®

Check for
updates

Verified Software Units

Lennart Beringer

Princeton University, Princeton NJ 08544, USA
eberinge@cs.princeton.edu

Abstract. Modularity - the partitioning of software into units of func-
tionality that interact with each other via interfaces - has been the main-
stay of software development for half a century. In case of the C language,
the main mechanism for modularity is the compilation unit / header file
abstraction. This paper complements programmatic modularity for C
with modularity idioms for specification and verification in the context
of Verifiable C, an expressive separation logic for CompCert Clight. Tech-
nical innovations include (i) abstract predicate declarations — existential
packages that combine Parkinson & Bierman’s abstract predicates with
their client-visible reasoning principles; (ii) residual predicates, which
help enforcing data abstraction in callback-rich code; and (iii) an appli-
cation to pure (Smalltalk-style) objects that connects code verification
to model-level reasoning about features such as subtyping, self, inheri-
tance, and late binding. We introduce our techniques using concrete ex-
ample modules that have all been verified using the Coq proof assistant
and combine to fully linked verified programs using a novel, abstraction-
respecting component composition rule for Verifiable C.

Keywords: Verified Software Unit - Abstract Predicate Declaration -
Residual Predicate - Positive Subtyping - Verified Software Toolchain.

1 Introduction

Separation logic [61,53] constitutes a powerful framework for verifying functional
correctness of imperative programs. Foundational implementations in interactive
proof assistants such as Coq exploit the expressiveness of modern type theory
to construct semantic models that feature higher-order impredicative quantifica-
tion, step-indexing, and advanced notions of ghost state [4,36]. On the basis of
proof rules that are justified w.r.t. the operational semantics of the programming
language in question, these systems perform symbolic execution and employ mul-
tiple layers of tactical or computational proof automation to assist the engineer
in the construction of concrete verification scripts. Perhaps most importantly,
these implementations integrate software verification and model-level validation,
by embedding assertions shallowly in the proof assistant’s ambient logic; this
permits specifications to refer to executable model programs or domain-specific
constructions that are then amenable to code-independent analysis in Coq.

To realize the potential of separation logic, such implementations must be
provided for mainstream languages and compatible with modern software engi-
neering principles and programming styles. This paper addresses this challenge

© The Author(s) 2021
N. Yoshida (Ed.): ESOP 2021, LNCS 12648, pp. 118-147, 2021.
https://doi.org/10.1007/978-3-030-72019-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72019-3_5&domain=pdf
http://orcid.org/0000-0002-1570-3492
https://doi.org/10.1007/978-3-030-72019-3_5

Verified Software Units 119

for Verifiable C, the program logic of the Verified Software Toolchain (VST [4]).
We advance Verifiable C’s methodology as follows.

1. We provide general infrastructure for modular verification of modular pro-
grams by extending Beringer and Appel’s recent theory of function specifi-
cation subsumption and intersection specifications [15] to a formal calculus
for composing verified software units (VSUs) at their specification interface.
Each VSU equips a compilation unit’s header file with VST specifications of
its API-exposed functions. Composition of VSUs matches the respective im-
port and export interfaces, applying subsumption as necessary. Crucially, a
compilation unit’s private functions remain hidden and only need to be spec-
ified locally. Composition is compatible with source-level linking for Comp-
Cert Clight and supports repeated import of library modules (§3).

2. Utilizing existential abstraction [46] and parametricity, we extend work on
abstract predicates [56] to provide clients with specification interfaces that
differ in the degree to which module-internal representation details are re-
vealed. This flexibility is achieved by codifying how the reasoning principles
associated with a predicate can be selectively communicated to clients, using
a device we call (existentially) abstract predicate declarations (APDs) (§4).

3. To investigate specification modularity in the presence of callbacks, we study
variants of the subject-observer design pattern; we demonstrate that by com-
plementing a module’s primary predicate with residual predicates, represen-
tation hiding can be respected even at transient interaction points, where
an invocation of a module’s operation is interrupted, the module’s invari-
ant may be violated, and yet its internal state must remain unmodified and
unexposed until the operation is resumed (§5).

4. We present a novel approach to foundational reasoning about object prin-
ciples that modularly separates C code verification from model-level behav-
ior. Exploiting the theory of positive subtyping [30], we cover subtyping,
interfaces with multiple implementations, dynamic dispatch, self, and late
binding, for a simple Smalltalk-style object model with static typing (§6).

This paper is accompanied by a development in Coq [14] that conservatively
extends VST with the VSU infrastructure and contains several case studies. In
addition to the examples detailed in the paper, the Coq code treats (i) the run-
ning example (“piles”) of Beringer and Appel’s development [15]; we retain their
ability to substitute representation-altering but specification-preserving imple-
mentations; (ii) a variant of Barnett and Naumann’s Master-Clock example [12],
as another example of tightly coupled program units; and (iii) an implementa-
tion of the Composite design pattern, obtained by transcribing a development
from the Verifast code base [35]. In addition, a VSU interface that unifies the
APIs of BT-trees and tries was recently developed by Kravchuk-Kirilyuk [40].

To see how APDs build on Parkinson and Bierman’s work, consider a concrete
representation predicate in the style of Reynolds [61]: list x a p specifies that
address p represents a monotone list a of numbers greater than x:

list x nil p &' (p=null) & emp list x (a::a) p “3ga>x&pra qxlistaanqg

120 L. Beringer

Being defined in terms of —, this definition assumes a specific data layout (a two-
field struct). Representation-specific predicates enable verification of concrete
implementations of operations such as reverse. But a client-facing specification
of the entire list module should only expose the predicate in its folded form —
a simple case of an abstract predicate. Indeed, while VST fully supports API
exposure of structs (incl. stack allocation), all examples in this paper employ an
essentially “dataless” programming discipline [8,60,37] in which structs are at
most exposed as forward declarations. Clearly, such programmatic encapsulation
should not be compromised through the use of concrete predicate definitions.
To regulate whether a predicate is available in its abstract or unfolded form
at a particular program point, Parkinson and Bierman employ a notion of scope:
predicates are available in their unfolded form when in scope and are treated
symbolically elsewhere. This separation can naturally align with the partitioning
into compilation units, but is all-or-nothing. But even in the absence of specifica-
tions, different clients need different interfaces: C developments routinely provide
multiple header files for a single code unit, differing in the amount to which rep-
resentational information is exposed. Mundane examples include special-purpose
interfaces for internal performance monitoring or debugging. Extending this ob-
servation to specifications means supporting multiple public invariants. Indeed,
several levels of visibility are already conceivable for our simple list predicate:

— no (un)folding, no exposed reasoning principles: properties that follow from
the predicate’s definition cannot be exploited during client-side verification;

— no (un)folding, but reasoning principles are selectively exposed; for example,
one may expose the model-level property that « is strictly increasing, or the
fact that the head pointer is null exactly if « is empty;

— the set of exposed reasoning principles includes fold/unfold lemmas (perhaps
with the least-fixed-point property inherent in the inductive definition of the
predicate), but the internal representation of nodes is encapsulated using a
further predicate; hence, implementations are free to select a different struct
layout, for example by swapping the order of fields;

— the predicate definition is fully exposed, including the internal data layout.

APDs support such flexibility by combining zero or more abstract predicate dec-
larations (no definitions, to maintain implementation-independence) with ax-
ioms that selectively expose the predicates’ reasoning principles. In parallel to
programmatic forward declarations, an APD is exported in the specification in-
terface of an API and is substantiated — in implementation-dependent fashion
— in the VST proof of the corresponding compilation unit. This substantiation
includes the validation of the exposed axioms. When specifying the API of a
module, the engineer may not only refer to any APDs introduced by the module
in question, but may also assume APDs for data structures provided by other
modules (whose header files are typically #included in the API in question).
Matching the APD assumptions and provisions of different modules occurs nat-
urally during the application of our component linking rule, ensuring that fully
linked programs contain no unresolved APD assumptions.
Before going into technical details, we first summarize key aspects of VST.

Verified Software Units 121

2 Program verification using VST

Verification using VST happens exclusively inside the Coq proof environment,
and operates directly on abstract syntax trees of CompCert Clight. Typically,
these ASTs result from feeding a C source file through CompCert’s frontend,
clightgen, but they may also originate from code synthesis. Either way, verifica-
tion applies to the same code that is then manipulated by CompCert’s optimiza-
tion and backend phases. This eliminates the assurance gap that emerges when
a compiler’s (intermediate) representation diverges syntactically or semantically
from a verification tool’s representation. The absence of such gaps is the gist of
VST’s machine-checked soundness proof: verified programs are safe w.r.t. the op-
erational semantics of Clight; this guarantee includes memory safety (absence of
null-pointer dereferences, out-of-bounds array accesses, use-after-frees,...) but
also absence of unintended numeric overflows or race conditions. As Clight code
is still legal C code (although slightly simplified, and with evaluation order de-
terminized), verification happens at a level the programmer can easily grasp.

In contrast to other verification tools, VST does not require source code
to be annotated with specifications. Instead, the verification engineer writes
specifications in a separate Coq file. By not mixing specifications (let alone
aspects of proof, such as loop invariants) with source code, VST easily supports
associating multiple specifications with a function and constructing multiple
proofs for a given code/specification pair.

We write function specifications ¢ in the form { P} ~ {v. @} where v denotes
the (sometimes existentially quantified) return value and P and () are separation
logic assertions. To shield details of its semantic model, VST exposes heap asser-
tions using the type mpred rather than as direct Cog-level predicates. On top
of mpred, assertions are essentially embedded shallowly, giving the user access
to the logical and programmatic features of Coq when defining specifications.

VST’s top-level notion asserting that a (closed) program p — which must
include main, with a standard specification — has been verified in Coqis Fp: G
(“semax_prog”). Here, G — of type funspecs, i.e. associating specifications ¢
to function identifiers f — constitutes a witnessing proof context that contains
specifications for all functions in p and must itself be justified: for each (f, ¢y) €
G, the user must exhibit a Coq proof of G I f : ¢ (“semax_body”), expressing
that f satisfies ¢y under hypotheses in G. VST’s step-indexed model ensures
logical consistency in case of (mutual) recursion.

We exploit Beringer and Appel [15]’s theory of specification subsumption
¢ <: 1 which extends parameter adaptation [38,50,48] to step-indexed separa-
tion logics for C and allows a function verified w.r.t ¢ to be used by clients
expecting specification . This theory includes a notion of specification inter-
section A which — similar to, e.g. the also combinator of the Java Modelling
Language (JML, [19])— allows functions to have multiple specifications. Notice-
ably, subsumption and intersection are related in formally the same manner as
intersection types and subtyping are in type theory: in particular, they satisfy

the laws ¢1 A ¢ <: ¢; (for i € {1,2}) and v Zfl ¢>11/;\ji):2¢2 (cf. [58], page 206).

122 L. Beringer

3 VSU calculus

As described above, VST verification amounts to exhibiting a G with - p : G. In
contrast to VST’s previous linking regime, VSU ensures existence of G during
component linking without actually constructing G, maintaining representation
hiding and non-exposure of private functions. Indeed, the modules’ specification
interfaces (specs of imported and exported functions) suffice for proving that a
suitable G exists, as long as each module’s individual justification includes the
verification of its private functions.

3.1 Components and soundness

VSU extends CompCert’s distinction between internal functions (those equipped
locally with a function body) and external functions (functions defined in other
compilation units, incl. system functions). Given a Clight compilation unit p, we
denote these (disjoint) sets by IntFuns(p) and ExtFuns(p), respectively. VSU
further distinguishes between system functions (typically provided by the OS)
and ordinary external functions: the former ones are not expected to be verified
using VST even in a fully linked program, so VSU merely records their use.

VSU’s main judgment is +3 [Z] p[£], to be read as using specified imports
7 and system functions S, p provides/ exports functions (with specifications) &,
using internal memory satisfying (initially) P. The entities S, Z, and & are all
funspecs, while P specifies the memory holding p’s global variables; P’s formal
type is globals — mpred where globals refers to a map from global identifiers
to CompCert values.

The judgment % [Z]p[€] is formally introduced as an existential abstraction
(in Coq: a Record type) over a proof context GG, which is again of type funspecs:

HS [Zlple] & 36. G F (D) p €],

The role of G is to serve as the witness justifying the specification interface; as
such it associates specifications also to p’s private functions; existentially hiding
it shields implementation details.

The formation of the lower-level judgment G' 3 [Z]p[€] is subject to the
following constraints:

Definition 1. Proof context G justifies a component (specification) for Clight
compilation unit p with respect to system calls S, imports T, exports £, and
predicate P, notation G % [Z]p[€], if

1. domZNdomS =0 and domZ U dom S C ExtFuns(p),

2. dom G = IntFuns(p) U dom S, with G(i) = S(i) whenever i € dom S,
3. dom & C dom G, with G(i) <: £(3) for alli € dom €&,

4. TUG Fpune funs, : G,

5. Vg, InitGPred(Vardefs(p)) g+ Pg

Verified Software Units 123

The first three clauses are largely administrative; they express, respectively,
that (1) system functions and imported functions are disjoint sets of external
functions, (2) G contains specifications for exactly the system functions and the
internal functions, and (3) all exported specifications are abstractions of entries
in GG, in the sense of specification subsumption <:.

Clause (4) constitutes the main proof obligation and refers to a slight refactor-
ing of VST’s function-verification judgment G7 kgyne funs : G2 (semax-func),
where funs associates CompCert function definitions with identifiers. The instan-
tiation ZU G Fyne funs, : G hence requires that imports Z suffice for justifying
all entries in G: each system function specification in G must be valid, and each
specification of an internal function must be justified by a VST proof the corre-
sponding function body in funs; calls to internal and system functions inside the
body are resolved by reference to GG, and calls to external functions are resolved
by the import specifications, Z.

Finally, clause (5) requires p’s global variables to collectively satisfy P (after
initialization) but avoids referring to these variables by name.

We point out two further aspects of Definition 1. First, we note that system
functions may be exported (we do not require domS N dom & =), and that
imports and exports are distinct (dom Z N dom & =) follows). Second, we note
that for Z = 0, clause (4) yields G Fnc funs,, : G, i.e. the heart of VST’s sound-
ness condition semax_prog for programs comprised of a single compilation unit.
Hence, the goal of VSU verification is to exhaustively apply VSU’s combination
rule (presented in the next subsection) until all imports have been resolved.

Once a component has been verified and is exposed as % [Z]p[€], the spec-
ifications of p’s private functions are hidden inside the existentially quantified
context GG and hence inaccessible.

3.2 Derived rules

It is easy to derive a rule of consequence from Definition 1 that strengthens
imports and relaxes exports:

T'<T S [ZIpl€] E£CZE& Vg, Pghk P

)
=S, TP €] VSUCONSEQ

For imported functions, we require pointwise subsumption, by defining 7' <: Z to
hold if domZ = domZ' and Z' (i) <: Z(i) for all i € dom Z. On the export side, we
allow hiding of entries, by defining £ C £’ to hold if dom &’ C dom & and £(i) <:
E'(i) for all i € dom &’. The calculus is invariant in the specifications of system
functions, but allows weakening of the initialization predicate. The derivation
of this rule instantiates the context witnessing the concluding judgment by the
(abstract) witness obtained from unfolding the hypothetical judgment.

VSU’s workhorse is the composition rule, VSULINK, shown in Figure 1. The
side conditions treat the components symmetrically and are motivated as follows.
The rule constructs a component specification for a linked program p that retains
the internal functions of p; and po, and also any unresolved external functions, as

124 L. Beringer

(a) Rl [Ta] p1 [€4] F32 [Z2] p2 [E2]

Vi € IntFuns(p1) U (ExtFuns(p1) \ IntFuns(p2)),p(i) = p1(4)
©] Vi € IntFuns(p2) U (EztFuns(p2) \ IntFuns(p1)), p(i) = p2(2)
dom p = dom p1 U dom p2

Vi € (IntFuns(p1) N IntFuns(p2)) U (ExtFuns(p1) N ExtFuns(p2)), p1(i) = p2(4)
(c) Vi € IntFuns(p1) N ExtFuns(pz2), sig(p1(2)) = sig(p2(i)) At € dom Iy
Vi € IntFuns(p2) N ExtFuns(p1), sig(p2(2)) = sig(p1(i)) At € dom Ty

(d) dom 81 N IntFuns(p2) = 0 dom Sz N IntFuns(pr) = 0

(e) Vz: € domZy N (dom 81 U IntFuns(p1)), z € dom & A 51(11) < Ig(z:)
Vi € domZ; N (dom Sz U IntFuns(p2)), i € dom Ex A E2(i) <: L1 (7)

(f) Vi € dom Ty N dom Ta, Ty (i) = Ta(i)

(9) Z =17\ (dom Sz U IntFuns(p2)) UZz \ (dom S1 U IntFuns(p1))

(h) Vardefs(p1) N Vardefs(p2) = 0 Vardefs(p1) U Vardefs(p2) = Vardefs(p)
FRlne [Z]p (€ M &)

Fig.1. VSU’s rule of component composition, VSULINK.

detailed in side conditions (b). Condition (¢) requires functions classified identi-
cally by p1 and p, to have identical definitions, and requires differently classified
functions to have identical type signatures and be in the import set of the com-
pilation unit not providing the implementation. Condition (d) formalizes that
system functions are not locally defined in either unit. Condition (e) expresses
that a function imported by one module and programmatically provided by the
other module must be exported by the provider; this condition ensures that the
export contract cannot be bypassed. Condition (f) expresses that functions im-
ported by both units must be imported identically - if necessary, this can be
achieved using the consequence rule. Condition (g) calculates the remaining im-
port specifications by combining the constituent imports, removing entries for
the resolved functions, and ensuring the absence of duplicates. The final con-
dition, (h), mandates that global variables from p; and ps be distinct (hence
initialization predicates have disjoint footprints) and propagated to p.

The most interesting aspect of the rule is the duplicate use of the intersection
operator, C1 M\ Cy, for constructing the concluding specifications of exported
functions and system functions. The general definition of this operator is

Ol(l) A OQ(Z) if i € dom C1 N dom Cq
Cy N Cy = Xi. ¢ C1(4) if i € dom C1 \ dom Cy
Cs(7) if i € dom Cs \ dom C4

Verified Software Units 125

where A denotes the specification intersection operator mentioned in Section 2.
Thus, exporting & M & effectively exports both & and &, and similarly for
S1 M Sy. Indeed, the individual export specifications can be reestablished using
the consequence rule, as the properties of intersection specifications mentioned
in Section 2 lift to (export specification) contexts: we have C; M\ Cy C C; for
. XCC, XCO
i €{1,2} and XC O NG,

By permitting functions f that are internal to both p; and py, VSU supports
diamond-shaped composition patterns in which a sub-component, e.g. a library,
is imported multiple times. Conditions (b) and (¢) ensure that all copies of a
repeatedly imported function f have the same body (i.e. CompCert AST), and
that this body is retained in p. However, the library’s export specification may
have been imported differently by the different units, hence GG; and G may well
associate different (and formally incompatible) specifications with f. As G; and
G are existentially hidden, we cannot inspect these specifications: adding a side
condition to the rule that mentions the specifications G;(f) and Ga(f) would
violate the abstraction principle. Nevertheless, the proof of the composition rule
still requires us to attach some specification to the shared function, when con-
structing the witnessing context of the concluding judgment, G. Our solution is
to use intersection A\, i.e. to instantiate the witness G with G; M\ G5 in the Coq
proof of VSULINK. By terminating the Coq proof script with Qed rather than
Defined, this instantiation is opaque to clients: applications of VSULINK during
program verification merely see that some G exists.

Most side conditions of the rule are computational; in our applications of the
rule in Sections 4.5 and 5, Coq’s tactical engine solves the majority of them.

for any X.

4 APDs and specification interfaces

We now turn to the organization of predicates and function specifications. Our
organization reflects typical realizations of abstraction principles in C, where
heap data structures are introduced using forward declarations and referred to
via pointers in header files, while the selection of a concrete representation (per-
haps using private static variables) is private to an implementation. We illus-

#include ” Connection.h”

typedef struct pool xPool;

Pool consPool (Database d);
Connection getConn (Pool p);

void freeConn (Pool p, Connection c);

typedef struct database *Database;
typedef struct connection *Connection;
Connection consConn (Database d);
Database newDB (int DBidentifier);

Fig. 2. Connection pools in C: Connection.h (left) and Connectionpool.h (right).

trate our approach using Parkinson and Bierman’s connection pool example [56],

126 L. Beringer

ported to C as an implementation of the APIs in Figure 2. Using forward declara-
tions, the header files reveal only minimal information about the implementation.
Connection.h allows clients to create a database entity (the parameter denotes
a unique identifier; Parkinson and Bierman omit this constructor and do not
model the type database explicitly) and to create connections to a database us-
ing the constructor consConn. Connectionpool.h models a collection of (dormant)
connections associated with a database; clients construct a pool using consPool,
request connections using getConn, and return them using freeConn.

4.1 Abstract predicate declarations (APDs)

Figure 3 introduces abstract predicate declarations for the three data structures.
Each APD declares zero or more spatial predicates, i.e. mpreds relating a Comp-
Cert (pointer) value to suitable semantic information. Semantic information for
the database is a DBindex (effectively a mathematical integer); connection and
pool structures maintain pointers to the database; connections have additional
internal state represented by the (abstract) type ConnTP.

Record DatabaseAPD := { Record ConnectionAPD := {
DB: DBIndex — val — mpred; ConnTP:Type;
DB_ptrnull: ¥V db s, DB db s F Conn: (val * ConnTP) — val — mpred;
Il(is_pointer_or_null s) }. NextConn: ConnTP — globals — mpred;
Record PoolAPD := { Conn_isptr: V C ¢, Conn C ¢ F!(isptr c);
CPool: val — val — mpred; Conn_validptr: V C ¢, Conn C ¢
CPool_ptrnull: V d p, CPool d p F valid_pointer ¢ }.

!l(is_pointer_or_null p) }.

Fig. 3. APDs for the connection pool example. val is CompCert’s type of values.

Specifically, DatabaseAPD corresponds to the Database type declaration in
Connection.h and asserts existence of a predicate DB, together with an axiom
that enables clients to store a reference to a database in their own data structure.
Operator !l injects a Coq proposition into VST’s assertion language.

In similar style, ConnectionAPD and PoolAPD declare predicates Conn and
CPool for the struct declarations connection and pool. In contrast to Parkinson
and Bierman, we model that the connection module maintains state using the
predicate NextConn. There is no need to reveal the concrete static variable
used by our implementation though: globals denotes the collection of all such
variables in VST. We assert that the head values of Conn and CPool are provably
nonnull pointers and that a Conn’s head pointer is furthermore valid.

All APDs are introduced as (dependent) Record types in Coq. We will con-
struct values of these types in Section 4.3, i.e. implementation-dependent con-
crete predicate definitions and lemmas validating the axioms. But first, we use
the APD types abstractly to introduce specifications for the two modules.

Verified Software Units 127

4.2 Abstract specification interfaces (ASIs)

Abstract specification interfaces (ASIs) consist of VST specifications for the API-
exposed functions, parametric in all relevant APDs. In addition to the APDs
introduced above, our example uses a third APD, denoted M, that declares an
abstract predicate Memy gv and represents the malloc/free library.

Figure 4 shows the ASI of Connection.h. We use subscripts to refer to the
APD parameters: for example, DBp i p is the mpred obtained by applying the
DB component of a database APD D to index ¢ and pointer value p.

Function Spec
newDB(i;gv) {Memy gv} ~ {p. DBp ¢ p x Memy gv}
consConn(d; gv) {DBp i d * NextConng c gv * Memy gv} ~
if p = null then NextConng ¢ gv * DBp i d « Memy gv
{p' else 3¢’. NextConng ¢’ gv * Conng (d,c) p x DBp i d x Memy gv}

Fig. 4. ASI for Connection.h, parametric in databases (D), connections (C), and mem-
ory systems (M). Memy gv represents M’s abstract predicate for a memory manager
that is accessed by malloc and free.

A specification F(Z;gv) : {Pre} ~ {v. Post} is to be understood in safety-
guaranteeing partial-correctness style, where Z denotes a list of actual arguments
(of type val), gv refers to (if present) the global environment, v (again of type val)
represents the return value (if present), and other items are implicitly universally
quantified. Callers of such a function select instantiations for the universally
quantified entities (“witnesses”) and must then establish Pre.

Thus, the specification of newDB asserts that a new database entity satisfying
DBp i p is allocated at the return value p, for the database with index ¢ (an input
argument). The allocation draws upon the abstract predicate Memy gv which
is “located” at some global variable that is private to the malloc/free library.

The specification of constructor consConn refers to Memy gv in similar fash-
ion and advances the module’s connection counter from ¢ to some ¢’ upon success;
in contrast to Parkinson and Bierman, we also support unsuccessful requests.

The ASI for Connectionpool.h in Figure 5 is additionally parametric in an
PoolAPD, P. Our specifications are again slightly more precise than the ones
given by Parkinson and Bierman. As a consequence, the precondition of a se-
quence such as p := consPool(s);c := getConn(s); freeConn(p,c) is DBp i d
Memy gv * NextConng s gv rather then emp, hence exposing the reliance on
the memory manager etc..Prefixing the instruction d := newDB(i) establishes
DBp i d; we will explain how the latter two conjuncts are provided in Section 4.5.

4.3 Verification of ASI-specified compilation units

Substantiating the ASI of a header file, means to give — for a concrete implemen-
tation — concrete definitions for the predicates in the newly introduced APDs,

128 L. Beringer

Function Spec
consPool(d; gv) {Memy gv} ~ {p. CPoolp d p * Memy gv}
getConn(p;gv) {CPoolp d p x DBp i d x NextConng ¢ gv * Memy gv}
{ CPoolp d p x DBp i d x Memy gvx }
>

n.if n = null then NextConng ¢ gv
else 3¢’ ¢’. NextConng ¢’ gv * Conng (d,c”) n
freeConn(p, i;gv) {CPoolp d p x Conng (d, ¢) i * Memy gv} ~ {CPoolp d p x Memy gv}

Fig.5. The ASI for Connectionpool.h is parametric in a database APD (D), a con-
nection APD (C), a connection pool APD (P), and a memory manager APD (M). As
consPool takes a formal parameter d, the reader may have expected the specification
{DBp ¢ d*Memy gv} ~ {p. CPoolp d pxDBp i d «Memy gv} which is indeed derivable
from the one given using VST’s frame rule.

show that these definitions validate the associated axioms, and finally construct
a VSU that has the ASI’s specifications as the export interface £. All these
constructions are parametric in the APDs provided by other modules.

We refer the reader to our source code [14] for the C implementation, the (con-
crete) predicate definitions, and the proofs of the APD-supporting axioms. In
case of Connection.c, these proofs reveal the instantiation of the APD’s ConnTP
to Coq’s type of integers, Z, corresponding to the existence of a global integer
variable in the C code that maintains a connection counter; the corresponding
.+ . predicate then furnishes the abstract predicate NextConn.

The substantiations of a unit’s APDs are subsequently used to instantiate
its ASI and the specifications of its imported function, yielding (together with
specifications of private functions) a proof context G that the unit’s local function
bodies are then verified against. APDs provided by other compilation units are
left abstract, so expose only their axioms. Specifically, the substantiation for
Connection.c yields values ¢ and d of types ConnectionAPD and DatabaseAPD,
respectively, the predicate N = NextConn ¢ 0, and a VSU

VSUcomn = l—?\, [Zconn] Connection.prog [Econn]

where Egonn is the partial specialization of the specifications in Figure 4 to C
= ¢ and D = d, Connection.prog is CompCert’s AST for Connection.c, and
Teonn contains a specification for surelymalloc. For ConnectionPool.c, we similarly
obtain a value p of type ConnectionpoolAPD and a VSU

VSUpgor = Fgmp [Zpoo1] Connectionpool.prog [Epeot],
where Zpo01 is comprised of the (abstract) specification of consConn and specifi-
cations for free and surelymalloc, and Epye is the partial specialization of Figure 5
to P = p. Both VSUs are parametric in M, but VSUp.1’s additional parame-
ters D and C are instantiated when VSUgon, and VSUpee1 are combined using
rule VSULINK. The result, VSUgp, is still parametric in M but has resolved the
imports of consConn, leaving only imports for free and surelymalloc.

Verified Software Units 129

4.4 A VSU for a malloc-free library

A recent application of VST is Appel and Naumann’s verification of a malloc/free
library [5]. Internally maintaining a fixed number of freelists — for entities of
different size — this library exposes four functions in its API: malloc, free, pre_fill,
try_pre_fill. When porting this development to the VSU framework, these give
rise to two ASIs. The first one contains specifications for all four functions and
is suitable for resource-aware clients. It employs the APD MallocFree_.R_APD:

Record MallocTokenAPD := {
malloc_token’: share — 7 — val — mpred;
malloc_token’_valid_pointer: V sh sz p, malloc_token’ sh sz p I valid_pointer p;
malloc_token’_facts: V sh sz p, malloc_token’ sh sz p F!! malloc.compatible sz p }.
Record MallocFree. R_APD :=
{ MF_Tok_R :> MallocTokenAPD; mem_mgr_R: resvec — globals — mpred }.

mem_mgr_R models the freelists as a resource vector that indicates the length
of each freelist. The predicate malloc token’ refers to the piece of memory that
is typically located at a small negative offset of a malloc’ed entity and holds
administrative information of the library, but conceptually, it also constitutes
a token that enables clients to share malloc’ed entities among different threads
without loosing the ability to safely free entities. The second ASI only exposes
malloc and free, and employs the more abstract APD

Record MallocFreeAPD :=
{ MF_Tok :> MallocTokenAPD; mem_mgr: globals — mpred }.

MF_Tok still presents a malloc token but mem_mgr now hides the existence of
freelists - indeed, constructing a MallocFreeAPD from a MallocFree_R_APD simply
quantifies existentially over a resource vector. Our proofs first refactor the prior
verification as a VSU that exports a resource-aware ASI and then use VSUCON-
SEQ (and export restriction C from Section 3.2) to weaken the resulting VSU
to a VSU that only exports a resource-ignorant ASI. We denote the latter as
VSUyr; the predicate Memy gv is now revealed to be a shorthand for mem_mgr
gv, parametric in a MallocFreeAPD M, and we use Memyg gv below to refer to
its instantiation for VSUyg.

4.5 Putting it all together

Using VSULINK again, we link VSU¢p with a library VSU (reducing surelymalloc
to malloc and the system function exit) and then with VSUyr, obtaining

VSUjppriv = Fﬁcé’;jm . |] coreprog [Ecore)-

Here, coreprog contains all code (application plus library) with the exception of
main. Note that VSUppprip’s set of imports is empty; Score contains axiomatic
specifications of OS functions such as exit and mmap.

Independent from the construction of VSUpp1ip we verify main, i.e. an exem-
plary client or unit test, as a semax_body statement w.r.t. a not yet instantiated

130 L. Beringer

copy of Ecore- The specification that main is verified against a <: specialization
of VST’s general main_spec but is still abstract in the APDs of the application’s
code modules — see [14] for details.

Finally, we connect VSU,pprip With the verification of main to obtain a proof
of VST’s semax_prog statement. It is in this last proof that the satisfaction of
the abstract initialization predicates for the global variables, Memyz and N, is
established from VST’s internal initialization predicates.

5 Modular verification of the Subject/Observer pattern

Programs in imperative or object-oriented languages often contain callbacks:
chains of function calls A.m() — B.n() — A.l() between modules A and B in
which m’s invocation of n (and hence the return of control to A in the call to
l) happens when A’s state is invalid, i.e. does not satisfy A’s invariant. Clearly,
mandating satisfaction of the invariant in {’s precondition — a typical requirement
of API-level specifications — then prevents the verification of n.

A typical example is the chain update — notify — get in the subject-observer
pattern, a widely used design pattern [23] that has served as a litmus test for
modular specification of callback-rich programming in the literature. Figures 6
and 7 contain excerpts of a transcription of Parkinson’s [55] code into! C. Each
Subject maintains a list of subscribers — a list of observers that will be notified
whenever the Subject’s state is updated and then synchronize their internal state
accordingly using get. The intended invariants express that each Subject’s ob-
servers are in sync — a property that is violated during update’s traversal of its
observer list, when not-yet-notified observers are out of sync but (precisely in
order to get back in sync) nevertheless invoke get.

The dominant technique for dealing with such situations in SMT-based tools
employs ghost fields that track validity and unfolding of invariants and are sup-
ported by further (ghost) infrastructure that controls ownership (see e.g. [47,11]).
However, this does not necessarily achieve comprehensive representation hiding;:
for example, the permission to violate Subject’s invariant in get’s precondition
propagates to the precondition of notify, allowing the latter function to access
the field? Subject.value. Furthermore, the invariant-regulating techniques typi-
cally require that SMT solving be carried out on a whole-program basis.

The flexibility of APDs to introduce multiple predicates enables an alter-
native in which callbacks are specified using special-purpose predicates that —
similar to typestates [62] — emphasize protocol-style behavior, do not reveal the

! Our implementation [14] contains two further callbacks, newObs — registr — notify
and registr — notify — get; the former one commences in the constructor, before
any invariant has been established.

2 For example, one may insert abstraction-violating get/putfield instructions in the
subject-observer code at http://comcom.csail.mit.edu/edpubs/{# }observer. This
tool implements an advanced variant of invariance regulation using ghost instruc-
tions, semantic collaboration [59], for Eiffel. Fields are not private, and the method-
ology does not prevent representation exposure between such closely coupled classes.

http://comcom.csail.mit.edu/e4pubs/{#}observer

/* SubjectObserver.h x/
typedef struct subject xSubject;
typedef struct observer xObserver;

/* Subject.hx/

#include ”SubjectObserver.h”
Subject newSubject (void);

void registr (Subject s, Observer o);
void update (Subject s, int n);

int get (Subject s);

int freeSubject(Subject s);

Observer detachfirst(Subject s);

/*Observer.h x/

#include ”SubjectObserver.h”
Observer newObs (Subject s);
void notify (Observer o);

int val (Observer o);

void freeObserver (Observer o);

Verified Software Units 131

/* Subject_rep.h */
#include ”SubjectObserver.h”
typedef struct node *Node;
struct node {

Observer obs;

struct node * next;
h
struct subject {

Node obs;

unsigned value;

};

/*Observer_rep.hx/
#include ”SubjectObserver.h”
struct observer {

Subject sub;

int cache;

};

Fig. 6. Subject/Observer: header files. The left column shows the public APIs; Sub-
ject_rep.h and Observer_rep.h are private to their respective module implementations.

/* Subject ¢ x/

#include ”"surelyMalloc.h”
#include ” Observer.h”
#include ”Subject.h”
#include ”Subject.rep.h”

int get (Subject s) { return (s— value); };

void update (Subject s, int v) {
s— value = v; Node n = s — obs;

/* Observer.c x/
#include ”surelyMalloc.h”
#include ” Observer.h”
#include ”Subject.h”
#include ”Observer_rep.h”

void notify (Observer o) {
0 — cache = get(o — sub);
return; }

while (n) { notify(n— obs); n = n —next; } }

Fig. 7. Excerpts from Subject.c and Observer.c for the callback update — notify — get.

validity of module invariants, and maintain representational hiding by being just
as abstract as a module’s main predicate.

Concretely, our approach employs semantic subjects that are comprised of a
list of observer references and a (current) value, while observers are represented
as a subject pointer and the cache:

Definition SubjRep:= (list val) x Z. Definition ObsRep := val * Z.

Next, our APDs complement the predicates relevant for API calls by external
clients, Srep and Orep, by (residual) predicates for calling the Subject functions
registr, update, and get, and the Observer functions notify and val; we also intro-

132 L. Beringer

duce a predicate for the postcondition of get, GetPost:

Record SubjectAPD := {

Srep, RegPre, UpdPre, GetPre, GetPost: SubjRep — val — mpred;
SubjRegister: V S s, Srep S s - RegPre S s;

SubjUpdate: V S s, Srep S s - UpdPre S s;

SubjGetPrePost: V S s, Srep S's - GetPre S s * (GetPost S s - Srep S s);
GetPre_ptrnull: V S s, GetPre S s !!(is_pointer.or_null s) }

Record ObserverAPD := { Orep, NtfPre, ValPre: ObsRep — val — mpred;
ObsNtfy: V O o, Orep O o F NtfPre O o; ObsVal: ¥V O o, Orep O o + ValPre O o;
NtfPre_isptr: V O o, NtfyPre O o F!l(isptr o) }

Entailment axioms such as SubjUpdate permit external clients to invoke callback

functions directly but may be omitted for functions that should only be invoked

via callbacks. The residual predicates sanction indirect invocations via callbacks
without revealing the satisfaction status of module-internal invariants.

Axiom SubjGetPrePost splits Srep into a token that can (only) be used to
invoke get, plus a token for reestablishing Srep from GetPost. The latter is a sep-
arating implication —« rather than an entailment: it represents the requirement
that an observer yields back control to its subject after completing a callback to
get — the subject had retained part of its state prior to invoking notify.

To enforce these behaviors, we employ the specifications in Figures 8 and 9;
again, the ASIs are parametric in all APDs mentioned, notwithstanding the
mutual dependence of the modules. Using axiom SubjGetPrePost, one may show

Function Spec
update(s, v) {UpdPregp (I, z) s x Observers NtfPreop s vals [}
~ {Srepgp (I,v) s * Observers Orepyp s v!'l 1}
get(s) {GetPregp S s} ~ {p. !/(p = snd(S)) && GetPostsp S s}

Fig. 8. ASI of Subject (excerpt), parametric in a Subject APD (SP), an ObserverAPD
(OP), and a MemoryAPD (M).

that the specifications for get and notify are in subsumption relationship with
large-footprint counterparts that permit invocations by external clients:

{Srepgp S s} ~ {p. /(p = snd S) && Srepgp S s}
{NtfPrecgp (s,c) o* Srepgp S s} ~ {Oreppp (s, snd S) o Srepgp S s}

The specification of update makes reference to an auxiliary Coq function that
represents the “big” separating conjunction *(y,o)ecombine(vais,i) P (5, v) 0,

Observers (P:ObsRep — val — mpred) (s:val) (wvals: list Z) (1: list val): mpred.

The substantiation of these interfaces relative to our C implementations de-
fines the main predicates as

Definition Srep (I,v) s := Jo. listrep l 0 * s ﬂ)gp (0,v x Mtok(Ews, STP, s).
Definition Orep O 0 := 0o E—V\gmp O * Mtok(Ews, OTP, o).

Verified Software Units 133

Function Spec
newObs(s; gv) {RegPreg, S s« Memy gv} ~
{p. Orepgp (s, snd S) p * Srepgp(p :: fst S, snd S) s« Memy gv}

notify(o) {NtfPreoe (s, c) o * GetPregp S s} ~»
{Oreppp(s, snd S) o * GetPostsp S s}
val(o) {ValPregp (s, c) o} ~ {c. Orepgp (s,c) o}

freeObserver(o; gv) {Orepgp O o * Memy gv} ~ {Mempy gv}

Fig.9. ASI of Observer, parametric in APDs SP, OP, and M.

Here, listrep is a typical list representation predicate over Node items, modeling
the observers associated with a Subject. STP and OTP are shorthands for Clight’s
representation of the struct definitions Subject and Observer, Ews represents
an exclusive writable share in VST, and Mtok(.,.,.) is a variant of predicate
malloc_token’ from Section 4.4.

Some residual predicates are minor variants of Srep and Orep. For example,

Definition NtfyPre O o := Mtok(Ews, OTP,0) *x Jv. o »%)OTP (fst O,v).

existentially abstracts over snd O but is otherwise identical to Orep. This makes
validating axiom ObsNtfy trivial. As NtfyPre does not depend on a subject’s value,
no modification of the latter can affect the former’s. Other residual predicates —
like RegPre — are even definitionally equal to the main predicates, but the APD
mechanism ensures that this fact is not exposed to clients.

Our C implementation permits GetPre and GetPost to actually be defined
identically (indeed, getters typically don’t alter data structures...):

Definition GetPrePost (I,v) s := s.value M sTp v % Mtok(Ews, STP, s).

Here, the p.7 in v is a variant of p 'i)t v that specifies the content at p.m,
where path 7 is a list of field names and array subscripts. Thus, GetPrePost only
specifies the content of s.value; the remaining portion of s is exactly what is
retained when SubjGetPrePost splits off GetPre from a Subject. The motivation
for this handling is that the invariant of the loop in update (which contains the
callback to get via notify) only traverses the node list. Specifically, an invari-
ant involving the full Srep would not ensure that the spine of the list remains
unchanged, as the definition of Srep quantifies existentially over the node list.
This aspect illustrates the danger of predicates that are too abstract to be useful.

Constructing VSUs for Subject and Observer proceeds straight-forwardly;
we exercise VSU’s support for shared libraries by first combining surelyMalloc
with each of these VSUs separately, before linking the resulting VSUs with each
other, with VSUyr, and with a main client as described in Section 4.5.

5.1 Specification and proof reuse

To evaluate specification modularity and proof reuse, we verified several varia-
tions of our implementation. First, to evaluate robustness under representational
change, we have Subject internally maintain a freelist of Observer nodes:

134 L. Beringer

struct subject { Node fl; Node obs; unsigned value; };

The freelist is drawn upon in registr (we only invoke surely_malloc if fl is null)
and replenished in detachfirst. Constructor newSubject creates an empty freelist,
and freeSubject frees the entire list.

The code modification triggers new Clight ASTs, but the majority of Coq
files can then simply be reprocessed: the model-level definitions, APDs, and
ASIs of Subject and Observer remain unchanged, and so do the files associated
with verifying Observer, linking, and main. The only modifications are in the
implementation-dependent validation of Subject, namely in the definitions of the
representation predicates and in the VST proofs of the individual functions.

Second, we verified a variant in which notify’s invocation of get is replaced
by a function pointer. The key code modifications are

/+*Addition in SubjectObserver.hx/ /«Modification in Observer.hx/

typedef int (xcallback)(Subject s); void notify (Observer o, callback f);

/*Modification in Observer.cx/

void notify (Observer o, callback f) { o — cache = f(o — sub); return; };

The calls to notify in update and registr obtain the additional argument &get,
and the specification of get can be removed from the imports of the Observer
VSU. The small specification of notify becomes

_ {NtfPre (s,c) o * GetPregp S s * funcptr’ dget g}
notify(o, g) : ~» {Oreppp(s, snd S) o GetPostgp S s}

where funcptr’ ¢ g expresses that value g is a pointer to some function satisfying
specification ¢, and @get is the entry for get from Fig. 8. notify’s large specification
is adapted similarly. Repairing the proofs incurs changes in < 10 lines of Coq.

A third modification exploits VST’s support for impredicative quantification
to abstract over GetPregp and GetPregp in the definition of ¢, such that notify’s
specification is effectively parametric in suitable GetPre/GetPost pairs. Adapt-
ing the verification involves step-indexed aspects of VST and hence requires a
little more work; details are included in the Coq development [14].

Finally, we verified a variation in which observers register with two subjects,
as an example of a more complex interaction pattern. As this affects model-level
functionality, modifications are not confined to module-internal predicate defi-
nitions but affect APDs declarations and ASI definitions. However, neither the
encapsulation of representation nor the modularity of verification were compro-
mised; supporting more than two subjects per observer would likely be similar.

5.2 Pattern-level specification

An alternative specification of subject-observer was proposed by Parkinson [55],
who sidesteps the conflict between callbacks, modularity, and abstraction. Giv-
ing up on specifying the two classes independently, this approach defines a single
abstract predicate, SubObs, that ties a subject to all its observers and yields
aggregate-level function specifications. We can recover such an aggregate inter-
face by proving that the specifications involving SubObs are abstractions (in the

Verified Software Units 135

sense of . <:.) of the exports of the SubjectObserver VSU, generically in APDs
SP and OP. Indeed, Parkinson’s formulation amounts to a two-predicate APD:

Record AggAPD =
{ Sub: val — list val —Z — mpred; Obs: val — val —Z — mpred }.

with specifications shown in Figure 10, using the derived notions

Definition SubObs s O v := Sub s O v * x,c00bs o0 s v.
Definition Obs_ 0 s := Jv. Obs o s v. (* Obs_ is related to Obs as — _ is to —. *)
Definition SubObs_ s O := Jv. SubObs s O v.

Function Spec
newSubject(gv) {Mempy gv} ~ {s. SubObs_a s nil x Memy gv}
registr(s,0;gv) {Suba s O v x Obs_a 0 s x Memy gv}

~> {Suba s (0:: O) v« Obsa 0 s v+ Memy gv}
update(s,v) {SubObs_a s O} ~» {SubObsa s O v}

get(s) {Suba s O v} ~ {v. Suba s O v}

newObs(s; gv) {SubObsa s O v x Memy gv} ~ {p. SubObsa s (p :: O) v« Memy gv}
notify(o) {Suba s O v Obs_p 0 s} ~ {Suba s O v+ Obsa 0 s v}

val(o) {SubObsa s O v} ~ {v. SubObsa s O v}

Fig. 10. Selected aggregate specifications, parametric in an AggAPD A. Except for the
occurrence of Memy gv, the specifications coincide with Parkinson [55]’s specifications.

Constructing an AggAPD A from a SP/OP pair is trivial: take Sub to be Srepgp
and Obs to be Orepgp; proving the . <:. lemmas is then straight-forward.

SubObs constitutes a pattern invariant, or the pattern’s primary predicate,
with residuals Sub and Obs. From the aggregate’s point of view, update — notify
— get is not a callback but an internal nesting of invocations, so the small-
footprint specifications typically don’t pose a problem for existing methodolo-
gies; client-visible specifications with large footprints can be derived using the
frame rule. In this sense, the pattern reestablishes “sequential atomicity” of op-
erations. Exploring whether other design patterns can be similarly derived from
the ASIs of their constituent classes is a topic for future research: are typical de-
sign patterns the abstraction units at which sequential atomicity is reestablished,
callbacks at most occur in valid states, and residual predicates are avoided?

An aggregate specification for the function pointer implementation from Sec-
tion 5.1 can be obtained using a modified AggAPD, with residual predicates
GetPre etc.. But a better option is to remove the pattern-internal functions
notify, registr, and perhaps even get from the aggregate ASI. In fact, notify’s
new signature reveals the use of function pointers, hence even an aggregate-level
specification would have to include funcptr’ ¢ g terms. Thus, we instead employ
the notion C from Section 3.2 to lift the VSU for SubjectObserver with function
pointers from Section 5.1 to a VSU for the aggregate but narrowed ASI and then
reverify main w.r.t the latter.

136 L. Beringer

6 Verification of object principles

This section considers features that — together with state encapsulation and
modularity — are cornerstones of object orientation: the ability for (instances
of) multiple implementations of an interface to dynamically coexist and inter-
act, dynamic dispatch, subtyping, self, and inheritance. To maintain the dataless
discipline, we employ a uniform but simple object encoding that is typical for
industrial and open-source C developments: dynamic dispatch is implemented
using function pointers that are bundled into separate structs (method tables)
that are accessible as the first element of the object representations. Subtyping
— providing additional methods — and representation inheritance are modeled by
extending these structs, respectively, but are orthogonal to each other, and only
the former one is exposed in APIs. In the second half of this section, we hide the
dynamic dispatch mechanism behind a wrapper interface. We specify objects by
reference to a semantic (Coq-level) object model, thus comprehensively separat-
ing object reasoning from C-level reasoning: constructors establish, and methods
maintain, abstract object predicates that clients need not (and cannot) unfold.

We again proceed in stages, using the widely used running example of points
located on a one-dimensional axis (see e.g. [18]). Figure 11 shows a preliminary
API for basic, bumpable, and colored points, organized in a simple subtyping
relationship. We provide multiple implementations for each interface (using dif-

typedef struct point *Point; typedef struct bmethods * BMethods;
struct methods {
int (xget) (Point); typedef struct cpoint *CPoint;
void (xset) (Point, int); }; struct cmethods {
typedef struct methods * Methods; int (xget) (Point);
void (xset) (Point, int);
typedef struct bpoint *BPoint; void (xbump) (BPoint);
struct bmethods { int (xgetC) (CPoint); };
int (xget) (Point); typedef struct cmethods x CMethods;
void (*set) (Point, int); struct point { Methods mtable; };
void (*bump) (BPoint); }; struct bpoint { BMethods mtable; };

typedef struct bmethods * BMethods; struct cpoint { CMethods mtable; };

Fig. 11. Pointlnterface.h, containing three interfaces for one-dimensional points

ferent data representations), each exposing its set of constructors in a separate
header file - Figure 12 shows implementation I1. Clients select an implemen-
tation during object creation but cannot otherwise distinguish between them:
method dispatch selects the appropriate function from the method table, as in

BPoint bp = makeBPoint_I1(4); int i = ((BMethods)(bp—mtable))—get((Point)bp)).

Verified Software Units 137

struct point.I1 { struct bpoint_I1 { struct cpoint_I1 {
Methods mtable; BMethods mtable; CMethods mtable;
int value; }; int value; }; int value; int color; };

int get.I1 (Point p) { return (((struct point_I1 x)p)— value); }
void set_I1 (Point p, int i) { ((struct point_I1 *)p)— value = i; return; }
void bump_I1 (BPoint p) { ((struct bpoint.I1 %)p)— value++; return; }
int getC_I1 (CPoint p) { return (((struct cpoint_I1 *)p)— color); }
BPoint makeBPoint_I1 (int i) {

struct bpoint_I1 xp = (struct bpoint_I1 x)surely-malloc(sizeof *p);

BMethods m = (BMethods)surely_malloc(sizeof *m);

m — get = &getI1; m — set = &set_I1; m — bump = &bump_I1;

p — value = i; p — mtable = m; return ((BPoint)p); }

Fig. 12. Implementation I1. Constructors makePoint_.I1 and makeCPoint_I1 omitted.
A second implementation I2 employs representations point_I12 etc. and exposes con-
structors makeBPoint_12 etc.

The basis of object specifications is a general method table predicate:

MTable(T, k, names, m, specs, Z) = Mtok(Ews, k&, m) *

It asserts that the struct m (of shape k) contains at field names names pointers
to functions satisfying specs, where Z is of Coq-type Pred(T) = (T*val) — mpred
and specs has type list (Pred(T) — funspec). A generic object layout predicate

N T tbl (o k : type) names specs (z : T * val) : mpred =
30Z. T x « Mtok(Ews, 9, snd x) *
I m. (snd x).tbl —EYS m + MTable(T, k, names, m, specs, T)

then combines a specified method table (located at field ¢bl) with the requirement
that the (memory identified by the) object pointer satisfy Z. C types o and 0
represent the object’s static and dynamic types. The joint use of Z in MTable
and A ensures that an object’s methods agree with its data component on what
representation predicate should be maintained. The existential abstraction over
7 ensures representation hiding: external clients merely see a invariant of (Coq)
type T'. Thus, different C implementations of an object interface may employ
different representations but still satisfy the same external specification.

Specifically, we introduce Cog-level object interface types in the style of Hof-
mann and Pierce’s object model [30]:

Record PointM (X:Type):Type := { get : X = Z;set : X -Z —X; }
Record BPointM (X:Type):Type :=
{ PointM_of_BPointM :> PointM X; bump : X — X; bumpable : X — Prop; }.
Inductive Color:Type := blue | red | green.
Record CPointM (X:Type):Type :=
{ BPointM_of_CPointM :> BPointM X; getC: X — Color; color_code: Color — Z; }.

138 L. Beringer

The parameters X represent semantic object representations. On the one hand,
we may instantiate these and define Cog-level behaviors, like m1, bm1, cml:

Record PointRep := { value : Z }.
Record CPointRep := { pointRep :> PointRep; color : Color }.
Definition m1: PointM PointRep :=
{] get := fun s = value s; set := fun s i = {| value :=1i |} |}.
Definition bm1l: BPointM PointRep :=
{| PointM_of-BPointM := m1; bump := fun s = {| value := value s + 1 |};
bumpable := fun s = min_signed < value s < max_signed |}.
Definition cm1: CPointM CPointRep := {| ... (xdetails omitted+) |}

But the interface types also enable specifications for get(p) and set(p, 7):
getspec T (P : PointM T)) = AZ : PredT. {Z(t,p)} ~ {get T P t. Z(t,p)}
set.spec T' (P : PointM T') = A\T : PredT.

{min_signed < j < max_signed & Z(t,p)} ~ {Z(set T Pt j,p)}

Thus, each method has a Cog-level counterpart that is parametric in (semantic)

representations and behaviors. To specify the constructors, we first define spe-

cializations of A/ for the three interfaces by instantiating with the appropriate
method specifications and syntactic elements:

PT(P:PointMT):PredT =
N T mtable point methods [get; set] [get_spec T P;set_spec T' P]
BT (B:BPointMT): PredT =
N T mtable bpoint bmethods [get; set; bump]
[get_spec T B;set_spec T B;bump_spec T B]
CT (C:CPointMT) :PredT =
N T mtable cpoint cmethods [get; set; bump; getC]
[get_spec T' C;set_spec T' C';bump_spec T C;getC_spec T' C|

Here, point, bpoint, cpoint and methods, bmethods, cmethods are the structs
defined in the header file (Figure 11) and mtable, get,...,getC are the field
names in these structs. The exemplary spec for base point constructors is then
makePoint(i; gv) : {min_signed < i < max_signed & Memy gv}
~ {p. Memy gv« P T P (Init_Point(i), p)}.

Verifying I1 and I2 then yields VSUs whose export interfaces tie makePoint_I1
makePoint_I12 to the specialization of this constructor to P := m1, and similarly
for the other constructors. The resulting objects behave indistinguishably; the
existential quantification over Z in the definition of N carries over to P, B, and
C, ensuring that the representational differences between I1 and I2 are hidden
from clients: when verifying a method call, clients unroll P etc., but each time
receive a “fresh” symbolic representation predicate Z.

Wrapper-based verification The unrolling of object predicates corresponds to the
exposure of the method table in our API. Programmatically, better encapsulation
is provided by wrappers that hide the function pointer mechanism, like

int GET (Point p) { Methods m = p— mtable; return (m— get(p)); }

Verified Software Units 139

The header file for these wrappers resembles the API of an ADT, but merely
disguises object-orientation: we still support multiple implementations (using
the same constructors as above), and operations are still invoked using dynamic
dispatch. On the specification side, wrappers can be modeled as an APD

Record WrapperAPD := { Wr_Pt: V T, PointM T — Pred T;
Wr_BPt: VT, BPointM T — Pred T; Wr_CPt: V T, CPointM T — Pred T }.

with one constructor per interface, in resemblance to the use of class names to
index predicate families [56]. The VSU for the wrapper then encapsulates the
object predicates P etc., exporting an ASI with specifications such as

{Wr.Pt W TP (t,p)}~{getT Pt. Wr.Pt W T P (t,p)} A
GET(p): {WrBPtW T P (t,p)} ~ {getT Pt. Wr BPt W T P (t,p)}A
{WrCPtW T P (t,p)} ~ {getT Pt. Wr CPt W T P (t,p)}

We can further improve client-side usability by replacing these intersection spec-
ifications by a deep embedding of the three interface alternatives; this eliminates
a corresponding case distinction in client-side proofs, when symbolic execution
reaches the invocation of a wrapper function. As an example, we verified a linked
list module that permits insertion of basic, bumpable, or colored points and pro-
vides map operations that apply SET, BUMP, ...to all elements. Each element
may internally employ I1 or I2. Of course, the precondition of mapping BUMP
requires all elements to be of dynamic type (at least) BPoint and have a bumpable
coordinate; however, this condition emerges as a constraint on semantic objects
and can be discharged without unfolding object representation predicates.

Self and late binding Verification using the above constructions fails for methods
whose body contains virtual calls on self: the definition of N effectively separates
the object’s data region from the method table upon method entry, making only
the former accessible inside the body. To overcome this limitation, we define a
variant of A/ using the higher-order recursive functor

F(ZX :PredT):PredT =
Mz : T xwval). 35m. T x = Mtok(Ews, 6, snd x) * (snd x).tbl —EWs m
x > MTable(T), k, names, m, specs, X)

in which Z is now a parameter (we eschew the parameters T,.. ., specs for read-
ability) and X plays the role of N'. Recursion via X is protected by VST’s [4]
modality t>; indeed, any access to a method table inside a method happens at
least one step lafer than the method’s own invocation. Contractiveness of F
(proven in VST) ensures the existence of a fixed point F(Z) := HORec(F(Z)).
Recovering the quantification over Z, we then replace N' with A/* := 3 7. F (o).
With this modification in place, one may verify virtual calls on self, like a variant
of I1 that implements bump using get and set (still w.r.t. m1, bm1, and cml).
An important application of self is (observably behavior-altering) method
overriding. At the semantic level, Hofmann and Pierce explicate how positive

140 L. Beringer

subtyping supports both early and late binding variants of overriding; these dif-
fer in whether the observable behavior of bump (when implemented in terms
of get and set) is affected when a subclass subsequently overrides set to, say,
reset the coordinate to 0. Furthermore, method overriding may affect how func-
tions defined in a superclass act on subclass-introduced state components. For
example, one may impose that updating the coordinate turns a point’s color
blue. Semantically, all these variations yield novel behaviors m2, bm2, and c¢m2,
etc. that can be compared to the earlier behaviors using Hofmann and Pierce’s
theory. As a consequence of our two-level reasoning, and the choice to param-
eterise constructor/method specifications by behaviors, we can leverage their
techniques: implementations I3, I4. .. that realize the overriding variants can be
verified as further VSUs for our earlier export interface, by (now) specializing the
constructor specifications to m2, etc.. Afterwards, the modified behaviors prop-
agate through dynamic dispatch and wrappers as expected, permitting clients
of e.g. the list module to map bump over elements with different behavior. Side
conditions during symbolic method calls refer exclusively to semantic objects
and behaviors, do not necessitate the unrolling of representation predicates, and
can often just be discharged using simplification.

7 Discussion

Related and future work Certified Abstraction Layers (CAL, [24,26]) are used
in the CertiKOS project [25] to verify feature-rich operating system kernels and
hypervisors in Coq. CAL permits horizontal and vertical composition of compo-
nents, and establishes full abstraction between the imports and exports. CAL’s
methodology was recently rephrased as a synthesis from a systems-oriented DSL,
DeepSEA, to C, with a CompCert backend [64]. However, “(T)here is no use of C
pointers and no built-in support of dynamic memory allocation (every DeepSEA
object is realized as a set of static variables), so programs that need dynamic
allocation will have to implement it themselves” ([64], page 10). While this frag-
ment remarkably suffices for the intended application area, it is unlikely to satisfy
general-purpose programmers or compiler writers for other systems languages.
Tronclad Apps and Ironfleet [29,28] are systems based on Dafny and TLA+
for verifying safety and liveness of distributed systems, and app security. By
connecting model-level, concurrency-aware reasoning, state-machine refinement,
and Floyd-Hoare verification, their approach provides abstraction-bridging func-
tionality similar to that of proof-assistant-based reasoning, trading off TCB size
and foundational integration in an logical framework against automation and
developer productivity. Ironclad Apps compile to verified assembly; Ironfleet
employs a formally unverified route via Dafny and the .NET compiler for C+.
Uberspark [67] is a system based on Frama-C and SMT for compositionally
verifying commodity system software written in C and assembly. Uberspark’s pri-
mary applications are hypervisor components and OS kernels, but it currently
addresses only safety and security properties (memory separation, control-flow
integrity, information flow) rather than functional correctness. The same limita-

Verified Software Units 141

tion applies to proof-carrying code systems [49,3,6,13,27], at (virtual) machine
or assembly level. Several PCC systems proposed hierarchies of formalisms that
connect operational semantics, a general-purpose program logic, and tactical
checkers or algorithmic inference systems for higher-level type systems, abstract
interpretation, or program analyses [16,2,17,1]. VST’s tactical automation is op-
timized for symbolic execution and functional correctness, but the underlying
proof rules could equally well be used to prove soundness of static analyses or
code synthesizers; we expect our structuring principles for separate compilation
will be just as useful in these scenarios as they are for functional correctness.

McKinna and Burstall [45] pioneered the use of existential abstraction to for-
mally tie programs to their specifications and proofs in a modern proof assistant.
VSU realizes aspects of their vision of deliverables for a mainstream language but
is at this point not endowed with similarly rigorous categorical underpinnings.

Representation hiding in separation logic can also be obtained using hypo-
thetical frame rules [54,10], but no such rule is provided by VST at present.
Pragmatically, the two approaches appear complementary: modules that expose
interesting state (e.g. a list ADT, the point objects,...) favor existential abstrac-
tion/APDs, as clients can access associated reasoning principles on demand, at
specific program points. In contrast, modules like the resource-unaware memory
manager might benefit from hypothetical framing: the predicate Memy gv car-
ries no client-relevant information but still needs to be carried around in many
function specifications in our treatment.

VST’s specification subsumption resembles behavioral subtyping [44,42], a
notion commonly used in verification tools for Java-like languages for relating
specifications across a class hierarchy. Exploring the relationship between our use
of positive subtyping, other notions of subtyping and inheritance, and Liskov’s
Substitution Principle [43] constitutes future work.

By supporting field update, Hofmann and Pierce’s theory addresses short-
comings of purely functional object models, but its support for object aggregates
or complex ownership structures appears limited and not much studied. A two-
level encoding could likely also be developed for concurrency-inspired object
models [33,32,31], perhaps by adapting the theory of interaction trees [68,39].
However, VST’s partial-correctness interpretation of triples limits the end-to-end
usefulness of coinductive reasoning. A recent proposal for integrating statically
typed Smalltalk-inspired objects into a functional calculus is Wyvern [52].

In the context of SMT-based verification tools, Parkinson and Bierman [57]
highlight examples that go beyond behavioral subtyping, and Summers et al. [66]
identify a catalog of advanced uses of class invariants. We intend to apply VST
to the former soon; a better understanding of the latter could perhaps commence
by recasting Drossopoulou et al.’s general framework for object invariants [22]
in separation logic. However, some aspects of class/object invariants may not
immediately transfer from Java-like to Smalltalk-style object models.

In Java, an object’s representation remains constant over its lifetime. By
separately quantifying over Z, our pre- and postconditions may support dynamic

142 L. Beringer

representation change a la Fickle [21] (with suitable updates to the method
table), as long as both representations fit into an object’s top-level struct.

Krishnaswami et al. [41] verify subject-observer and other patterns (itera-
tors, flyweight, factory) by equipping a functional language, Idealized ML, with
effectful specifications based on higher-order separation logic. Their verification
was partially formalized in a predicative Hoare Type Theory/Ynot and employs
abstract module definitions that combine code and specification. Their use of
separating implication can likely be transferred to our setting, but their im-
plementation does not separate the functionality of subjects and observers to
same extent and thus does not raise the same specification challenges. Consider-
ate reasoning [65], object propositions [51], and multi-object languages such as
Rumer [9] are alternatives in the design space spanned by invariant techniques,
aliasing/separation and ownership; all validate variants of Composite pattern.

Extrapolating from our exploration of the Composite pattern, it appears
feasible to generate VST specifications, loop invariants, and APD declarations
from Verifast [34]; synthesizing full proofs will be more challenging.

Object encodings in the Linux kernel, GTK/GObject, or the SQLite database
engine deviate from the Smalltalk tradition and expose APIs that are not fully
dataless. We suspect these systems also differ from standard language-level ob-
ject disciplines in their need for deeply layered ownership control or model-level
object aggregates. Like Schreiner’s encoding [63], these systems thus provide
interesting opportunities for future case studies.

Conclusion The ability of type theory to capture modularity and abstraction is
well-established. But while, e.g. Mitchell and Plotkin’s insight has been highly
influential in the world of functional programming, it has not yet made its way
into verification tools for mainstream languages. Taking inspiration from their
work, we introduced Verified Software Units as a general component calculus
for VST, and developed an infrastructure for separating the declarations of ab-
stract predicates from concrete predicate definitions. We showed that residual
predicates support callbacks which violate operation atomicity, as is the case
in the subject-observer pattern. Finally, we introduced a two-level approach to
specifying object principles, yielding a simple logic for Smalltalk-style objects in
C. Together, these innovations substantially advance VST’s capability to verify
modular C developments that employ diverse programming styles.

Acknowledgments: This work was funded by the National Science Foundation
under the awards 1005849 (Verified High Performance Data Structure Implemen-
tations, Beringer) and 1521602 Ezpedition in Computing: The Science of Deep
Specification, Appel). The author is grateful to the members of both projects for
their feedback and greatly appreciates the reviewers’ comments and suggestions.

References

1. Ahmed, A., Appel, A.W., Richards, C.D., Swadi, K.N., Tan, G., Wang, D.C.:
Semantic foundations for typed assembly languages. ACM Trans. Program. Lang.

10.

11.

12.

13.

14.

15.

Verified Software Units 143

Syst. 32(3), 7:1-T:67 (2010), https://doi.org/10.1145/1709093.1709094

. Albert, E., Puebla, G., Hermenegildo, M.V.: Abstraction-carrying code. In: Baader

and Voronkov [7], pp. 380-397, https://doi.org/10.1007/978-3-540-32275-7_25

. Appel, A.W.: Foundational proof-carrying code. In: LICS’01: 16th Annual IEEE

Symposium on Logic in Computer Science, Proceedings. pp. 247-256. IEEE Com-
puter Society (2001), https://doi.org/10.1109/LICS.2001.932501

. Appel, A.W., Dockins, R., Hobor, A., Beringer, L., Dodds, J., Stewart, G., Blazy,

S., Leroy, X.: Program Logics for Certified Compilers. Cambridge (2014)

. Appel, A'W., Naumann, D.A.: Verified sequential malloc/free. In: Ding, C., Maas,

M. (eds.) ISMM’20: 2020 ACM SIGPLAN International Symposium on Memory
Management. pp. 48-59. ACM (2020), https://doi.org/10.1145/3381898.3397211

. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile resource

guarantees for smart devices. In: Barthe, G., Burdy, L., Huisman, M., Lanet,
J., Muntean, T. (eds.) CASSIS’04: International Workshop on Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices, Revised Selected
Papers. LNCS, vol. 3362, pp. 1-26. Springer (2004), https://doi.org/10.1007/
978-3-540-30569-9_1

. Baader, F., Voronkov, A. (eds.): LPAR’04: Logic for Programming, Artificial

Intelligence, and Reasoning, 11th International Conference, Proceedings, LNCS,
vol. 3452. Springer (2005), https://doi.org/10.1007/b106931

. Balzer, R.M.: Dataless programming. In: American Federation of Information Pro-

cessing Societies: Proceedings of the AFIPS 67 Fall Joint Computer Conference.
AFIPS Conference Proceedings, vol. 31, pp. 535-544. AFIPS / ACM / Thom-
son Book Company, Washington D.C. (1967), https://doi.org/10.1145/1465611.
1465683

. Balzer, S.: Rumer: A programming language and modular verification technique

based on relationships. Ph.D. thesis, ETH Ziirich (2011)

Banerjee, A., Naumann, D.A.: Local reasoning for global invariants, part II: dy-
namic boundaries. J. ACM 60(3), 19:1-19:73 (2013), http://doi.acm.org/10.1145/
2485981

Barnett, M., DeLine, R., Fahndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Journal of Object Technology 3(6),
27-56 (2004), https://doi.org/10.5381/j0t.2004.3.6.a2

Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over
shared state. In: Kozen, D., Shankland, C. (eds.) Mathematics of Program Con-
struction, 7th International Conference, MPC 2004, Proceedings. LNCS, vol. 3125,
pp. 54-84. Springer (2004), https://doi.org/10.1007/978-3-540-27764-4_5

Barthe, G., Crégut, P., Grégoire, B., Jensen, T.P., Pichardie, D.: The MOBIUS
proof carrying code infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.P. (eds.) FMCO’07: Formal Methods for Components and Ob-
jects, 6th International Symposium, Revised Lectures. LNCS, vol. 5382, pp. 1-24.
Springer (2007), https://doi.org/10.1007/978-3-540-92188-2_1

Beringer, L.: Verified Software Units — Coq development (2021), https://www.cs.
princeton.edu/~eberinge/VSU _Esop21.tar.gz

Beringer, L., Appel, A.W.: Abstraction and subsumption in modular verification of
C programs. In: ter Beek, M.H., Mclver, A., Oliveira, J.N. (eds.) Formal Methods
- The Next 30 Years - Third World Congress, FM 2019, Proceedings. LNCS, vol.
11800, pp. 573-590. Springer (2019), https://doi.org/10.1007/978-3-030-30942-8 _
34

https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1007/978-3-540-32275-7_25
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1145/3381898.3397211
https://doi.org/10.1007/978-3-540-30569-9_1
https://doi.org/10.1007/978-3-540-30569-9_1
https://doi.org/10.1007/b106931
https://doi.org/10.1145/1465611.1465683
https://doi.org/10.1145/1465611.1465683
http://doi.acm.org/10.1145/2485981
http://doi.acm.org/10.1145/2485981
https://doi.org/10.5381/jot.2004.3.6.a2
https://doi.org/10.1007/978-3-540-27764-4_5
https://doi.org/10.1007/978-3-540-92188-2_1
https://www.cs.princeton.edu/~eberinge/VSU_Esop21.tar.gz
https://www.cs.princeton.edu/~eberinge/VSU_Esop21.tar.gz
https://doi.org/10.1007/978-3-030-30942-8_34
https://doi.org/10.1007/978-3-030-30942-8_34

144

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

L. Beringer

Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic certifi-
cation of heap consumption. In: Baader and Voronkov [7], pp. 347-362, https:
//doi.org/10.1007/978-3-540-32275-7_23

Besson, F., Jensen, T.P., Pichardie, D.: Proof-carrying code from certified ab-
stract interpretation and fixpoint compression. Theor. Comput. Sci. 364(3), 273—
291 (2006), https://doi.org/10.1016/j.tcs.2006.08.012

Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing object encodings. Inf. Comput.
155(1-2), 108-133 (1999), https://doi.org/10.1006 /inco.1999.2829

Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced
specification and verification with JML and ESC/Java2. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Components
and Objects, 4th International Symposium, FMCO 2005, Revised Lectures. LNCS,
vol. 4111, pp. 342-363. Springer (2005), https://doi.org/10.1007/11804192_16
Clarke, D., Drossopoulou, S., Noble, J., Wrigstad, T.: Aliasing, confinement, and
ownership in object-oriented programming. In: Cebulla, M. (ed.) Object-Oriented
Technology. ECOOP 2007 Workshop Reader, Final Reports. LNCS, vol. 4906, pp.
40-49. Springer (2007), https://doi.org/10.1007/978-3-540-78195-0_5
Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: Fickle : Dy-
namic object re-classification. In: Knudsen, J.L. (ed.) ECOOP 2001 - Object-
Oriented Programming, 15th European Conference, Proceedings. LNCS, vol. 2072,
pp- 130-149. Springer (2001), https://doi.org/10.1007/3-540-45337-7_8
Drossopoulou, S., Francalanza, A., Miiller, P., Summers, A.J.: A unified frame-
work for verification techniques for object invariants. In: Vitek, J. (ed.) ECOOP
2008 - Object-Oriented Programming, 22nd European Conference, Proceed-
ings. LNCS, vol. 5142, pp. 412-437. Springer (2008), https://doi.org/10.1007/
978-3-540-70592-5_18

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., USA (1995)

Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X.N., Weng, S., Zhang,
H., Guo, Y.: Deep specifications and certified abstraction layers. In: Rajamani,
S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015. pp. 595-608.
ACM (2015), https://doi.org/10.1145/2676726.2676975

Gu, R., Shao, Z., Chen, H., Kim, J., Koenig, J., Wu, X.N., Sjéberg, V., Costanzo,
D.: Building certified concurrent OS kernels. Commun. ACM 62(10), 89-99 (2019),
https://doi.org/10.1145/3356903

Gu, R., Shao, Z., Kim, J., Wu, X.N., Koenig, J., Sjéberg, V., Chen, H., Costanzo,
D., Ramananandro, T.: Certified concurrent abstraction layers. In: Foster, J.S.,
Grossman, D. (eds.) Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2018. pp. 646-661. ACM
(2018), https://doi.org/10.1145/3192366.3192381

Hamid, N.A., Shao, Z., Trifonov, V., Monnier, S., Ni, Z.: A syntactic approach to
foundational proof-carrying code. J. Autom. Reasoning 31(3-4), 191-229 (2003),
https://doi.org/10.1023/B:JARS.0000021012.97318.e9

Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: Ironfleet: proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83-92 (2017), https://doi.org/10.1145/3068608
Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill,
B.: Ironclad apps: End-to-end security via automated full-system verification. In:

https://doi.org/10.1007/978-3-540-32275-7_23
https://doi.org/10.1007/978-3-540-32275-7_23
https://doi.org/10.1016/j.tcs.2006.08.012
https://doi.org/10.1006/inco.1999.2829
https://doi.org/10.1007/11804192_16
https://doi.org/10.1007/978-3-540-78195-0_5
https://doi.org/10.1007/3-540-45337-7_8
https://doi.org/10.1007/978-3-540-70592-5_18
https://doi.org/10.1007/978-3-540-70592-5_18
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3356903
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1023/B:JARS.0000021012.97318.e9
https://doi.org/10.1145/3068608

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Verified Software Units 145

Flinn, J., Levy, H. (eds.) 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14. pp. 165-181. USENIX Association (2014), https:
//www.usenix.org/conference/osdil4/technical-sessions/presentation/hawblitzel
Hofmann, M., Pierce, B.C.: Positive subtyping. Inf. Comput. 126(1), 11-33 (1996),
https://doi.org/10.1006/inco.1996.0031

Honsell, F., Lenisa, M., Redamalla, R.: Coalgebraic semantics and observational
equivalences of an imperative class-based OO-language. Electron. Notes Theor.
Comput. Sci. 104, 163-180 (2004), https://doi.org/10.1016/j.entcs.2004.08.024
Huisman, M., Jacobs, B.: Inheritance in higher order logic: Modeling and reason-
ing. In: Theorem Proving in Higher Order Logics. LNCS, vol. 1869, pp. 301-319.
Springer (2000)

Jacobs, B.: Objects and classes, co-algebraically. In: Freitag, B., Jones, C.B.,
Lengauer, C., Schek, H. (eds.) Object Orientation with Parallelism and Persis-
tence. pp. 83-103. Kluwer Academic Publishers (1995)

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: A powerful, sound, predictable, fast verifier for C and java. In: Bobaru,
M.G., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NASA Formal Methods -
Third International Symposium, NFM 2011. Proceedings. LNCS, vol. 6617, pp.
41-55. Springer (2011), https://doi.org/10.1007/978-3-642-20398-5_4

Jacobs, B., Smans, J., Piessens, F.: Verifying the composite pattern using separa-
tion logic. In: Specification and verification of component-based systems — Work-
shop at ACM SIGSOFT/FSE 16 (2008), available at https://people.cs.kuleuven.
be/~bart.jacobs/verifast

Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming 28 (2018)

Kay, A.C.: The early history of Smalltalk. In: Lee, J.A.N., Sammet, J.E. (eds.)
History of Programming Languages Conference (HOPL-II), Preprints. pp. 69-95.
ACM (1993), https://doi.org/10.1145/154766.155364

Kleymann, T.: Hoare logic and auxiliary variables. Formal Asp. Comput. 11(5),
541-566 (1999), https://doi.org/10.1007/s001650050057

Koh, N., Li, Y., Li, Y., Xia, L., Beringer, L., Honoré, W., Mansky, W., Pierce,
B.C., Zdancewic, S.: From C to interaction trees: specifying, verifying, and testing
a networked server. In: Mahboubi, A., Myreen, M.O. (eds.) Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs,
(CPP’19). pp. 234-248. ACM (2019), https://doi.org/10.1145/3293880.3294106
Kravchuk-Kirilyuk, A.Y.: The B*-tree Index as a Verified Software Unit. Master’s
thesis, Department of Computer Science, Princeton University (2020)
Krishnaswami, N.R., Aldrich, J., Birkedal, L., Svendsen, K., Buisse, A.: Design
patterns in separation logic. In: Kennedy, A., Ahmed, A. (eds.) Proceedings of
TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation. pp. 105-116. ACM (2009), https://doi.org/10.1145/
1481861.1481874

Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance,
and modular reasoning. ACM Trans. on Programming Languages and Systems
37(4), 13:1-13:88 (2015), https://doi.org/10.1145 /2766446

Liskov, B.: Keynote address - data abstraction and hierarchy. SIGPLAN Not.
23(5), 17-34 (Jan 1987), https://doi.org/10.1145/62139.62141

Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811-1841 (1994), https://doi.org/10.1145/197320.197383

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://doi.org/10.1006/inco.1996.0031
https://doi.org/10.1016/j.entcs.2004.08.024
https://doi.org/10.1007/978-3-642-20398-5_4
https://people.cs.kuleuven.be/~bart.jacobs/verifast
https://people.cs.kuleuven.be/~bart.jacobs/verifast
https://doi.org/10.1145/154766.155364
https://doi.org/10.1007/s001650050057
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/1481861.1481874
https://doi.org/10.1145/1481861.1481874
https://doi.org/10.1145/2766446
https://doi.org/10.1145/62139.62141
https://doi.org/10.1145/197320.197383

146

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

L. Beringer

McKinna, J., Burstall, R.M.: Deliverables: A categorial approach to program de-
velopment in type theory. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) Math-
ematical Foundations of Computer Science 1993, 18th International Symposium,
MFCS’93. Lecture Notes in Computer Science, vol. 711, pp. 32-67. Springer (1993),
https://doi.org/10.1007/3-540-57182-5_3

Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Trans.
on Programming Languages and Systems 10(3), 470-502 (Jul 1988)

Miiller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered
object structures. Sci. Comput. Program. 62(3), 253-286 (2006), https://doi.org/
10.1016/j.scico.2006.03.001

Naumann, D.A.: Deriving sharp rules of adaptation for Hoare logics. Tech.
Rep. 9906, Department of Computer Science, Stevens Institute of Technology
(1999)

Necula, G.C.: Proof-carrying code. In: Lee, P., Henglein, F., Jones, N.D. (eds.)
Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 106-119. ACM Press (1997), https:
//doi.org/10.1145/263699.263712

Nipkow, T.: Hoare logics for recursive procedures and unbounded nondeterminism.
In: Bradfield, J.C. (ed.) Computer Science Logic, 16th International Workshop,
CSL 2002, 11th Annual Conference of the EACSL, Proceedings. Lecture Notes in
Computer Science, vol. 2471, pp. 103-119. Springer (2002), http://dx.doi.org/10.
1007/3-540-45793-3_8

Nistor, L., Aldrich, J., Balzer, S., Mehnert, H.: Object propositions. In: Jones,
C.B., Pihlajasaari, P., Sun, J. (eds.) FM 2014: Formal Methods - 19th International
Symposium, Singapore, May 12-16, 2014. Proceedings. LNCS, vol. 8442, pp. 497—
513. Springer (2014), https://doi.org/10.1007/978-3-319-06410-9_34

Nistor, L., Kurilova, D., Balzer, S., Chung, B., Potanin, A., Aldrich, J.: Wyvern:
A simple, typed, and pure object-oriented language. In: Proceedings of the 5th
Workshop on MechAnisms for SPEcialization, Generalization and InHerItance.
pp- 9-16. MASPEGHI ’13, Association for Computing Machinery, New York, NY,
USA (2013), https://doi.org/10.1145/2489828.2489830

O’Hearn, P.W.: Separation logic. Commun. ACM 62(2), 86-95 (2019), https://
doi.org/10.1145/3211968

O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. ACM
Trans. Program. Lang. Syst. 31(3), 11:1-11:50 (2009), https://doi.org/10.1145/
1498926.1498929

Parkinson, M.: Class invariants: the end of the road? (2007), contained in [20].
Also available at https://people.dsv.su.se/ tobias/iwaco/p3-parkinson.pdf
Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: Palsberg, J.,
Abadi, M. (eds.) Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2005. pp. 247-258. ACM (2005),
https://doi.org/10.1145/1040305.1040326

Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008. pp. 75-86.
ACM (2008), https://doi.org/10.1145/1328438.1328451

Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge, Mass.
(2002)

Polikarpova, N., Tschannen, J., Furia, C.A., Meyer, B.: Flexible invariants through
semantic collaboration. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM 2014:

https://doi.org/10.1007/3-540-57182-5_3
https://doi.org/10.1016/j.scico.2006.03.001
https://doi.org/10.1016/j.scico.2006.03.001
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
http://dx.doi.org/10.1007/3-540-45793-3_8
http://dx.doi.org/10.1007/3-540-45793-3_8
https://doi.org/10.1007/978-3-319-06410-9_34
https://doi.org/10.1145/2489828.2489830
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968
https://doi.org/10.1145/1498926.1498929
https://doi.org/10.1145/1498926.1498929
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1145/1328438.1328451

60.

61.

62.

63.

64.

65.

66.

67.

68.

Verified Software Units 147

Formal Methods - 19th International Symposium. LNCS, vol. 8442, pp. 514-530.
Springer (2014), https://doi.org/10.1007/978-3-319-06410-9-35

Reynolds, J.C.: GEDANKEN - a simple typeless language based on the principle
of completeness and the reference concept. Commun. ACM 13(5), 308-319 (1970),
https://doi.org/10.1145/362349.362364

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), Proceedings.
pp. 55-74. IEEE Computer Society (2002), https://doi.org/10.1109/LICS.2002.
1029817

Saini, D., Sunshine, J., Aldrich, J.: A theory of typestate-oriented programming. In:
Proceedings of the 12th Workshop on Formal Techniques for Java-Like Programs,
FTFJP 2010, Maribor, Slovenia, June 22, 2010. pp. 9:1-9:7. ACM (2010), https:
//doi.org/10.1145/1924520.1924529

Schreiner, A.T.: Objektorientierte Programmierung mit ANSI-C. Hanser (1994),
https://www.cs.rit.edu/~ats

Sjoberg, V., Sang, Y., Weng, S.c., Shao, Z.: DeepSEA: A language for certified sys-
tem software. Proc. ACM Program. Lang. 3(OOPSLA), 136:1-136:27 (Oct 2019),
http://doi.acm.org/10.1145/3360562

Summers, A.J., Drossopoulou, S.: Considerate reasoning and the composite design
pattern. In: Barthe, G., Hermenegildo, M.V. (eds.) Verification, Model Checking,
and Abstract Interpretation, 11th International Conference, VMCAI 2010, Pro-
ceedings. LNCS, vol. 5944, pp. 328-344. Springer (2010), https://doi.org/10.1007/
978-3-642-11319-2_24

Summers, A.J., Drossopoulou, S., Miiller, P.: The need for flexible object in-
variants. In: International Workshop on Aliasing, Confinement and Ownership
in Object-Oriented Programming (IWACO’09). ACM (2009), https://doi.org/10.
1145/1562154.1562160

Vasudevan, A., Chaki, S., Maniatis, P., Jia, L., Datta, A.: iiberspark: Enforcing ver-
ifiable object abstractions for automated compositional security analysis of a hyper-
visor. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX
Security 16. pp. 87-104. USENIX Association (2016), https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/vasudevan

Xia, L., Zakowski, Y., He, P., Hur, C.,; Malecha, G., Pierce, B.C., Zdancewic, S.:
Interaction trees: representing recursive and impure programs in Coq. Proc. ACM
Program. Lang. 4(POPL), 51:1-51:32 (2020), https://doi.org/10.1145/3371119

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-06410-9_35
https://doi.org/10.1145/362349.362364
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/1924520.1924529
https://doi.org/10.1145/1924520.1924529
https://www.cs.rit.edu/~ats
http://doi.acm.org/10.1145/3360562
https://doi.org/10.1007/978-3-642-11319-2_24
https://doi.org/10.1007/978-3-642-11319-2_24
https://doi.org/10.1145/1562154.1562160
https://doi.org/10.1145/1562154.1562160
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/vasudevan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/vasudevan
https://doi.org/10.1145/3371119
http://creativecommons.org/licenses/by/4.0/

	Verified Software Units
	1 Introduction
	2 Program verification using VST
	3 VSU calculus
	3.1 Components and soundness
	3.2 Derived rules

	4 APDs and specification interfaces
	4.1 Abstract predicate declarations (APDs)
	4.2 Abstract specification interfaces (ASIs)
	4.3 Verification of ASI-specified compilation units
	4.4 A VSU for a malloc-free library
	4.5 Putting it all together

	5 Modular verification of the Subject/Observer pattern
	5.1 Specification and proof reuse
	5.2 Pattern-level specification

	6 Verification of object principles
	7 Discussion
	References

