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Abstract. We show how to define forward- and reverse-mode automatic
differentiation source-code transformations or on a standard higher-order
functional language. The transformations generate purely functional code,
and they are principled in the sense that their definition arises from a
categorical universal property. We give a semantic proof of correctness of
the transformations. In their most elegant formulation, the transforma-
tions generate code with linear types. However, we demonstrate how the
transformations can be implemented in a standard functional language
without sacrificing correctness. To do so, we make use of abstract data
types to represent the required linear types, e.g. through the use of a
basic module system.
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1 Introduction

Automatic differentiation (AD) is a technique for transforming code that im-
plements a function f into code that computes f ’s derivative, essentially by
using the chain rule for derivatives. Due to its efficiency and numerical stabil-
ity, AD is the technique of choice whenever derivatives need to be computed
of functions that are implemented as programs, particularly in high dimensional
settings. Optimization and Monte-Carlo integration algorithms, such as gradient
descent and Hamiltonian Monte-Carlo methods, rely crucially on the calculation
of derivatives. These algorithms are used in virtually every machine learning and
computational statistics application, and the calculation of derivatives is usually
the computational bottleneck. These applications explain the recent surge of in-
terest in AD, which has resulted in the proliferation of popular AD systems such
as TensorFlow [1], PyTorch [30], and Stan Math [9].

AD, roughly speaking, comes in two modes: forward-mode and reverse-mode.
When differentiating a function Rn → Rm, forward-mode tends to be more ef-
ficient if m > n, while reverse-mode generally is more performant if n > m.
As most applications reduce to optimization or Monte-Carlo integration of an
objective function Rn → R with n very large (today, in the order of 104 − 107),
reverse-mode AD is in many ways the more interesting algorithm.

However, reverse AD is also more complicated to understand and implement
than forward AD. Forward AD can be implemented as a structure-preserving
program transformation, even on languages with complex features [32]. As such,
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it admits an elegant proof of correctness [20]. By contrast, reverse-AD is only
well-understood as a source-code transformation (also called define-then-run
style AD) on limited programming languages. Typically, its implementations
on more expressive languages that have features such as higher-order functions
make use of define-by-run approaches. These approaches first build a computa-
tion graph during runtime, effectively evaluating the program until a straight-line
first-order program is left, and then they evaluate this new program [30,9]. Such
approaches have the severe downside that the differentiated code cannot bene-
fit from existing optimizing compiler architectures. As such, these AD libraries
need to be implemented using carefully, manually optimized code, that for exam-
ple does not contain any common subexpressions. This implementation process
is precarious and labour intensive. Further, some whole-program optimizations
that a compiler would detect go entirely unused in such systems.

Similarly, correctness proofs of reverse AD have taken a define-by-run ap-
proach and have relied on non-standard operational semantics, using forms of
symbolic execution [2,28,8]. Most work that treats reverse-AD as a source-code
transformation does so by making use of complex transformations which intro-
duce mutable state and/or non-local control flow [31,38]. As a result, we are not
sure whether and why such techniques are correct. Another approach has been to
compile high-level languages to a low-level imperative representation first, and
then to perform AD at that level [22], using mutation and jumps. This approach
has the downside that we might lose important opportunities for compiler opti-
mizations, such as map-fusion and embarrassingly parallel maps, which we can
exploit if we perform define-then-run AD on a high-level representation.

A notable exception to these define-by-run and non-functional approaches to
AD is [16], which presents an elegant, purely functional, define-then-run version
of reverse AD. Unfortunately, their techniques are limited to first-order programs
over tuples of real numbers. This paper extends the work of [16] to apply to
higher-order programs over (primitive) arrays of reals:

– It defines purely functional define-then-run reverse-mode AD on a higher-
order language.

– It shows how the resulting, mysterious looking program transformation arises
from a universal property if we phrase the problem in a suitable categori-
cal language. Consequently, the transformations automatically respect equa-
tional reasoning principles.

– It explains, from this categorical setting, precisely in what sense reverse AD
is the “mirror image” of forward AD.

– It presents an elegant proof of semantic correctness of the AD transforma-
tions, based on a semantic logical relations argument, demonstrating that
the transformations calculate the derivatives of the program in the usual
mathematical sense.

– It shows that the AD definitions and correctness proof are extensible to
higher-order primitives such as a map-operation over our primitive arrays.

– It discusses how our techniques are readily implementable in standard func-
tional languages to give purely functional, principled, semantically correct,
define-then-run reverse-mode AD.
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2 Key Ideas

Consider a simple programming language. Types are statically sized arrays realn

for some n, and programs are obtained from a collection of (unary) primitive
operations x : realn � op(x) : realm (intended to implement differentiable
functions like linear algebra operations and sigmoid functions) by sequencing.

We can implement both forward mode
−→D and reverse mode AD

←−D on this lan-
guage as source-code translations to the larger language of a simply typed λ-
calculus over the ground types realn that includes at least the same opera-
tions. Forward (resp. reverse) AD translates a type τ to a pair of types

−→D (τ) =
(
−→D (τ)1,

−→D (τ)2) (resp.
←−D (τ) = (

←−D (τ)1,
←−D (τ)2)) – the first component for holding

function values, also called primals in the AD literature; the second component
for holding derivative values, also called tangents (resp. adjoints or cotangents):

−→D (realn) def
=
←−D (realn) = (realn, realn).

We translate terms x : τ � t : σ to pairs of terms
−→D (t) = (

−→D (t)1,
−→D (t)2) for

forward AD and
←−D (t) = (

←−D (t)1,
←−D (t)2) for reverse AD, which have types

x :
−→D (τ)1 � −→D (t)1 :

−→D (σ)1 and x :
←−D (τ)1 � ←−D (t)1 :

←−D (σ)1
x :

−→D (τ)1 � −→D (t)2 :
−→D (τ)2 → −→D (σ)2 x :

←−D (τ)1 � ←−D (t)2 :
←−D (σ)2 → ←−D (τ)2.

−→D (t)1 and
←−D (t)1 perform the primal computations for the program t, while

−→D (t)2
and

←−D (t)2 compute the derivatives, resp., for forward and reverse AD.
Indeed, we define, by induction on the syntax:

−→D (x) def
=
←−D (x) def

= (x, λy.y)
−→D (op(t))1

def
= op(

−→D (t)1)
←−D (op(t))1

def
= op(

←−D (t)1)
−→D (op(t))2

def
= λy.(Dop)(

−→D (t)1) (
−→D (t)2 y)

←−D (op(t))2
def
= λy.

←−D (t)2 ((Dop)t(
←−D (t)1) y),

where we assume that we have chosen suitable terms x : realn � (Dop)(x) :
realn → realm and x : realn � (Dop)t(x) : realm → realn to represent the
(multivariate) derivative and transposed (multivariate) derivative, respectively,
of the primitive operation op : realn → realm.

For example, in case of multiplication x : realn � op(x) = (∗)(x) : real, we
can choose D(∗)(x) = λy : real2.swap(x) • y and (D(∗))t(x) = λy : real.y ·
swap(x), where swap is a unary operation on real2 that swaps both compo-
nents, (•) is a binary inner product operation on real2 and (·) is a binary scalar
product operation for rescaling a vector in real2 by a real number .

To illustrate the difference between
−→D and

←−D , consider the program t =
op2(op1(x)) performing two operations in sequence. Then,

−→D (t)1 = op2(op1(x)) =←−D (t)1 and (after β-reducing, for legibility)
−→D (t)2 = λy.(Dop2)(op1(x))((Dop1)(x)(y))
←−D (t)2 = λy.(Dop1)

t
(x)((Dop2)

t
(op1(x))(y)).

In general,
−→D computes the derivative of a program that is a composition of op-

erations op1, . . . , opn as the composition (Dop1), . . . , (Dopn) of the (multivari-
ate) derivatives, in the same order as the original computation. By constrast,
←−D computes the transposed derivative of such a composition of op1, . . . , opn as
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the composition of the transposed derivatives (Dopn)
t
, . . . , (Dop1)

t
. Observe the

reversed order compared to the original composition!
While this AD technique works on the limited first-order language we de-

scribed, it is far from satisfying. Notably, it has the following two shortcomings:
1. it does not tell us how to perform AD on programs that involve tuples or

operations of multiple arguments;
2. it does not tell us how to perform AD on higher-order programs, that is,

programs involving λ-abstractions and applications.
The key contributions of this paper are its extension of this transformation (see
§7) to apply to a full simply typed λ-calculus (of §3), and its proof that this
transformation is correct (see §8).

Shortcoming 1 seems easy to address, at first sight. Indeed, as the (co)tangent
vectors to a product of spaces are simply tuples of (co)tangent vectors, one would
expect to define, for a product type τ∗σ,
−→D (τ∗σ) def

= (
−→D (τ)1∗−→D (σ)1,−→D (τ)2∗−→D (σ)2) ←−D (τ∗σ) def

= (
←−D (τ)1∗←−D (σ)1,←−D (τ)2∗←−D (σ)2).

Indeed, this technique straightforwardly applies to forward mode AD:

−→D (〈t, s〉) def
= (〈−→D (t)1,−→D (s)1〉, λy.〈−→D (t)2(y),−→D (s)2(y)〉)

−→D (fst t) def
= (fst

−→D (t)1, λy.fst
−→D (t)2(y))

−→D (snd t)
def
= (snd

−→D (t)1, λy.snd
−→D (t)2(y)).

For reverse mode AD, however, tuples already present challenges. Indeed, we
would like to use the definitions below, but they require terms � 0 : τ and
t+ s : τ for any two t, s : τ for each type τ :

←−D (〈t, s〉) def
= (〈←−D (t)1,←−D (s)1〉, λy.←−D (t)2 (fst y) +←−D (s)2 (snd y))

←−D (fst t) def
= (fst

←−D (t)1, λy.〈←−D (t)2(y), 0〉) ←−D (snd t)
def
= (snd

←−D (t)1, λy.〈0,←−D (t)2(y)〉).

These formulae capture the well-known issue of fanout translating to addition
in reverse AD, caused by the contravariance of its second component [31]. Such
0 and + could indeed be defined by induction on the structure of types, using
0 and + at realn. However, more problematically, 〈−,−〉, fst− and snd− rep-
resent explicit uses of structural rules of contraction and weakening at types τ ,
which, in a λ-calculus, can also be used implicitly in the typing context Γ . Thus,
we should also make these implicit uses explicit to account for their presence in
the code. Then, we can appropriately translate them into their “mirror image”:
we map the contraction-weakening comonoids to the monoid structures (+, 0).

Insight 1. In functional define-then-run reverse AD, we need to make use of
explicit structural rules and ”mirror them”, which we can do by first translat-
ing our language into combinators. This translation allows us to avoid the usual
practice (e.g. [38]) of accumulating adjoints at run-time with mutable state: in-
stead, we detect all adjoints to accumulate at compile-time.

Put differently: we define AD on the syntactic category Syn with types τ as ob-
jects and (α)βη-equivalence classes of programs x : τ � t : σ as morphisms τ → σ.

Yet the question remains: why should this translation for tuples be correct?
What is even less clear is how to address shortcoming 2. What should the spaces



Reverse AD at Higher Types: Pure, Principled and Denotationally Correct 611

of tangents
−→D (τ → σ)2 and adjoints

←−D (τ → σ)2 look like? This is not something
we are taught in Calculus 1.01. Instead, we again employ category theory:

Insight 2. Follow where the categorical structure of the syntax leads you, as
doing so produces principled definitions that are easy to prove correct.

With the aim of categorical compositionality in mind, we note that our trans-
lations compose according to a sort of “syntactic chain-rule”, which says that

−→D (t[s/x])
def
= (

−→D (t)1[
−→D (s)1/x], λy.

−→D (t)2[
−→D (s)1/x](

−→D (s)2(y)))
←−D (t[s/x])

def
= (

←−D (t)1[
←−D (s)1/x], λy.

←−D (s)2(
←−D (t)2(y)[

←−D (s)1/x])).

By the following trick, these equations are functoriality laws. Given a Cartesian
closed category (C, 1,×,⇒), define categories

−→
D [C] and ←−

D [C] as having objects
pairs (A1, A2) of objects A1, A2 of C and morphisms

−→
D [C]((A1, A2), (B1, B2))

def
= C(A1, B1)× C(A1, A2 ⇒ B2)

←−
D [C]((A1, A2), (B1, B2))

def
= C(A1, B1)× C(A1, B2 ⇒ A2).

Both have identities id(A1,A2)
def
= (idA1

, Λ(π2)), where we write Λ for categori-

cal currying and π2 for the second projection. Composition in
−→
D [C] and ←−

D [C],
respectively, of (A1, A2)

(k1,k2)−−−−→ (B1, B2)
(l1,l2)−−−−→ (C1, C2) are

(k1, k2); (l1, l2)
def
=(k1; l1, λa1 : A1.λa2 : A2.l2(k1(a1))(k2(a1, a2)))

(k1, k2); (l1, l2)
def
=(k1; l1, λa1 : A1.λc2 : C2.k2(a1)(l2(k1(a1), c2))),

where we work in the internal language of C. Then, we have defined two functors:

−→D : Syn1 →
−→
D [Syn]

←−D : Syn1 →
←−
D [Syn],

where we write Syn1 for the syntactic category of our restrictive first-order
language, and we write Syn for that of the full λ-calculus. We would like to
extend these to functors

Syn→ −→
D [Syn] Syn→ ←−

D [Syn].

−→
D [C] turns out to be a category with finite products, given by(A1, A2)×(B1, B2)=
(A1 × B1, A2 × B2). Thus, we can easily extend

−→D to apply to an extension of
Syn1 with tuples by extending the functor in the unique structure-preserving
way. However,

←−
D [Syn] does not have products and neither

−→
D [Syn] nor

←−
D [Syn]

supports function types. (The reason turns out to be that not all functions are
linear in the sense of respecting 0 and +.) Therefore, the categorical structure
does not give us guidance on how to extend our translation to all of Syn.

Insight 3. Linear types can help. By using a more fine-grained type system, we
can capture the linearity of the derivative. As a result, we can phrase AD on our
full language simply as the unique structure-preserving functor that extends the
uncontroversial definitions given so far.

To implement this insight, we extend our λ-calculus to a language LSyn with
limited linear types (in §4): linear function types 	 and a kind of multiplicative
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conjunction !(−) ⊗ (−), in the sense of the enriched effect calculus [14]. The
algebraic effect giving rise to these linear types, in this instance, is that of the
theory of commutative monoids. As we have seen, such monoids are intimately
related to reverse AD. Consequently, we demand that every f with a linear
function type τ 	 σ is indeed linear, in the sense that f 0 = 0 and f (t + s) =
(f t) + (f s). For the categorically inclined reader: that is, we enrich LSyn over
the category of commutative monoids.

Now, we can give more precise types to our derivatives, as we know they are
linear functions: for x : τ � t : σ, we have x :

−→D (τ)1 � −→D (t)2 :
−→D (τ)2 	 −→D (σ)2

and x :
←−D (τ)1 � ←−D (t)2 :

←−D (σ)2 	 ←−D (τ)2. Therefore, given any model L of
our linear type theory, we generalise our previous construction of the categories
−→
D [L] and ←−D [L], but now we work with linear functions in the second component.
Unlike before, both

−→
D [L] and ←−D [L] are now Cartesian closed (by §6)!

Thus, we find the following corollary, by the universal property of Syn. This
property states that any well-typed choice of interpretations F (op) of the prim-
itive operations in a Cartesian closed category C extends to a unique Cartesian
closed functor F : Syn→ C. It gives a principled definition of AD and explains
in what sense reverse AD is the “mirror image” of forward AD.

Corollary (Definition of AD, §7). Once we fix the interpretation of the primi-
tives operations op to their respective derivatives and transposed derivatives, we
obtain unique structure-preserving forward and reverse AD functors

−→D : Syn→
−→
D [LSyn] and

←−D : Syn→ ←−
D [LSyn].

In particular, the following definitions are forced on us by the theory:

Insight 4. For reverse AD, an adjoint at function type τ → σ, needs to keep
track of the incoming adjoints v of type

←−D (σ)2 for each a primal x of type
←−D (τ)1 on which we call the function. We store these pairs (x, v) in the type
!
←−D (τ)1 ⊗ ←−D (σ)2 (which we will see is essentially a quotient of a list of pairs of
type

←−D (τ)1∗←−D (σ)2). Less surprisingly, for forward AD, a tangent at function
type τ → σ consists of a function sending each argument primal of type

−→D (τ)1
to the outgoing tangent of type

−→D (σ)2.
−→D (τ → σ)

def
= (

−→D (τ)1 → (
−→D (σ)1∗(−→D (τ)2 	 −→D (σ)2)),

−→D (τ)1 → −→D (σ)2)
←−D (τ → σ)

def
= (

←−D (τ)1 → (
←−D (σ)1∗(←−D (σ)2 	 ←−D (τ)2)), !

←−D (τ)1 ⊗←−D (σ)2)

With these definitions in place, we turn to the correctness of the source-code
transformations. To phrase correctness, we first need to construct a suitable de-
notational semantics with an uncontroversial notion of semantic differentiation.
A technical challenge arises, as the usual calculus setting of Euclidean spaces
(or manifolds) and smooth functions cannot interpret higher-order functions.
To solve this problem, we work with a conservative extension of this standard
calculus setting (see §5): the category Diff of diffeological spaces. We model
our types as diffeological spaces, and programs as smooth functions. By keeping
track of a commutative monoid structure on these spaces, we are also able to
interpret the required linear types. We write DiffCM for this “linear” category
of commutative diffeological monoids and smooth monoid homomorphisms.
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By the universal properties of the syntax, we obtain canonical, structure-
preserving functors �−� : LSyn → DiffCM and �−� : Syn → Diff once we fix
interpretations Rn of realn and well-typed interpretations �op� for each operation
op. These functors define a semantics for our language.

Having constructed the semantics, we can turn to the correctness proof (of
§8). Because calculus does not provide an unambiguous notion of derivative at
function spaces, we cannot prove that the AD transformations correctly imple-
ment mathematical derivatives by plain induction on the syntax. Instead, we use
a logical relations argument over the semantics, which we phrase categorically:

Insight 5. Once we show that the derivatives of primitive operations op are
correctly implemented, correctness of derivatives of other programs follows from
a standard logical relations construction over the semantics that relates a curve to
its (co)tangent curve. By the chain-rule, all programs respect the logical relations.

To show correctness of forward AD, we construct a category
−−−−−→
SScone whose

objects are triples ((X, (Y1, Y2)), P ) of an object X of Diff , an object (Y1, Y2)
of
−→
D [DiffCM] and a predicate P on Diff(R, X) × −→

D [DiffCM]((R,R), (Y1, Y2)).

It has morphisms ((X, (Y1, Y2)), P )
(f,(g,h))−−−−−→ ((X ′, (Y ′

1 , Y
′
2)), P

′), which are a

pair of morphisms X
f−→ X ′ and (Y1, Y2)

(g,h)−−−→ (Y ′
1 , Y

′
2) such that for any

(γ, (δ1, δ2)) ∈ P , we have that (γ; f, (δ1, δ2); (g, h)) ∈ P ′.
−−−−−→
SScone is a standard

category of logical relations, or subscone, and it is widely known to inherit the
Cartesian closure of Diff × −→

D [DiffCM] (see §§8.1). It also comes equipped with
a Cartesian closed functor

−−−−−→
SScone −→ Diff × −→

D [DiffCM]. Therefore, once we fix

predicates P f
realn on (�−�,−→D [�−�])(realn) and show that all operations op respect

these predicates, it follows that our denotational semantics lifts to give a unique

structure-preserving functor Syn

−�f−−−→ −−−−−→

SScone, such that the left diagram below
commutes (by the universal property of Syn).

Syn Syn× −→
D [LSyn] Syn Syn× ←−

D [LSyn]

−−−−−→
SScone Diff × −→

D [DiffCM]
←−−−−−
SScone Diff × ←−

D [DiffCM]

�−�f

(id,
−→D )

�−�×−→
D [�−�]

(id,
←−D )

�−�r �−�×←−
D [�−�]

Consequently, we can work with P f
realn

def
= {(f, (g, h)) | g=f and h=Df} ,

where we write Df(x)(v) for the multivariate calculus derivative of f at a point
x evaluated at a tangent vector v. By an application of the chain rule for differ-
entiation, we see that every op respects this predicate, as long as �Dop� = D�op�.
The commuting of our diagram then virtually establishes the correctness of
forward AD. The only remaining step in the argument is to note that any
tangent vector at �τ� ∼= RN , for first-order τ , can be represented by a curve
R → �τ�. For reverse AD, the same construction works, if �Dopt� = D�op�t,
by replacing

−→
D [−] with ←−

D [−] and −→D with
←−D . We can then choose P r

realn
def
={

(f, (g, h)) | g = f and h = x �→ (Df(x))
t
}
, as the predicates for constructing

�realn�r, where we write At for the matrix transpose of A. We obtain our main
theorem, which crucially holds even for t that involve higher-order subprograms.
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Theorem (Correctness of AD, Thm. 1). For any typed term x : τ � t : σ in
Syn between first-order types τ, σ, we have that

�−→D (t)2�(x) = D�t�(x) and �←−D (t)2�(x) = D�t�(x)t.

Next, we address the practicality of our method (in §9). The code transfor-
mations we employ are not too daunting to implement. It is well-known how to
mechanically translate λ-calculus and functional languages into a (categorical)
combinatory form [12]. However, the implementation of the required linear types
presents a challenge. Indeed, types like !(−) ⊗ (−) and (−) 	 (−) are absent
from languages such as Haskell and O’Caml. Luckily, in this instance, we can
implement them using abstract data types by using a (basic) module system:

Insight 6. Under the hood, !τ ⊗ σ can consist of a list of values of type τ∗σ.
Its API ensures that the list order and the difference between xs++ [(t, s), (t, s′)]
++ ys and xs++ [(t, s+ s′)] ++ ys cannot be observed: as such, it is a quotient
type. Meanwhile, τ 	 σ can be implemented as a standard function type τ → σ
with a limited API that enforces that we can only ever construct linear functions:
as such, it is a subtype.

We phrase the correctness proof of the AD transformations in elementary
terms, such that it holds in the applied setting where we use abstract types to
implement linear types. We show that our correctness results are meaningful, as
they make use of a denotational semantics that is adequate with respect to the
standard operational semantics. Finally, to stress the applicability of our method,
we show that it extends to higher-order (primitive) operations, such as map.

3 λ-Calculus as a Source Language for AD

As a source language for our AD translations, we can begin with a standard,
simply typed λ-calculus which has ground types realn of statically sized arrays
of n real numbers, for all n ∈ N, and sets Opmn1,...,nk

of primitive operations
op for all k,m, n1, . . . , nk ∈ N. These operations will be interpreted as smooth
functions (Rn1 × . . .× Rnk)→ Rm. Examples to keep in mind for op include

– constants c ∈ Opn for each c ∈ Rn, for which we slightly abuse notation and
write c(〈〉) as c;

– elementwise addition and product (+), (∗)∈Opnn,n and matrix-vector prod-
uct (�)∈Opnn·m,m;

– operations for summing all the elements in an array: sum ∈ Op1n;
– some non-linear functions like the sigmoid function ς ∈ Op11.

We intentionally present operations in a schematic way, as primitive operations
tend to form a collection that is added to in a by-need fashion, as an AD library
develops. The precise operations needed will depend on the applications, but,
in statistics and machine learning applications, Op tends to include a mix of
multi-dimensional linear algebra operations and mostly one-dimensional non-
linear functions. A typical library for use in machine learning would work with
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multi-dimensional arrays (sometimes called “tensors”). We focus here on one-
dimensional arrays as the issues of how precisely to represent the arrays are
orthogonal to the concerns of our development.

The types τ, σ, ρ and terms t, s, r of our AD source language are as follows:

τ, σ, ρ ::= types
| realn real arrays
| 1 nullary product

t, s, r ::= terms
x variable

| op(t) operations
| 〈〉 | 〈t, s〉 product tuples

| τ1∗τ2 binary product
| τ → σ function

| fst t | snd t product projections
| λx.t function abstraction
| t s function application

The typing rules are in Fig. 1, where we writeDom(op)
def
= realn1∗ . . .∗realnk

for an operation op ∈ Opmn1,...,nk
. We employ the usual syntactic sugar letx =

t in s
def
= (λx.s) t and write real for real1. As Fig. 2 displays, we consider the

terms of our language up to the standard βη-theory. We could consider further
equations for our operations, but we do not as we will not need them.

This standard λ-calculus is widely known to be equivalent to the free Carte-
sian closed category Syn generated by the objects realn and the morphisms op.
Syn effectively represents programs as (categorical) combinators, also known as
“point-free style” in the functional programming community. Indeed, there are
well-studied mechanical translations from the λ-calculus to the free Cartesian
closed category (and back) [26,13]. The translation from Syn to λ-calculus is
self-evident, while the translation in the opposite direction is straightforward
after we first convert our λ-terms to de Bruijn indexed form. Concretely,

– Syn has types τ, σ, ρ objects;
– Syn has morphisms t ∈ Syn(τ, σ) which are in 1-1 correspendence with

terms x : τ � t : σ up to βη-equivalence (which includes α-equivalence);
explicitly, they can be represented by

• identities: idτ ∈ Syn(τ, τ) (cf., variables up to α-equivalence);
• composition: t; s ∈ Syn(τ, ρ) for any t ∈ Syn(τ, σ) and s ∈ Syn(σ, ρ)
(corresponding to the capture avoiding substitution s[t/y] if we represent
x : τ � t : σ and y : σ � s : ρ);

• terminal morphisms: 〈〉τ ∈ Syn(τ,1);
• product pairing: 〈t, s〉 ∈ Syn(τ, σ∗ρ) for any t ∈ Syn(τ, σ) and s ∈
Syn(τ, ρ);

• product projections: fst τ,σ ∈ Syn(τ∗σ, τ) and snd τ,σ ∈ Syn(τ∗σ, σ);

((x : τ) ∈ Γ )

Γ � x : τ

Γ � t : Dom(op) (op ∈ Opmn1,...,nk
)

Γ � op(t) : realm Γ � 〈〉 : 1
Γ � t : τ Γ � s : σ

Γ � 〈t, s〉 : τ∗σ

Γ � t : τ∗σ
Γ � fst t : τ

Γ � t : τ∗σ
Γ � snd t : σ

Γ, x : τ � t : σ

Γ � λx.t : τ → σ

Γ � t : σ → τ Γ � s : σ

Γ � t s : τ

Fig. 1. Typing rules for the AD source language.
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t = 〈〉 fst 〈t, s〉 = t snd 〈t, s〉 = s t = 〈fst t, snd t〉 (λx.t) s = t[s/x] t
#x
= λx.t x

Fig. 2. Standard βη-laws for products and functions. We write
#x1,...,xn

= to indicate
that the variables x1, . . . , xn need to be fresh in the left hand side. Equations hold on
pairs of terms of the same type. As usual, we only distinguish terms up to α-renaming
of bound variables.

• function evaluation: evτ,σ ∈ Syn((τ → σ)∗τ, σ);
• currying: Λτ,σ,ρ(t) ∈ Syn(τ, σ → ρ) for any t ∈ Syn(τ∗σ, ρ);
• operations: op ∈ Syn(realn1∗..∗realnk , realm) for any op ∈ Opmn1,..,nk

.
– all subject to the usual equations of a Cartesian closed category [26].

1 and ∗ give finite products in Syn, while → gives categorical exponentials.
Syn has the following universal property: for any Cartesian closed category

(C, 1,×,⇒), we obtain a unique Cartesian closed functor F : Syn→ C, once we
choose objects Frealn of C as well as, for each op ∈ Opmn1,...,nk

, make well-typed
choices of C-morphisms Fop : (Frealn1 × . . .× Frealnk)→ Frealm.

4 Linear λ-Calculus as an Idealised AD Target Language

As a target language for our AD source code transformations, we consider a
language that extends the language of §3 with limited linear types. We could
opt to work with a full linear logic as in [6] or [4]. Instead, however, we will only
include the bare minimum of linear type formers that we actually need to phrase
the AD transformations. The resulting language is closely related to, but more
minimal than, the Enriched Effect Calculus of [14]. We limit our language in this
way because we want to stress that the resulting code transformations can easily
be implemented in existing functional languages such as Haskell or O’Caml. As
we discuss in §9, the idea will be to make use of a module system to implement
the required linear types as abstract data types.

In our idealised target language, we consider linear types (aka computation
types) τ , σ, ρ, in addition to the Cartesian types (aka value types) τ , σ, ρ that
we have considered so far. We think of Cartesian types as denoting spaces and
linear types as denoting spaces equipped with an algebraic structure. As we are
interested in studying differentiation, the relevant space structure in this instance
is a geometric structure that suffices to define differentiability. Meanwhile, the
relevant algebraic structure on linear types turns out to be that of a commutative
monoid, as this algebraic structure is needed to phrase automatic differentiation
algorithms. Indeed, we will use the linear types to denote spaces of (co)tangent
vectors to the spaces of primals denoted by Cartesian types. These spaces of
(co)tangents form a commutative monoid under addition.

Concretely, we extend the types and terms of our language as follows:
τ , σ, ρ ::= linear types

| realn real array
| 1 unit type

τ, σ, ρ ::= Cartesian types
| . . . as in §3

| τ∗σ binary product
| τ → σ function
| !τ ⊗ σ tensor product

| τ 	 σ linear function
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Γ ;x : τ � x : τ

Γ � t : Dom(lop) Γ ;x : τ � s : LDom(lop) (lop ∈ LOpmn1,...,nk;n
′
1,...,n

′
l
)

Γ ;x : τ � lop(t; s) : realm

Γ ;x : τ � 〈〉 : 1
Γ ;x : τ � t : σ Γ ;x : τ � s : ρ

Γ ;x : τ � 〈t, s〉 : σ∗ρ
Γ ;x : τ � t : σ∗ρ
Γ ;x : τ � fst t : σ

Γ ;x : τ � t : σ∗ρ
Γ ;x : τ � snd t : ρ

Γ, y : σ;x : τ � t : ρ

Γ ;x : τ � λy.t : σ → ρ

Γ ;x : τ � t : σ → ρ Γ � s : σ

Γ ;x : τ � t s : ρ

Γ � t : σ Γ ;x : τ � s : ρ

Γ ;x : τ �!t⊗ s :!σ ⊗ ρ

Γ ;x : τ � t :!σ ⊗ ρ Γ, y : σ; z : ρ � s : ρ′

Γ ;x : τ � case tof !y ⊗ z → s : ρ′
Γ ;x : τ � t : σ

Γ � λx.t : τ 	 σ

Γ � t : ρ 	 σ Γ ;x : τ � s : ρ

Γ ;x : τ � t{s} : σ Γ ;x : τ � 0 : σ

Γ ;x : τ � t : σ Γ ;x : τ � s : σ

Γ ;x : τ � t+ s : σ

Fig. 3. Typing rules for the idealised AD target language with linear types.

t, s, r ::= terms
| . . . as in §3
| lop(t; s) linear op.

| !t⊗ s | case tof !y ⊗ z → s tensor product
| λx.t | t{s} abstraction/appl.
| 0 | t+ s monoid structure.

We work with linear operations lop ∈ LOpmn1,...,nk;n′
1,...,n

′
l
, which are intended to

represent functions which are linear (in the sense of respecting 0 and +) in the

last l arguments but not in the first k. We writeDom(lop)
def
= realn1∗ . . .∗realnk

and LDom(lop)
def
= realn

′
1∗ . . .∗realn′

l for lop ∈ LOpmn1,...,nk;n′
1,...,n

′
l
. These oper-

ations can include e.g. dense and sparse matrix-vector multiplications. Their pur-
pose is to serve as primitives to implement derivatives Dop(x; y) and (Dop)t(x; y)
of the operations op from the source language as terms that are linear in y.

In addition to the judgement Γ � t : τ , which we encountered in §3, we now
consider an additional judgement Γ ;x : τ � t : σ. While we think of the former as
denoting a (structure-preserving) function between spaces, we think of the latter
as a (structure-preserving) function from the space which Γ denotes to the space
of (structure-preserving) monoid homomorphisms from the denotation of τ to
that of σ. In this instance, “structure-preserving” will mean differentiable.

Fig. 3 displays the typing rules of our language. We consider the terms of
this language up to the βη+-equational theory of Fig. 4. It includes βη-rules as
well as commutative monoid and homomorphism laws.

case !t⊗ sof !x⊗ y → r = r[t/x,
s/y] t[s/x]

#y,z
= case sof !y ⊗ z → t[!y⊗z/x]

(λx.t){s} = t[s/x] t
#x
= λx.t{x}

t+ 0 = t 0 + t = t (t+ s) + r = t+ (s+ r) t+ s = s+ t
(Γ ;x : τ � t : σ) ⇒ t[0/x] = 0 (Γ ;x : τ � t : σ) ⇒ t[s+r/x] = t[s/x] + t[r/x]

Fig. 4. Equational rules for the idealised, linear AD language, which we use on top of
the rules of Fig. 2. In addition to standard βη-rules for !(−) ⊗ (−)- and 	-types, we
add rules making (0,+) into a commutative monoid on the terms of each linear type
as well as rules which say that terms of linear types are homomorphisms in their linear
variable. Equations hold on pairs of terms of the same type.
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5 Semantics of the Source and Target Languages

5.1 Preliminaries

Category theory We assume familiarity with categories, functors, natural
transformations, and their theory of (co)limits and adjunctions. We write:

– unary, binary, and I-ary products as 1, X1 × X2, and
∏

i∈I Xi, writing πi

for the projections and (), (x1, x2), and (xi)i∈I for the tupling maps;
– unary, binary, and I-ary coproducts as 0, X1 +X2, and

∑
i∈I Xi, writing ιi

for the injections and [], [x1, x2], and [xi]i∈I for the cotupling maps;
– exponentials as Y ⇒ X, writing Λ and ev for currying and evaluation.

Monoids We assume familiarity with the category CMon of commutative

monoids X = (|X|, 0X ,+X), such as Rn def
= (Rn, 0,+), their cartesian product

X×Y , tensor product X⊗Y , and the free monoid !S on a set S (write δ for the
inclusion S ↪→ |!S|). We will sometimes write

∑n
i=1 xi for ((x1+x2)+. . .) . . .+xn.

Recall that a category C is called CMon-enriched if we have a commuta-
tive monoid structure on each homset C(C,C ′) and function composition gives
monoid homomorphisms C(C,C ′)⊗ C(C ′, C ′′)→ C(C,C ′′). Finite products in a
category C are well-known to be biproducts (i.e. simultaneously products and

coproducts) if and only if C is CMon-enriched (see e.g. [17]): define []
def
= 0 and

[f, g]
def
= π1; f + π2; g and, conversely, 0

def
= [] and f + g

def
= (id, id); [f, g].

5.2 Abstract Semantics

The language of §3 has a canonical interpretation in any Cartesian closed cat-
egory (C, 1,×,⇒ ), once we fix C-objects �realn� to interpret realn and C-
morphisms �op� ∈ C(�Dom(op)�, �realm�) to interpret op∈Opmn1,...,nk

. We inter-

pret types τ and contexts Γ as C-objects �τ� and �Γ �: �x1 : τ1, . . . , xn : τn� def
=

�τ1�× . . .× �τn� �1� def
= 1 �τ∗σ� def

= �τ�× �σ� �τ → σ� def
= �τ�⇒ �σ� .

We interpret terms Γ � t : τ as morphisms �t� in C(�Γ �, �τ�):
�x1 : τ1, . . . , xn : τn � xk : τk�

def
= πk �〈〉�def= () �〈t, s〉�def= (�t�, �s�)

�fst � def
= π1 �snd � def

= π2 �λx.t� def
= Λ(�t�) �t s� def

= (�t�, �s�); ev.
This is an instance of the universal property of Syn mentioned in §3.

We discuss how to extend �−� to apply to the full target language of §4.
Suppose that L : Cop → Cat is a locally indexed category (see e.g. [27, §§§9.3.4]),
i.e. a (strict) contravariant functor from C to the category Cat of categories, such
that obL(C) = obL(C ′) and L(f)(L) = L for any object L of obL(C) and any
f : C ′ → C in C. We say that L is biadditive if each category L(C) has (chosen)
finite biproducts (1,×) and L(f) preserves them, for any f : C ′ → C in C, in the
sense that L(f)(1) = 1 and L(f)(L× L′) = L(f)(L)×L(f)(L′). We say that it
supports !(−)⊗(−)-types and ⇒-types, if L(π1) has a left adjoint !C ′⊗C− and a
right adjoint functor C ′ ⇒C −, for each product projection π1 : C × C ′ → C in
C, satisfying a Beck-Chevalley condition: !C ′ ⊗C L =!C ′ ⊗C′′ L and C ′⇒C L =
C ′⇒C′′ L for any C,C ′′ ∈ ob C. We simply write !C ′⊗L and C ′ ⇒ L. Let us write
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Φ and Ψ for the natural isomorphisms L(C)(!C ′ ⊗ L,L′)
∼=−→ L(C × C ′)(L,L′)

and L(C × C)(L,L′)
∼=−→ L(C)(L,C ′ ⇒ L′). We say that L supports Cartesian

	-types if the functor Cop → Set; C �→ L(C)(L,L′) is representable for any
objects L,L′ of L. That is, we have objects L 	 L′ of C with isomorphisms

Λ : L(C)(L,L′)
∼=−→ C(C,L 	 L′), natural in C. We call an L satisfying all these

conditions a categorical model of the language of §4. In particular, any biadditive
model of intuitionistic linear logic [29,17] is such a categorical model.

If we choose �realn� ∈ obL to interpret realn and compatible L-morphisms
�lop� in L(�Dom(lop)�)(�LDom(lop)�, �realk�) for each LOpmn1,...,nk;n′

1,...,n
′
l
, then

we can interpret linear types τ as objects �τ� of L:

�1� def
= 1 �τ∗σ� def

= �τ�× �σ� �τ → σ� def
= �τ�⇒ �σ� �!τ ⊗ σ� def

= !�τ�⊗ �σ�.

We can interpret τ 	 σ as the C-object �τ 	 σ� def
= �τ� 	 �σ�. Finally,

we can interpret terms Γ � t : τ as morphisms �t� in C(�Γ �, �τ�) and terms
Γ ;x : τ � t : σ as �t� in L(�Γ �)(�τ�, �σ�):

�Γ ;x : τ � x : τ� def
= id�τ� �〈〉� def

= () �〈t, s〉� def
= (�t�, �s�) �fst � def

= π1 �snd � def
= π2

�λx.t� def
= Ψ(�t�) �t s� def

= L((id, �s�))(Ψ−1(�t�))

�!t⊗ s� def
= L((id, �t�))(Φ(id)); (!�σ�⊗ �s�) �case tof !y ⊗ x→ s� def

= �t�;Φ−1(�s�)

�λx.t� def
= Λ(�t�) �t{s}� def

= Λ−1(�t�); �s� �0� def
= [] �t+ s� def

= (id, id); [�t�, �s�].

Observe that we interpret 0 and + using the biproduct structure of L.

Proposition 1. The interpretation �−� of the language of §4 in categorical mod-

els is both sound and complete with respect to the βη+-equational theory: t
βη+
= s

iff �t� = �s� in each such model.

Soundness follows by case analysis on the βη+-rules. Completeness follows
by the construction of the syntactic model LSyn : CSynop → Cat:

– CSyn extends its full subcategory Syn with Cartesian 	-types;
– Objects of LSyn(τ) are linear types σ of our target language.
– Morphisms in LSyn(τ)(σ, ρ) are terms x : τ ; y : σ � t : ρ modulo (α)βη+-

equivalence.
– Identities in LSyn(τ) are represented by the terms x : τ ; y : σ � y : σ.
– Composition of x : τ ; y1 : σ1 � t : σ2 and x : τ ; y2 : σ2 � t : σ3 in LSyn(τ) is

defined by the capture avoiding substitution x : τ ; y1 : σ1 � s[t/y2
] : σ3.

– Change of base LSyn(t) : LSyn(τ) → LSyn(τ ′) along (x′ : τ ′ � t : τ) ∈
CSyn(τ ′, τ) is defined LSyn(t)(x : τ ; y : σ � s : ρ)

def
= x′ : τ ′; y : σ �s[t/x] : ρ.

– All type formers are interpreted as one expects based on their notation, using
introduction and elimination rules for the required structural isomorphisms.

5.3 Concrete Semantics

Diffeological Spaces Throughout this paper, we have an instance of the ab-
stract semantics of our languages in mind, as we intend to interpret realn as
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the usual Euclidean space Rn and to interpret each program x1 : realn1 , . . . , xk :
realnk � t : realm as a smooth (C∞-) function Rn1 × . . . × Rnk → Rm. A chal-
lenge is that the usual settings for multivariate calculus and differential geometry
do not form Cartesian closed categories, obstructing the interpretation of higher
types (see [20, Appx. A]). A solution, recently employed by [20], is to work with
diffeological spaces [33,21], which generalise the usual notions of differentiability
from Euclidean spaces and smooth manifolds to apply to higher types (as well
as a range of other types such a sum and inductive types). We will also follow
this route and use such spaces to construct our concrete semantics. Other valid
options for a concrete semantics exist: convenient vector spaces [19,7], Frölicher
spaces [18], or synthetic differential geometry [25], to name a few. We choose to
work with diffeological spaces mostly because they seem to us to provide simplest
way to define and analyse the semantics of a rich class of language features.

Diffeological spaces formalise the intuition that a higher-order function is
smooth if it sends smooth functions to smooth functions, meaning that we can
never use it to build non-smooth first-order functions. This intuition is reminis-
cent of a logical relation, and it is realised by directly axiomatising smooth maps
into the space, rather than treating smoothness as a derived property.

Definition 1. A diffeological space X = (|X| ,PX) consists of a set |X| together
with, for each n ∈ N and each open subset U of Rn, a set PU

X of functions
U → |X| called plots, such that
– (constant) all constant functions are plots;
– (rearrangement) if f : V → U is smooth and p ∈ PU

X , then f ; p ∈ PV
X ;

– (gluing) if
(
pi ∈ PUi

X

)
i∈I

is a compatible family of plots (x ∈ Ui ∩ Uj ⇒
pi(x) = pj(x)) and (Ui)i∈I covers U , then the gluing p : U → |X| : x ∈ Ui �→
pi(x) is a plot.

We think of plots as the maps that are axiomatically deemed “smooth”. We call
a function f : X → Y between diffeological spaces smooth if, for all plots p ∈ PU

X ,
we have that p; f ∈ PU

Y . We write Diff(X,Y ) for the set of smooth maps from X
to Y . Smooth functions compose, and so we have a category Diff of diffeological
spaces and smooth functions. We give some examples of such spaces.

Example 1 (Manifold diffeology). Given any open subset X of a Euclidean space
Rn (or, more generally, a smooth manifold X), we can take the set of smooth
(C∞) functions U → X in the traditional sense as PU

X . Given another such
space X ′, then Diff(X,X ′) coincides precisely with the set of smooth functions
X → X ′ in the traditional sense of calculus and differential geometry.

Put differently, the categories CartSp of Euclidean spaces and Man of
smooth manifolds with smooth functions form full subcategories of Diff .

Example 2 (Product diffeology). Given diffeological spaces (Xi)i∈I , we can equip∏
i∈I |Xi| with the product diffeology : PU∏

i∈I Xi

def
=

{
(αi)i∈I | αi ∈ PU

Xi

}
.

Example 3 (Functional diffeology). Given diffeological spaces X,Y , we can equip

Diff(X,Y ) with the functional diffeology PU
Y X

def
= {Λ(α) | α ∈ Diff(U ×X,Y )}.
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Examples 2 and 3 give us the categorical product and exponential objects,
respectively, in Diff . The embeddings of CartSp and Man into Diff preserve
products (and coproducts).

We work with the concrete semantics, where we fix C = Diff as the target
for interpreting Cartesian types and their terms. That is, by choosing the inter-

pretation �realn� def
= Rn, and by interpreting each op ∈ Opmn1,...,nk

as the smooth
function �op� : Rn1 × . . .×Rnk → Rm that it is intended to represent, we obtain
a unique interpretation �−� : CSyn→ Diff .

Diffeological Monoids To interpret linear types and their terms, we need a
semantic setting L that is both compatible with Diff and enriched over the cate-
gory of commutative monoids. We choose to work with commutative diffeological
monoids. That is, commutative monoids internal to the category Diff .

Definition 2. A diffeological monoid X = (|X|,PX , 0X ,+X) consists of a dif-
feological space (|X|,PX) with a monoid structure (0X ∈ |X|, (+X) : |X|×|X| →
|X|), such that +X is smooth. We call a diffeological monoid commutative if the
underlying monoid structure on |X| is commutative.

We write DiffCM for the category whose objects are commutative diffeo-
logical monoids and whose morphisms (|X|,PX , 0X ,+X) → (|Y |,PY , 0Y ,+Y )
are functions f : |X| → |Y | that are both smooth (|X|,PX) → (|Y |,PY ) and
monoid homomorphisms (|X|, 0X ,+X) → (|Y |, 0Y ,+Y ). Given that DiffCM is
CMon-enriched, finite products are biproducts.

Example 4. The real numbers R form a commutative diffeological monoid R by
combining its standard diffeology with its usual commutative monoid structure
(0,+). Similarly, N ∈ DiffCM by equipping N with (0,+) and the discrete diffe-
ology, in which plots are locally constant functions.

Example 5. We form the (categorical) product in DiffCM of (Xi)i∈I by equip-
ping

∏
i∈I |Xi| with the product diffeology and product monoid structure.

Example 6. For a commutative diffeological monoid X, we can equip the monoid

!(|X|, 0X ,+X) with the diffeology PU
!X

def
=

{∑n
i=1 αi; δ | n ∈ N and αi ∈ PU

X

}
.

Example 7. Given commutative diffeological monoids X and Y , we can equip
the tensor product monoid (|X|, 0X ,+X)⊗(|Y |, 0Y ,+Y ) with the tensor product

diffeology : PU
X⊗Y

def
=

{∑n
i=1 αi ⊗ βi | n ∈ N and αi ∈ PU

X , βi ∈ PU
Y

}
.

In this paper, we only use the combined operation !X ⊗ Y (read: (!X)⊗ Y ).

Example 8. Given commutative diffeological monoids X and Y , we can define a
commutative diffeological monoid X 	 Y with underlying set DiffCM(X,Y ),

0X�Y (x)
def
= 0Y , (f +X�Y g)(x)

def
= f(x) +Y g(x) and

PU
X�Y

def
=

{
α : U → |X 	 Y | | α ∈ PU

(|X|,PX)⇒(|Y |,PY )

}
.
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In this paper, we will primarily be interested in X 	 Y as a diffeological
space, and we will mostly disregard its monoid structure for now.

Example 9. Given a diffeological spaceX and a commutative diffeological monoid
Y , we can define a commutative diffeological monoid structure X ⇒ Y on

X ⇒ (|Y |,PY ) by using the pointwise monoid structure: 0X⇒Y (x)
def
= 0Y and

(f +X⇒Y g)(x)
def
= f(x) +Y g(x).

Given f ∈ Diff(X,Y ), we can define !f ∈ DiffCM(!X, !Y ) by !f(
∑n

i=1 x) =∑n
i=1 f(x). ! is a left adjoint to the obvious forgetful functor DiffCM → Diff ,

while !(X × Y ) ∼=!X⊗!Y and !1 ∼= N. Seeing that (N,⊗,	) defines a sym-
metric monoidal closed structure on DiffCM, cognoscenti will recognise that
(Diff , 1,×,⇒) � (DiffCM,N, 1,×,⊗,	) is a model of intuitionistic linear logic
[29]. In fact, seeing that DiffCM is CMon-enriched, the model is biadditive [17].

However, we do not need such a rich type system. For us, the following
suffices. Define DiffCM(X), for X ∈ obDiff , to have the objects of DiffCM and

homsets DiffCM(X)(Y, Z)
def
= Diff(X,Y 	 Z). Identities and composition are

defined as x �→ (y �→ y) and f ;DiffCM(X) g is defined by x �→ (f(x);DiffCM
g(x)).

Given f ∈ Diff(X,X ′), we define change-of-base DiffCM(X ′) → DiffCM(X)

as DiffCM(f)(g)
def
= f ;Diff g. DiffCM(−) defines a locally indexed category. By

taking C = Diff and L(−) = DiffCM(−), we obtain a concrete instance of our
abstract semantics. Indeed, we have natural isomorphisms

DiffCM(X)(!X ′ ⊗ Y,Z)
Φ−→ DiffCM(X ×X ′)(Y, Z)

DiffCM(X ×X ′)(Y,Z)
Ψ−→ DiffCM(X)(Y,X ′ ⇒ Z)

Φ(f)(x, x′)(y)
def
= f(x)(δ(x′)⊗ y) Φ−1(f)(x)(

n∑
i=1

(δ(x′
i)⊗ yi))

def
=

n∑
i=1

f(x, x′
i)(yi)

Ψ(f)(x)(y)(x′)
def
= f(x, x′)(y) Ψ−1(f)(x, x′)(y)

def
= f(x)(y)(x′).

The prime motivating examples of morphisms in this category are derivatives.
Recall that the derivative at x, Df(x), and transposed derivative at x, (Df)

t
(x),

of a smooth function f : Rn → Rm are defined as the unique functions Df(x) :
Rn → Rm and (Df)

t
(x) : Rm → Rn satisfying

Df(x)(v) = limδ→0
f(x+ δ · v)− f(x)

δ
(Df)

t
(x)(w) • v = w •Df(x)(v),

where we write v •v′ for the inner product
∑n

i=1(πiv) ·(πiv
′) of vectors v, v′ ∈ Rn.

Now, for f ∈ Diff(Rn,Rm), Df and (Df)
t
give maps in DiffCM(Rn)(Rn,Rm)

and DiffCM(Rn)(Rm,Rn), respectively. Indeed, derivatives Df(x) of f at x are
linear functions, as are transposed derivatives (Df)

t
(x). Both depend smoothly

on x in case f is C∞-smooth. Note that the derivatives are not merely linear in
the sense of preserving 0 and +. They are also multiplicative in the sense that
(Df)(x)(c · v) = c · (Df)(x)(v). We could have captured this property by working
with vector spaces internal to Diff . However, we will not need this property to
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phrase or establish correctness of AD. Therefore, we restrict our attention to the
more straightforward structure of commutative monoids.

Defining �realn� def
= Rn and interpreting each lop ∈ LOp as the smooth

function �lop� : (Rn1 × . . . × Rnk) → (Rn′
1 × . . . × Rn′

l) 	 Rm it is intended to
represent, we obtain a canonical interpretation of our target language in DiffCM.

6 Pairing Primals with Tangents/Adjoints, Categorically

In this section, we show that any categorical model L : Cop → Cat of our target
language gives rise to two Cartesian closed categories ΣCL and ΣCLop (which
we wrote

−→
D [L] and

←−
D [L] in §2). We believe these observations of Cartesian

closure are novel. Surprisingly, they are highly relevant for obtaining a principled
understanding of AD on a higher-order language: the former for forward AD, and
the latter for reverse AD. Applying these constructions to the syntactic category
LSyn : CSynop → Cat of our language, we produce a canonical definition of
the AD macros, as the canonical interpretation of the λ-calculus in the Cartesian
closed categories ΣCSynLSyn and ΣCSynLSyn

op. In addition, when we apply
this construction to the denotational semantics DiffCM : Diffop → Cat and
invoke a categorical logical relations technique, known as subsconing, we find
an elegant correctness proof of the source code transformations. The abstract
construction delineated in this section is in many ways the theoretical crux of
this paper.

6.1 Grothendieck Constructions on Strictly Indexed Categories

Recall that for any strictly indexed category, i.e. a (strict) functor L : Cop → Cat,
we can consider its total category (or Grothendieck construction) ΣCL, which
is a fibred category over C (see [23, sections A1.1.7, B1.3.1]). We can view it as
a Σ-type of categories, which generalizes the Cartesian product. Concretely, its
objects are pairs (A1, A2) of objects A1 of C and A2 of L(A1). Its morphisms
(A1, A2) → (B1, B2) are pairs (f1, f2) of a morphism f1 : A1 → B1 in C and a

morphism f2 : A2 → L(f1)(B2) in L(A1). Identities are id(A1,A2)
def
= (idA1 , idA2)

and composition is (f1, f2); (g1, g2)
def
= (f1; g1, f2;L(f1)(g2)). Further, given a

strictly indexed category L : Cop → Cat, we can consider its fibrewise dual cate-

gory Lop : Cop → Cat, which is defined as the composition Cop L−→ Cat
op−→ Cat.

Thus, we can apply the same construction to Lop to obtain a category ΣCLop.

6.2 Structure of ΣCL and ΣCLop for Locally Indexed Categories

§§6.1 applies, in particular, to the locally indexed categories of §5. In this case,
we will analyze the categorical structure of ΣCL and ΣCLop. For reference, we
first give a concrete description.

ΣCL is the following category:

– objects are pairs (A1, A2) of objects A1 of C and A2 of L;
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– morphisms (A1, A2) → (B1, B2) are pairs (f1, f2) with f1 : A1 → B1 ∈ C
and f2 : A2 → B2 ∈ L(A1);

– composition of (A1, A2)
(f1,f2)−−−−→ (B1, B2) and (B1, B2)

(g1,g2)−−−−→ (C1, C2) is
given by (f1; g1, f2;L(f1)(g2)) and identities id(A1,A2) are (idA1

, idA2
).

ΣCLop is the following category:

– objects are pairs (A1, A2) of objects A1 of C and A2 of L;
– morphisms (A1, A2) → (B1, B2) are pairs (f1, f2) with f1 : A1 → B1 ∈ C

and f2 : B2 → A2 ∈ L(A1);

– composition of (A1, A2)
(f1,f2)−−−−→ (B1, B2) and (B1, B2)

(g1,g2)−−−−→ (C1, C2) is
given by (f1; g1,L(f1)(g2); f2) and identities id(A1,A2) are (idA1

, idA2
).

We examine the categorical structure present in ΣCL and ΣCLop for categor-
ical models L in the sense of §5 (i.e., in case L has biproducts and supports ⇒-,
!(−)⊗ (−)-, and Cartesian 	-types). We believe this is a novel observation. We
will make heavy use of it to define our AD algorithms and to prove them correct.

Proposition 2. ΣCL has terminal object 1 = (1, 1), binary product (A1, A2)×
(B1, B2) = (A1 × B1, A2 × B2), and exponential (A1, A2) ⇒ (B1, B2) =
(A1 ⇒ (B1 × (A2 	 B2)), A1 ⇒ B2).

Proof. We have (natural) bijections

ΣCL((A1, A2), (1, 1)) = C(A1, 1)× L(A1)(A2, 1) ∼= 1× 1 ∼= 1 { 1 terminal in C and L(A1) }

ΣCL((A1, A2), (B1 × C1, B2 × C2)) = C(A1, B1 × C1)× L(A1)(A2, B2 × C2)
∼= C(A1, B1)× C(A1, C1)× L(A1)(A2, B2)× L(A1)(A2, C2) { × product in C and L(A1) }
∼= ΣCL((A1, A2), (B1, B2))×ΣCL((A1, A2), (C1, C2))

ΣCL((A1, A2)× (B1, B2), (C1, C2)) = ΣCL((A1 ×B1, A2 ×B2), (C1, C2))

= C(A1 ×B1, C1)× L(A1 ×B1)(A2 ×B2, C2)
∼= C(A1 ×B1, C1)× L(A1 ×B1)(A2, C2)× L(A1 ×B1)(B2, C2) { × coproducts in L(A1 × B1) }
∼= C(A1 ×B1, C1)× L(A1)(A2, B1 ⇒ C2)× L(A1 ×B1)(B2, C2) { ⇒-types in L }
∼= C(A1 ×B1, C1)× L(A1)(A2, B1 ⇒ C2)× C(A1 ×B1, B2 	 C2) { Cartesian �-types }
∼= C(A1 ×B1, C1 × (B2 	 C2))× L(A1)(A2, B1 ⇒ C2) { × is product in C }
∼= C(A1, B1 ⇒ (C1 × (B2 	 C2)))× L(A1)(A2, B1 ⇒ C2) { ⇒ is exponential in C }
= ΣCL((A1, A2), (B1 ⇒ (C1 × (B2 	 C2)), B1 ⇒ C2))

= ΣCL((A1, A2), (B1, B2)⇒ (C1, C2)).

We observe that we need L to have biproducts (equivalently: to be CMon
enriched) in order to show Cartesian closure. Further, we need linear ⇒-types
and Cartesian 	-types to construct exponentials.

Proposition 3. ΣCLop has terminal object 1 = (1, 1), binary product (A1, A2)×
(B1, B2) = (A1 × B1, A2 × B2), and exponential (A1, A2) ⇒ (B1, B2) =
(A1 ⇒ (B1 × (B2 	 A2)), !A1 ⊗B2).
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Proof. We have (natural) bijections

ΣCLop((A1, A2), (1, 1)) = C(A1, 1)× L(A1)(1, A2) ∼= 1× 1 ∼= 1 { 1 terminal in C, initial in L(A1) }

ΣCLop((A1, A2), (B1 × C1, B2 × C2)) = C(A1, B1 × C1)× L(A1)(B2 × C2, A2)
∼= C(A1, B1)× C(A1, C1)× L(A1)(B2, A2)× L(A1)(C2, A2) { × product in C, coproduct in L(A1) }
= ΣCLop((A1, A2), (B1, B2))×ΣCLop((A1, A2), (C1, C2))

ΣCLop((A1, A2)× (B1, B2), (C1, C2)) = ΣCLop((A1 ×B1, A2 ×B2), (C1, C2))

= C(A1 ×B1, C1)× L(A1 ×B1)(C2, A2 ×B2)
∼= C(A1 ×B1, C1)× L(A1 ×B1)(C2, A2)× L(A1 ×B1)(C2, B2) { × is product in L(A1 × B1) }
∼= C(A1 ×B1, C1)× C(A1 ×B1, C2 	 B2)× L(A1 ×B1)(C2, A2) { Cartesian �-types }
∼= C(A1 ×B1, C1 × (C2 	 B2))× L(A1 ×B1)(C2, A2) { × is product in C }
∼= C(A1, B1 ⇒ (C1 × (C2 	 B2)))× L(A1 ×B1)(C2, A2) { ⇒ is exponential in C }
∼= C(A1, B1 ⇒ (C1 × (C2 	 B2)))× L(A1)(!B1 ⊗ C2, A2) { !(−) ⊗ (−)-types }
= ΣCLop((A1, A2), (B1 ⇒ (C1 × (C2 	 B2)), !B1 ⊗ C2))

= ΣCLop((A1, A2), (B1, B2)⇒ (C1, C2)).

Observe that we need the biproduct structure of L to construct finite prod-
ucts in ΣCLop. Further, we need Cartesian 	-types and !(−) ⊗ (−)-types, but
not biproducts, to construct exponentials.

7 Novel AD Algorithms as Source-Code Transformations

As ΣCSynLSyn and ΣCSynLSyn
op are both Cartesian closed categories by §6,

the universal property of Syn yields unique structure-preserving macros,
−→D (−) :

Syn → ΣCSynLSyn (forward AD) and
←−D (−) : Syn → ΣCSynLSyn

op (reverse
AD), once we fix a compatible definition for the macros on realn and basic
operations op. By definition of equality in Syn, ΣCSynLSyn and ΣCSynLSyn

op,
these macros automatically respect equational reasoning principles, in the sense

that t
βη
= s implies that

−→D (t)
βη+
=

−→D (s) and ←−D (t)
βη+
=

←−D (s).
We need to choose suitable terms Dop(x; y) and Dopt(x; y) to represent the

forward- and reverse-mode derivatives of the basic operations op∈Opmn1,...,nk
. For

example, for elementwise multiplication (∗) ∈ Opnn,n, we can define D(∗)(x; y) =
(fstx) ∗ (snd y) + (sndx) ∗ (fst y) and D(∗)t(x; y) = 〈(sndx) ∗ y, (fstx) ∗ y〉,
where we use (linear) elementwise multiplication (∗) ∈ LOpnn;n. We represent
derivatives as linear functions. This representation allows for efficient Jacobian-
vector/adjoint product implementations, which avoid first calculating a full Ja-
cobian and next taking a product. Such implementations are known to be im-
portant to achieve performant AD systems.

−→D (realn)1
def
= realn

−→D (realn)2
def
= realn

←−D (realn)1
def
= realn

−→D (realn)2
def
= realn

−→D (op)1
def
= op

−→D (op)2
def
= x : realn1∗..∗realnk ; y : realn1∗..∗realnk � Dop(x; y) : realm

←−D (op)1
def
= op

←−D (op)2
def
= x : realn1∗..∗realnk ; y : realm� Dopt(x; y) : realn1∗..∗realnk
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For the AD transformations to be correct, it is important that these derivatives
of language primitives are implemented correctly in the sense that

�x; y � Dop(x; y)� = D�op� �x; y � Dopt(x; y)� = D�op�t.

In practice, AD library developers tend to assume the subtle task of correctly im-
plementing such derivatives Dop(x; y) and Dopt(x; y) whenever a new primitive
operation op is added to the library.

The extension of the AD macros
−→D and

←−D to the full source language are now
canonically determined, as the unique Cartesian closed functors that extend the
previous definitions, following the categorical structure described in §6. Because
of the counter-intuitive nature of the Cartesian closed structures on ΣCSynLSyn
and ΣCSynLSyn

op, we list the full macros explicitly in [36, Appx. A].

8 Proving Reverse and Forward AD Semantically Correct

In this section, we will show that the source code transformations described in §7
correctly implement mathematical derivatives. We make correctness precise as
the statement that for programs x : τ � t : σ between first-order types τ and σ,
i.e. types not containing any function type constructors, we have that �−→D (t)2� =
D�t� and �←−D (t)2� = (D�t�)t, where �−� is the semantics of §5. The proof mainly
consists of logical relations arguments over the semantics in ΣDiffDiffCM and
ΣDiffDiffCM

op. This logical relations proof can be phrased in elementary terms,
but the resulting argument is technical and would be hard to discover. Instead,
we prefer to phrase it in terms of a categorical subsconing construction, a more
abstract and elegant perspective on logical relations. We discovered the proof by
taking this categorical perspective, and, while we have verified the elementary
argument (see [36, Appx. D]), we would not otherwise have come up with it.

8.1 Preliminaries

Subsconing Logical relations arguments provide a powerful proof technique for
demonstrating properties of typed programs. The arguments proceed by induc-
tion on the structure of types. Here, we briefly review the basics of categorical
logical relations arguments, or subsconing constructions. We restrict to the level
of generality that we need here, but we would like to point out that the theory
applies much more generally.

Consider a Cartesian closed category (C, 1,×,⇒). Suppose that we are given
a functor F : C → Set to the category Set of sets and functions which preserves
finite products in the sense that F (1) ∼= 1 and F (C × C ′) ∼= F (C) × F (C ′).
Then, we can form the subscone of F , or category of logical relations over F ,
which is Cartesian closed, with a faithful Cartesian closed functor π1 to C which
forgets about the predicates [24]:

– objects are pairs (C,P ) of an object C of C and a predicate P ⊆ FC;
– morphisms (C,P ) → (C ′, P ′) are C morphisms f : C → C ′ which respect

the predicates in the sense that F (f)(P ) ⊆ P ′;
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– identities and composition are as in C;
– (1, F1) is the terminal object, and products and exponentials are given by

(C,P )×(C ′, P ′) = (C×C ′, {α ∈ F (C × C ′) | F (π1)(α) ∈ P, F (π2)(α) ∈ P ′})
(C,P )⇒ (C ′, P ′) = (C ⇒ C ′, {F (π1)(γ) | γ ∈ F ((C ⇒ C ′)× C) s.t.
F (π2)(γ) ∈ P implies F (ev)(γ) ∈ P ′}).

In typical applications, C can be the syntactic category of a language (like
Syn), the codomain of a denotational semantics �−� (like Diff), or a product of
the above, if we want to consider n-ary logical relations. Typically, F tends to be
a hom-functor (which always preserves products), like C(1,−) or C(C0,−), for
some important object C0. When applied to the syntactic category Syn and F =
Syn(1,−), the formulae for products and exponentials in the subscone clearly
reproduce the usual recipes in traditional, syntactic logical relations arguments.
As such, subsconing generalises standard logical relations methods.

8.2 Subsconing for Correctness of AD

We will apply the subsconing construction above to

C = Diff ×ΣDiffDiffCM F = Diff ×ΣDiffDiffCM((R, (R,R)),−) (forward AD)
C = Diff ×ΣDiffDiffCM

op F = Diff ×ΣDiffDiffCM
op((R, (R,R)),−) (reverse AD),

where we note that Diff , ΣDiffDiffCM, and ΣDiffDiffCM
op are Cartesian closed

(given the arguments of §5 and §6) and that the product of Cartesian closed cat-
egories is again Cartesian closed. Let us write

−−−−−→
SScone and

←−−−−−
SScone, respectively,

for the resulting categories of logical relations.
Seeing that

−−−−−→
SScone and

←−−−−−
SScone are Cartesian closed, we obtain unique Carte-

sian closed functors �−�f : Syn → −−−−−→
SScone and �−�r : Syn → ←−−−−−

SScone once
we fix an interpretation of realn and all operations op. We write P f

τ and P r
τ ,

respectively, for the relations π2�τ�f and π2�τ�r. Let us interpret

�realn�f def
= (((Rn, (Rn,Rn)), {(f, (g, h)) | f = g and h = Df}))

�realn�r def
= (((Rn, (Rn,Rn)), {(f, (g, h)) | f = g and h = (Df)

t}))

�op�f def
= (�op�, (�−→D (op)1�, �

−→D (op)2�)) �op�r def
= (�op�, (�←−D (op)1�, �

←−D (op)2�)),

where we write Df for the semantic derivative of f (see §5). We need to verify,
respectively, that (�op�, (�−→D (op)1�, �

−→D (op)2�)) and (�op�, (�←−D (op)1�, �
←−D (op)2�))

respect the logical relations P f and P r. This respecting of relations follows
immediately from the chain rule for multivariate differentiation, as long as we
have implemented our derivatives correctly for the basic operations op:

�x; y � Dop(x; y)� = D�op� and �x; y � (Dop)t(x; y)� = (D�op�)t.

Writing realn1,..,nk def
= realn1∗..∗realnk and Rn1,..,nk

def
= Rn1×..×Rnk , we compute

�realn1,..,nk�f =((Rn1,..,nk , (Rn1,..,nk ,Rn1,..,nk)), {(f, (g, h)) | f = g, h = Df})
�realn1,..,nk�r=((Rn1,..,nk , (Rn1,..,nk ,Rn1,..,nk)), {(f, (g, h)) | f = g, h = (Df)

t})
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since derivatives of tuple-valued functions are computed component-wise. (In
fact, the corresponding facts hold more generally for any first-order type, as an
iterated product of realn.) Suppose that (f, (g, h)) ∈ P f

realn1,..,nk , i.e. g = f and
h = Df . Then, using the chain rule in the last step, we have

(f, (g, h)); (�op�, (�−→D (op)1�, �
−→D (op)2�)) = (f, (f,Df)); (�op�, (�op�, �x; y � Dop(x; y)�))

= (f, (f,Df)); (�op�, (�op�, D�op�)) = (f ; �op�, (f ; �op�, x �→ r �→ D�op�(f(x))(Df(x)(r))))

= (f ; �op�, (f ; �op�, D(f ; �op�))) ∈ P f
realm .

Similarly, if (f, (g, h)) ∈ P r
realn1,..,nk , then by the chain rule and linear algebra

(f, (g, h)); (�op�, (�←−D (op)1�, �
←−D (op)2�)) = (f, (f, (Df)

t
)); (�op�, (�op�, �x; y � (Dop)t(x; y)�)) =

(f, (f,Df t)); (�op�, (�op�, (D�op�)t)) = (f ; �op�, (f ; �op�, x �→ v �→ Df t(x)(D�op�t(f(x))(v)))) =

(f ; �op�, (f ; �op�, x �→ v �→ (Df(x);D�op�(f(x)))t(v))) = (f ; �op�, (f ; �op�, (D(f ; �op�))t)) ∈ P r
realm .

Consequently, we obtain our Cartesian closed functors �−�f and �−�r.
Further, observe that Σ�−��−�(t1, t2)

def
= (�t1�, �t2�) defines a Cartesian closed

functor Σ�−��−� : ΣCSynLSyn → ΣDiffDiffCM. Similarly, we get a Cartesian
closed functor Σ�−��−�op : ΣCSynLSyn

op → ΣDiffDiffCM
op. As a consequence,

the two squares below commute.

Syn Syn×ΣCSynLSyn Syn Syn×ΣCSynLSyn
op

−−−−−→
SScone Diff ×ΣDiffDiffCM

←−−−−−
SScone Diff ×ΣDiffDiffCM

op.

(id,
−→D )

�−�f �−�×Σ�−��−�

(id,
←−D )

�−�r �−�×Σ�−��−�op

π1 π1

Indeed, going around the squares in both directions define Cartesian closed func-
tors that agree on their action on realn and all operations op. So, by the universal
property of Syn, they must coincide. In particular, (�t�, (�−→D (t)1�, �

−→D (t)2�)) is a
morphism in

−−−−−→
SScone and therefore respects the logical relations P f for any well-

typed term t of the source language of §3. Similarly, (�t�, (�←−D (t)1�, �
←−D (t)2�)) is a

morphism in
←−−−−−
SScone and therefore respects the logical relations P r.

Most of the work is now in place to show correctness of AD. We finish the
proof below. To ease notation, we work with terms in a context with a single
type. Doing so is not a restriction as our language has products, and the theorem
holds for arbitrary terms between first-order types.

Theorem 1 (Correctness of AD). For programs x : τ � t : σ between first-
order types τ and σ,

�−→D (t)1� = �t� �−→D (t)2� = D�t� �←−D (t)1� = �t� �←−D (t)2� = D�t�t,
where we write D and (−)t for the usual calculus derivative and matrix transpose.

Proof (sketch, see [36, Appx. B] for details). To show that �−→D (t)1�(x) = �t�(x)
and �−→D (t)2�(x)(v) = D�t�(x)(v), we choose a smooth curve γ : R → �τ� such
that γ(0) = 0 and Dγ(0)(1) = v and use that t respects the logical relations P f .

To show that �←−D (t)1�(x) = �t�(x) and �←−D (t)2�(x)(v) = D�t�(x)t(v), we choose
smooth curves γi : R → �τ� such that γi(0) = x and γi(0)(1) = ei, for all stan-
dard basis vectors ei of �←−D (τ)2� ∼= RN . It now follows that �←−D (t)1�(x) = �t�(x)
and ei •�

←−D (t)2�(x)(v) = ei •D�t�(x)t(v) as t respects the logical relations P r.
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Γ � t : Dom(lop) (lop ∈ LOpmn1,...,nk;n
′
1,...,n

′
l
)

Γ � lop(t) : LFun(LDom(lop), realm) Γ � 0τ : τ

Γ � t : τ Γ � s : τ

Γ � t+τ s : τ

Γ � lid : LFun(τ, τ)

Γ � t : LFun(τ, σ) Γ � s : LFun(σ, ρ)

Γ � t;; s : LFun(τ, ρ)

Γ � t : LFun(τ, σ) Γ � s : τ

Γ � lapp(t, s) : σ

Γ � t : τ → LFun(σ, ρ)

Γ � lswap t : LFun(σ, τ → ρ)

Γ � t : τ

Γ � levalt : LFun(τ → σ, σ)

Γ � t : τ

Γ � {(t,−)} : LFun(σ,Tens(τ, σ))

Γ � t : τ → LFun(σ, ρ)

Γ � lcur−1t : LFun(Tens(τ, σ), ρ) Γ � lfst : LFun(τ∗σ, τ)

Γ � lsnd : LFun(τ∗σ, σ)
Γ � t : LFun(τ, σ) Γ � s : LFun(τ, ρ)

Γ � lpair(t, s) : LFun(τ, σ∗ρ)

Fig. 5. Typing rules for the applied target language, to extend the source language.

9 Practical Relevance and Implementation

Popular functional languages, such as Haskell and O’Caml, do not natively sup-
port linear types. As such, the transformations described in this paper may seem
hard to implement. However, as we summarize in this section (and detail in [36,
Appx. C]), we can easily implement the limited linear types needed for the trans-
formations as abstract data types by using merely a basic module system.

Specifically, we consider, as an alternative, applied target language for our
transformations, the extension of the source language of §3 with the terms and
types of Fig. 5. We can define a faithful translation (−)† from our linear target

language of §4 to this language: define (!τ ⊗ σ)†
def
= Tens(τ †, σ†,), (τ 	 σ)†

def
=

LFun(τ †, σ†), (realn)†
def
= realn and extend (−)† structurally recursively, letting

it preserve all other type formers. We then translate (x1 : τ, . . . , xn : τ ; y : σ � t :

ρ)†
def
= x1 : τ †, . . . , xn : τ † � t† : (σ 	 ρ)† and (x1 : τ, . . . , xn : τ � t : σ)†

def
= x1 :

τ †, . . . , xn : τ † � t† : σ†. We believe an interested reader can fill in the details.
This exhibits the linear target language as a sublanguage of the applied target
language. The applied target language merely collapses the distinction between
linear and Cartesian types and it adds the constructs lapp(t, s) for practical
usability and to ensure that our adequacy result below is meaningful.

We can implement the API of Fig. 5 as a module that defines the abstract
types LFun(τ, σ), under the hood implemented as a plain function type τ → σ,
and Tens(τ, σ), which is implemented as lists of pairs List(τ∗σ). Then, the
required terms of Fig. 5 can be implemented as follows, using standard idiom
[ ], t :: s, fold opoverx in t from acc = init for empty lists, cons-ing, and folding:

01 = 〈〉 t+1 s = 〈〉 0τ∗σ = 〈0τ , 0σ〉 t+τ∗σ s = 〈fst t+τ fst s, snd t+σ snd s〉
0τ→σ = λ .0σ t+τ→σ s = λx.t x+σ s x 0LFun(τ,σ) = λ .0σ t+LFun(τ,σ) s = λx.t x+σ s x

0Tens(τ,σ)
def
= [ ] t+Tens(τ,σ) s

def
= foldx :: accoverx in t from acc = s

lid
def
= λx.x t;; s

def
= λx.s (t x) lapp(t, s)

def
= t s lswap t

def
= λx.λy.t y x levalt

def
= λx.x t
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{(t,−)} def
= λx.〈t, x〉 :: [ ] lcur−1t

def
= λz.fold t (fstx) (sndx) + accoverx in z from acc = 0

lfst
def
= λx.fstx lsnd

def
= λx.sndx lpair(t, s)

def
= λx.〈t x, s x〉

Our denotational semantics extends to this applied target language and is ad-
equate with respect to the operational semantics induced by the suggested im-
plementation. Further, our correctness proofs of the induced source-code trans-
lations also transfer to this applied setting, and they can be usefully phrased
as manual, extensible logical relations proofs. As an application, we can extend
our source language with higher-order primitives, like map ∈ Syn((real →
real)∗realn, realn) to “map” functions over the black-box arrays realn. Then,
our proofs extend to show that their correct forward and reverse derivatives are

−→D (map)1(f, v)
def
= map(f ; fst , v)

−→D (map)2(f, v)(g, w)
def
= map g v + zipWith(f ; snd ) v w

←−D (map)1(f, v)
def
= map(f ; fst , v)

←−D (map)2(f, v)(w)
def
= 〈zip v w, zipWith (f ; snd ) v w〉,

where we use the standard functional programming idiom zip and zipWith.
Here, we can operate directly on the internal representations of LFun(τ, σ) and
Tens(τ, σ), as the definitions of derivatives of primitives live inside our module.

10 Related and Future Work

Related work This work is closely related to [20], which introduced a simi-
lar semantic correctness proof for a version of forward-mode AD, using a sub-
sconing construction. A major difference is that this paper also phrases and
proves correctness of reverse-mode AD on a λ-calculus and relates reverse-mode
to forward-mode AD. Using a syntactic logical relations proof instead, [5] also
proves correctness of forward-mode AD. Again, it does not address reverse AD.

[11] proposes a similar construction to that of §6, and it relates it to the dif-
ferential λ-calculus. This paper develops sophisticated axiomatics for semantic
reverse differentiation. However, it neither relates the semantics to a source-
code transformation, nor discusses differentiation of higher-order functions. Our
construction of differentiation with a (biadditive) linear target language might
remind the reader of differential linear logic [15]. In differential linear logic, (for-
ward) differentiation is a first-class operation in a (biadditive) linear language.
By contrast, in our treatment, differentiation is a meta-operation.

Importantly, [16] describes and implements what are essentially our source-
code transformations, though they were restricted to first-order functions and
scalars. [37] sketches an extension of the reverse-mode transformation to higher-
order functions in essentially the same way as proposed in this paper. It does
not motivate or derive the algorithm or show its correctness. Nevertheless, this
short paper discusses important practical considerations for implementing the
algorithm, and it discusses a dependently typed variant of the algorithm.

Next, there are various lines of work relating to correctness of reverse-mode
AD that we consider less similar to our work. For example, [28] define and prove
correct a formulation of reverse-mode AD on a higher-order language that de-
pends on a non-standard operational semantics, essentially a form of symbolic
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execution. [2] does something similar for reverse-mode AD on a first-order lan-
guage extended with conditionals and iteration. [8] defines an AD algorithm in a
simply typed λ-calculus with linear negation (essentially, the continuation-based
AD of [20]) and proves it correct using operational techniques. Further, they
show that this algorithm corresponds to reverse-mode AD under a non-standard
operational semantics (with the “linear factoring rule”). These formulations of
reverse-mode AD all depend on non-standard run-times and fall into the cat-
egory of “define-by-run” formulations of reverse-mode AD. Meanwhile, we are
concerned with “define-then-run” formulations: source-code transformations pro-
ducing differentiated code at compile-time, which can then be optimized during
compilation with existing compiler tool-chains.

Finally, there is a long history of work on reverse-mode AD, though almost
none of it applies the technique to higher-order functions. A notable exception
is [31], which gives an impressive source-code transformation implementation of
reverse AD in Scheme. While very efficient, this implementation crucially uses
mutation. Moreover, the transformation is complex and correctness is not con-
sidered. More recently, [38] describes a much simpler implementation of a reverse
AD code transformation, again very performant. However, the transformation is
quite different from the one considered in this paper as it relies on a combina-
tion of delimited continuations and mutable state. Correctness is not considered,
perhaps because of the semantic complexities introduced by impurity.

Our work adds to the existing literature by presenting (to our knowledge)
the first principled and pure define-then-run reverse AD algorithm for a higher-
order language, by arguing its practical applicability, and by proving semantic
correctness of the algorithm.

Future work We plan to build a practical, verified AD library based on the
methods introduced in this paper. This will involve calculating the derivative of
many first- and higher-order primitives according to our method.

Next, we aim to extend our method to other expressive language features.
We conjecture that the method extends to source languages with variant and
inductive types as long as one makes the target language a linear dependent type
theory [10,34]. Indeed, the dimension of (co)tangent spaces to a disjoint union
of spaces depends on the choice of base point. The required colimits to interpret
such types in ΣCL and ΣCLop should exist by standard results about arrow and
container categories [3]. We are hopeful that the method can also be made to
apply to source languages with general recursion by calculating the derivative of
fixpoint combinators similarly to our calculation for map. The correctness proof
will then rely on a domain theoretic generalisation of our techniques [35].
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