 Qbricks-Spec
	5.1 Syntax of Qbricks-Spec.
	5.2 The types pps and ket.
	5.3 Denotational semantics of the new types.
	5.4 Regular sequents in Qbricks-Spec.
	5.5 Parametricity of PPS.
	5.6 Standard matrix semantics and correctness of PPS semantics.

	6 Reasoning on Quantum Programs
	6.1 HQHL judgments.
	6.2 Deduction rules for term constructs.
	6.3 Deduction rules for pps.
	6.4 Equational reasoning.
	6.5 Additional deductive rules.

	7 Implementation
	8 Case studies and experimental evaluation
	8.1 Examples of formal specifications.
	8.2 Experimental evaluation.
	8.3 Prior verification efforts.
	8.4 Evaluation: benefits of PPS and Qbricks.

	9 Related works
	10 Conclusion
	Acknowledgments.
	References

