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Abstract. We introduce Bayesian strategies, a new interpretation of
probabilistic programs in game semantics. This interpretation can be
seen as a refinement of Bayesian networks.
Bayesian strategies are based on a new form of event structure, with two
causal dependency relations respectively modelling control flow and data
flow. This gives a graphical representation for probabilistic programs
which resembles the concrete representations used in modern implemen-
tations of probabilistic programming.
From a theoretical viewpoint, Bayesian strategies provide a rich setting
for denotational semantics. To demonstrate this we give a model for a
general higher-order programming language with recursion, conditional
statements, and primitives for sampling from continuous distributions
and trace re-weighting. This is significant because Bayesian networks do
not easily support higher-order functions or conditionals.

1 Introduction

One promise of probabilistic programming languages (PPLs) is to make Bayesian
statistics accessible to anyone with a programming background. In a PPL, the
programmer can express complex statistical models clearly and precisely, and
they additionally gain access to the set of inference tools provided by the prob-
abilistic programming system, which they can use for simulation, data analysis,
etc. Such tools are usually designed so that the user does not require any in-depth
knowledge of Bayesian inference algorithms.

A challenge for language designers is to provide efficient inference algorithms.
This can be intricate, because programs can be arbitrarily complex, and infer-
ence requires a close interaction between the inference engine and the language
interpreter [42, Ch.6]. In practice, many modern inference engines do not ma-
nipulate the program syntax direcly but instead exploit some representation of
it, more suited to the type of inference method at hand (Metropolis-Hastings
(MH), Sequential Monte Carlo (SMC), Hamiltonian Monte Carlo, variational
inference, etc.).

While many authors have recently given proofs of correctness for inference
algorithms (see for example [11,24,32]), most have focused on idealised descrip-
tions of the algorithms, based on syntax or operational semantics, rather than on
the concrete program representations used in practice. In this paper we instead
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put forward a mathematical semantics for probabilistic programs designed to
provide reasoning tools for existing implementations of inference.

Our work targets a specific class of representations which we call data flow
representations. We understand data flow as describing the dependence re-
lationships between random variables of a program. This is in contrast with
control flow, which describes in what order samples are performed. Such data
flow representations are widely used in practice. We give a few examples. For
Metropolis-Hastings inference, Church [30] and Venture [41] manipulate depen-
dency graphs for random variables (“computation traces” or “probabilistic exe-
cution traces”); Infer.NET [22] compiles programs to factor graphs in order to
apply message passing algorithms; for a subset of well-behaved programs, Gen
[23] statically constructs a representation based on certain combinators which
is then exploited by a number of inference algorithms; and finally, for varia-
tional inference, Pyro [9] and Edward [55] rely on data flow graphs for efficient
computation of gradients by automatic differentiation. (Also [52,28].)

In this paper, we make a step towards correctness of these implementations
and introduce Bayesian strategies, a new representation based on Winskel’s
event structures [46] which tracks both data flow and control flow. The Bayesian
strategy corresponding to a program is obtained compositionally as is standard
in concurrent game semantics [63], and provides an intensional foundation for
probabilistic programs, complementary to existing approaches [24,57].

This paper was inspired by the pioneering work of Ścibior et al. [53], which
provides the first denotational analysis for concrete inference representations. In
particular, their work provides a general framework for proving correct inference
algorithms based on static representations. But the authors do not show how
their framework can be used to accommodate data flow representations or verify
any of the concrete implementations mentioned above. The work of this paper
does not fill this gap, as we make no attempt to connect our semantic construc-
tions with those of [53], or indeed to prove correct any inference algorithms. This
could be difficult, because our presentation arises out of previous work on game
semantics and thus does not immediately fit in with the monadic techniques
employed in [53]. Nonetheless, efforts to construct game semantics monadically
are underway [14], and it is hoped that the results presented here will set the
ground for the development of event structure-based validation of inference.

1.1 From Bayesian networks to Bayesian strategies

Consider the following basic model, found in the Pyro tutorials (and also used
in [39]), used to infer the weight of an object based on two noisy measurements.
The measurements are represented by random variables meas1 and meas2, whose
values are drawn from a normal distribution around the true weight (weight),
whose prior distribution is also normal, and centered at 2. (In this situation,
meas1 and meas2 are destined to be conditioned on actual observed values, and
the problem is then to infer the posterior distribution of weight based on these
observations. We leave out conditioning in this example and focus on the model
specification.)
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To describe this model it is convenient to use a Bayesian network, i.e. a DAG
of random variables in which the distribution of each variable depends only on
the value of its parents:

weight : R

meas1 : R meas2 : R

N (2, 1)

N (weight, 0.1) N (weight, 0.1)

The same probabilistic model can be encoded in an ML-style language:

let weight = sampleweight normal(2, 1) in

samplemeas1 normal(weight, 0.1);

samplemeas2 normal(weight, 0.1);

()

Our choice of sampling meas1 before meas2 is arbitrary: the same program with
the second and third lines swapped corresponds to the same probabilistic model.
This redundancy is unavoidable because programs are inherently sequential. It
is the purpose of “commutative” semantics for probabilistic programs, as intro-
duced by Staton et al. [54,57], to clarify this situation. They show that reordering
program lines does not change the semantics, even in the presence of condition-
ing. This result says that when specifying a probabilistic model, only data flow
matters, and not control flow. This motivates the use of program representations
based on data flow such as the examples listed above.

In our game semantics, a probabilistic program is interpreted as a control
flow graph annotated by a data dependency relation. The Bayesian strategy
associated with the program above is as follows:

weight : R

meas1 : R meas2 : R () : 1

where (in brief), ��� is data flow, 	 is control flow, and the dashed node is the
program output. (Probability distributions are as in the Bayesian network.)

The semantics is not commutative, simply because reordering lines affects
control flow; we emphasise that the point of this work is not to prove any new
program equations, but instead to provide a formal framework for the represen-
tations involved in practical inference settings.

1.2 Our approach

To formalise this idea we use event structures, which naturally model control
flow, enriched with additional structure for probability and an explicit data
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flow relation. Event structures were used in previous work by the author and
Castellan on probabilistic programming [18], and were shown to be a good fit for
reasoning about MH inference. But the representation in [18] combines data flow
and control flow in a single transitive relation, and thus suffers from important
limitations. The present paper is a significant improvement: by maintaining a
clear separation between control flow and data flow, we can reframe the ideas in
the well-established area of concurrent game semantics [63], which enables an
interpretation of recursion and higher-order functions; these were not considered
in [18]. Additionally, here we account for the fact that data flow in probabilistic
programming is not in general a transitive relation.

While there is some work in setting up the right notion of event structure, the
standard methods of concurrent game semantics adapt well to this setting. This
is not surprising, as event structures and games are known to be resistant to the
addition of extra structure, see e.g. [21,5,15]. One difficulty is to correctly define
composition, keeping track of potential hidden data dependencies. In summary:

– We introduce a general notion of Bayesian event structure, modelling control
flow, data flow, and probability.

– We set up a compositional framework for these event structures based on con-
current games. Specifically, we define a category BG of arenas and Bayesian
strategies, and give a description of its abstract properties.

– We give a denotational semantics for a higher-order statistical language. Our
semantics gives an operationally intuitive representation for programs and
their data flow structure, while only relying on standard mathematical tools.

Paper outline. We start by recalling the basics of probability and Bayesian
networks, and we then describe the syntax of our language (Sec. 2). In Sec. 3,
we introduce event structures and Bayesian event structures, and informally
describe our semantics using examples. In Sec. 4 we define our category of arenas
and strategies, which we apply to the denotational semantics of the language in
Sec. 5. We give some context and perspectives in Sec. 6.

Acknowledgements. I am grateful to Simon Castellan, Mathieu Huot and Philip
Saville for helpful comments on early versions of this paper. This work was
supported by grants from EPSRC and the Royal Society.

2 Probability distributions, Bayesian networks, and
probabilistic programming

2.1 Probability and measure

We recall the basic notions, see e.g. [8] for a reference.

Measures. A measurable space is a set X equipped with a σ-algebra, that is,
a set ΣX of subsets of X containing X itself, and closed under completements
and countable unions. The elements of ΣX are called measurable subsets of
X. An important example of measurable space is the set R equipped with its
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σ-algebra ΣR of Borel sets, the smallest one containing all intervals. Another
basic example is the discrete space N, in which all subsets are measurable.

A measure on (X,ΣX) is a function μ : ΣX → [0,∞] which is countably
additive, i.e.μ(

⊎
i∈I Ui) =

∑
i∈I Ui for I countable, and satisfies μ(∅) = 0. A

fundamental example is the Lebesgue measure λ on R, defined on intervals as
λ([a, b]) = b− a and extended to all Borel sets. Another example (for arbitrary
X) is the Dirac measure at a point x ∈ X: for any U ∈ ΣX , δx(U) = 1 if
x ∈ U , 0 otherwise. A sub-probability measure on (X,ΣX) is a measure μ
satisfying μ(X) ≤ 1.

A function f : X → Y is measurable if U ∈ ΣY =⇒ f−1U ∈ ΣX . Given
a measure on a space X and a measurable function f : X → R, for every
measurable subset U of X we can define the integral

∫
U
dμf , an element of

R∪{∞}. This construction yields a measure on X. (Many well-known probability
distributions on the reals arise in this way from their density.)

Kernels. We will make extensive use of kernels, which can be seen as parametrised
families of measures. Formally a kernel from X to Y is a map k : X × ΣY →
[0,∞] such that for every x ∈ X, k(x,−) is a measure on Y , and for every
V ∈ ΣY , k(−, V ) is a measurable function. It is a sub-probability kernel if
each k(x,−) is a sub-probability measure, and it is an s-finite kernel if it is a
countable (pointwise) sum of sub-probability kernels. Every measurable function
f : X → Y induces a Dirac kernel δf : X 
 Y : x �→ δf(x). Kernels compose:
if k : X 
 Y and h : Y 
 Z then the map h ◦ k : X × ΣZ → [0, 1] defined as
(x,W ) �→

∫
Y
dk(x,−)h(−,W ) is also a kernel, and the Dirac kernel δid (often

just δ) is an identity for this composition. We note that if both h and k are
sub-probability kernels, then h ◦ k is a sub-probability kernel. Finally, observe
that a kernel 1 
 X, for 1 a singleton space, is the same thing as a measure on
X.

In this paper we will refer to the bernoulli, normal, and uniform families
of distributions; all of these are sub-probability kernels from their parameters
spaces to N or R. For example, there is a kernel R2 
 R : ((x, y), U) �→
μN (x,y)(U), where μN (x,y) is the measure associated with a normal distribution
with parameters (x, y), if y > 0, and the 0 measure otherwise. We understand
the bernoulli distribution as returning either 0 or 1 ∈ N.

Product spaces and independence. When several random quantities are under
study one uses the notion of product space: given (X,ΣX) and (Y,ΣY ) we
can equip the set X × Y with the product σ-algebra, written ΣX×Y , defined as
the smallest one containing U × V , for U ∈ ΣX and V ∈ ΣY .

A measure μ on X × Y gives rise to marginals μX and μY , measures on X
and Y respectively, defined by μX(U) = μ(U × Y ) and μY (V ) = μ(X × V ) for
U ∈ ΣX and V ∈ ΣY .

Given kernels k : X 
 Y and h : Z 
 W we define the product kernel
k × h : X × Z 
 Y ×W via iterated integration:

((x, z), U) �→
∫
y∈Y

dk(x,−)
∫
w∈W

dh(z,−)χU (y, w),
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where χU is the characteristic function of U ∈ ΣY×V . When X = Z = 1 this
gives the notion of product measure.

The definitions above extend with no difficulty to product spaces
∏

i∈I Xi.
A measure P on

∏
i∈I Xi has marginals PJ for any J ⊆ I, and we say that Xi

and Xj are independent w.r.t. P if the marginal Pi,j is equal to the product
measure Pi × Pj .

2.2 Bayesian networks

An efficient way to define measures on product spaces is using probabilistic
graphical models [37], for example Bayesian networks, whose definition we briefly
recall now. The idea is to use a graph structure to encode a set of independence
constraints between the components of a product space. We recall the definition
of conditional independence. With respect to a joint distribution P on

∏
i∈I Xi,

we say Xi and Xj are conditionally independent given Xk if there exists a
kernel k : Xk 
 Xi ×Xj such that Pi,j,k(Ui ×Uj ×Uk) =

∫
Uk

k(−, Ui ×Uj)dPk

for all measurable Ui, Uj , Uk, and Xi and Xj are independent w.r.t. k(xk,−) for
all xk ∈ Xk. In this definition, k is a conditional distribution of Xi ×Xj given
Xk (w.r.t. P ); under some reasonable conditions [8] this always exists, and the
independence condition is the main requirement.

Adapting the presentation used in [27], we define a Bayesian network as
a directed acyclic graph G = (V, ���) where each node v ∈ V is assigned a
measurable space M(v). We define the parents pa(v) of v to be the set of
nodes u with u ��� v, and its non-descendants nd(v) to contain the nodes u
such that there is no path v ��� · · · ��� u. Writing M(S) =

∏
v∈SM(v) for

any subset S ⊆ V , a measure P on M(V ) is said to be compatible with G
if for every v ∈ V , M(v) and M(nd(v)) are independent given M(pa(v)). It
is straightforward to verify that given a Bayesian network G, we can construct
a compatible measure by supplying for every v ∈ V , an s-finite kernel kv :
M(pa(v)) 
M(v).

(In practice, Bayesian networks are used to represent probabilistic models,
and so typically every kernel kv is strictly probabilistic. Here the kv are only
required to be s-finite, so they are in general unnormalised. As we will see, this
is because we consider possibly conditioned models.)

Bayesian networks are an elegant way of constructing models, but they are
limited. We now present a programming language whose expressivity goes be-
yond them.

2.3 A language for probabilistic modelling

Our language of study is a call-by-value statistical language with sums, products,
and higher-order types, as well as recursive functions. Languages with compara-
ble features are considered in [11,57,40].

The syntax of this language is described in Fig. 1. Note the distinction be-
tween general terms M,N and values V . The language includes the usual term
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constructors and pattern matching. Base types are the unit type, the real num-
bers and the natural numbers, and for each of them there are associated con-
stants. The language is parametrised by a set L of labels, a set F of partial
measurable functions Rn → R or Rn → N, and a set D of standard distribution
families, which are sub-probability kernels1 Rn 
 R or Rn 
 N. There is also
a primitive score which multiplies the weight of the current trace by the value
of its argument. This is an idealised form of conditioning via soft constraints,
which justifies the move from sub-probability to s-finite kernels (see [54]).

A,B ::= 1 | N | R | A×B | A+B | A → B

V,W ::= () | n | r | f | (V,W ) | inlV | inrV | λx.M
M,N ::= V | x | M N | M =? 0 | μx : A → B.M | sample� dist(M1, . . . ,Mn)

(M,N) | match M with (x, y) → P | score M

inlM | inrM | match M with [inlx → N1 | inrx → N2]

Fig. 1: Syntax.

r ∈ R
Γ � r : R

Γ � M : N
Γ � M =? 0 : B

Γ � M : R
Γ � score M : 1

Γ, x : A → B � M : A → B

Γ � μx : A → B.M : A → B

(f : Rn ⇀ X) ∈ F
Γ � f : Rn → X

(dist : Rn → X) ∈ D For i = 1, . . . , n, Γ � Mi : R � ∈ L
Γ � sample� dist(M1, . . . ,Mn) : X

Fig. 2: Subset of typing rules.

Terms of the language are typed in the standard way; in Fig. 2 we present
a subset of the rules which could be considered non-standard. We use X to
stand for either N or R, and we do not distinguish between the type and the
corresponding measurable space. We also write B for 1 + 1, and use syntactic
sugar for let-bindings, sequencing, and conditionals:

let x : A = M inN := (λx : A.N)M

M ;N := let x : A = M inN (for x not free in N)

ifM thenN1 elseN2 := match M with [inlx→ N1 | inrx→ N2]

3 Programs as event structures

In this section, we introduce our causal approach. We give a series of examples
illustrating how programs can be understood as graph-like structures known
as event structures, of which we assume no prior knowledge. Event structures
were introduced by Winskel et al. [46], though for the purposes of this work the
traditional notion must be significantly enriched.

1 In any practical instance of the language it would be expected that every kernel in
D has a density in F , but this is not strictly necessary here.
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let weight = sampleweight normal(2, 1) in

samplemeas1
normal(weight, 0.1);

samplemeas2
normal(weight, 0.1); ()

weight : R

meas1 : R meas2 : R () : 1

Fig. 3

The examples which follow are designed to showcase the following features
of the semantics: combination of data flow and control flow with probability
(Sec. 3.1), conditional branching (Sec. 3.2), open programs with multiple argu-
ments (Sec. 3.3) and finally higher-order programs (Sec. 3.4). We will then give
further definitions in Sec. 3.5 and Sec. 3.6.

Our presentation in Sec. 3.1 and Sec. 3.2 is intended to be informal; we give
all the necessary definitions starting from Sec. 3.3.

3.1 Control flow, data flow, and probability

We briefly recall the example of the introduction; the program and its semantics
are given in Fig. 3. As before, 	 represents control flow, and ��� represents
data flow. There is a node for each random choice in the program, and the
dependency relationships are pictured using the appropriate arrows. Naturally,
a data dependency imposes constraints on the control flow: every arrow ���
must be realised by a control flow path 	∗. There is an additional node for the
output value, drawn in a dashed box, which indicates that it is a possible point
of interaction with other programs. This will be discussed in Sec. 3.3.

Although this is not pictured in the above diagram, the semantics also com-
prises a family of kernels, modelling the probabilistic execution according to
the distributions specified by the program. Intuitively, each node has a distri-
bution whose parameters are its parents for the relation ���. For example, the
node labelled meas2 will be assigned a kernel kmeas2 : R 
 R defined so that
kmeas2(weight,−) is a normal distribution with parameters (weight, 0.1).

3.2 Branching

Consider a modified scenario in which only one measurement is performed, but
with probability 0.01 an error occurs and the scales display a random number
between 0 and 10. The corresponding program and its semantics are given in
Fig. 4.

In order to represent the conditional statement we have introduced a new
element to the graph: a binary relation known as conflict, pictured , and
indicating that two nodes are incompatible and any execution of the program
will only encounter one of them. Conflict is hereditary, in the sense that the
respective futures of two nodes in conflict are also incompatible. Hence we need
two copies of (); one for each branch of the conditional statement. Unsurprisingly,
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weight : R

error : N

meas : R

() : 1

meas : R

() : 1

let weight = sampleweight normal(2, 1) in

let error = sampleerror bernoulli(0.01) in

if error =? 0

then samplemeas uniform(0, 10)

else samplemeas normal(weight, 0.1); ()

Fig. 4

beyond the branching point all events depend on error, since their very existence
depends on its value.

We continue our informal presentation with a description of the semantics
of open terms. This will provide enough context to formally define the notion
of event structure we use in this paper, which differs from others found in the
literature.

3.3 Programs with free variables

We turn the example in Sec. 3.2 into one involving two free variables, guess and
rate, used as parameters for the distributions of weight and error, respectively.
These allow the same program to serve as a model for different situations. For-
mally we have a term M such that guess : R, rate : R � M : 1, given in Fig. 5
with its semantics. We see that the two parameters are themselves represented

let weight = sampleweight normal(guess, 1) in

let error = sampleerror bernoulli(rate) in

if error =? 0

then samplemeas uniform(0, 10)

else samplemeas normal(weight, 0.1); ()

guess : R rate : R

weight : R

error : B

meas : R

() : 1

meas : R

() : 1
Fig. 5

by nodes, drawn in dotted boxes, showing that (like the output nodes) they are a
point of interaction with the program’s external environment; this time, a value
is received rather than sent. Below, we will distinguish between the different
types of nodes by means of a polarity function.

We attach to the parameter nodes the appropriate data dependency arrows.
The subtlety here is with control flow: while is it clear that parameter values must
be obtained before the start of the execution, and that necessarily guess 	 weight
and rate 	 weight, it is less clear what relationship guess and rate should have
with each other.



528 H. Paquet

In a call-by-value language, we find that leaving program arguments causally
independent (of each other) leads to soundness issues. But it would be equally
unsound to impose a causal order between them. Therefore, we introduce a
form of synchronisation relation, amounting to having both guess 	 rate and
rate 	 guess, but we write guess rate instead. In event structure terminol-
ogy this is known as a coincidence, and was introduced by [19] to study the
synchronous π-calculus. Note that in many approaches to call-by-value games
(e.g. [31,26]) one would bundle both parameters into a single node representing
the pair (guess, rate), but this is not suitable here since our data flow analysis
requires separate nodes.

We proceed to define event structures, combining the ingredients we have
described so far: control dependency, data dependency, conflict, and coincidence,
together with a polarity function, used implicitly above to distinguish between
input nodes (−), output nodes (+), and internal random choices (0).

Definition 1. An event structure E is a set E of events (or nodes) together
with the following structure:

– A control flow preorder ≤ on E, and such that each event has a finite
history: ∀e ∈ E, the set [e] := {e′ ∈ E | e′ ≤ e} is finite. This preorder
is designed to be generated from the immediate dependency relation 	
and the coincidence relation , which can both be recovered from ≤,
as follows: we write e e′ when e and e′ are equivalent in the preorder,
i.e. e ≤ e′ and e′ ≤ e; and e 	 e′ whenever the following holds: e < e′,
¬(e′ > e), and if e ≤ d ≤ e′ then either d e or d e′; .

– An irreflexive, binary conflict relation # on E, which is hereditary: if
e ≤ e′ and e # d then e′ # d. Observe that this applies when e e′. The
minimal conflict relation (typically used in diagrams) is defined as
follows: e d if e # d, but for every d0 < d and e0 < e, ¬(e # d0) and
¬(e0 # d).

– An irreflexive, binary data flow relation ��� on E, such that if e ��� e′

then e ≤ e′ and ¬(e e′). Note that this is not required to be transitive.

– A polarity function pol : E → {+, 0,−}, such that if e e′ then pol(e) =
pol(e′) �= 0.

– A labelling function lbl : E0 → L, defined on the set E0 := {e ∈ E |
pol(e) = 0}.

Often we write E instead of the whole tuple (E,≤,#, ���, pol). It is sometimes
useful to quotient out coincidences: we write E for the set of -equivalence
classes, which we denote as boldface letters (e, a, s, . . . ). It is easy to check that
this is also an event structure with e ≤ e′ (resp. #, ���) if there is e ∈ e and
e′ ∈ e′ with e ≤ e′ (resp. #, ���), and evident polarity function.

We will see in Sec. 3.5 how this structure can be equipped with quantitative
information (in the form of measurable spaces and kernels). Before discussing
higher-order programs, we introduce the fundamental concept of configuration,
which will play an essential role in the technical development of this paper.



Bayesian strategies: probabilistic programs as generalised graphical models 529

Definition 2. A configuration of E is a finite subset x ⊆ E which is down-
closed (if e ≤ e′ and e′ ∈ x then e ∈ x) and conflict-free (if e, e′ ∈ x then
¬(e # e′)). The set of all configurations of E is denoted C (E) and it is a
partial order under ⊆.

We introduce some important terminology. For an event e ∈ E, we have de-
fined its history [e] above. This is always a configuration of E, and the smallest
one containing e. More generally we can define [e] = {e′ | ∀e ∈ e. e′ ≤ e}, and
[e) = [e] \ e.

The covering relation −⊂ defines the smallest non-trivial extensions to a
configuration; it is defined as follows: x−⊂y if there is e ∈ E such that x∩e = ∅
and y = x ∪ e. We will sometimes write x −⊂e y. We sometimes annotate −⊂
and ⊆ with the polarities of the added events: so for instance x ⊆+,0 y if each
ei ∈ y \ x has polarity + or 0.

3.4 Higher-order programs

We return to a fairly informal presentation; our goal now is to convey intuition
about the representation of higher-order programs in the framework of event
structures. We will see in Sec. 4 how this representation is obtained from the
usual categorical approach to denotational semantics.

Consider yet another faulty-scales scenario, in which the probability of error
now depends on the object’s weight. Suppose that this dependency is not known
by the program, and thus left as a parameter rate : R → R. The resulting
program has type rate : R→ R, guess : R � R, as follows:

let weight = sampleweight normal(guess, 1) in

let error = sampleerror bernoulli (rate weight) in error

We give its semantics in Fig. 6. (To keep things simple this scenario involves no
measurements.)

guess : R

λrate : 1

weight : R
inrate : R

outrate : R
error : N

error : N

λrate : 1

inrate : R

outrate : R

Fig. 6

It is an important feature of the se-
mantics presented here that higher-
order programs are interpreted as
causal structures involving only val-
ues of ground type. In the example,
the argument rate is initially received
not as a mathematical function, but
as a single message of unit type (la-
belled λrate), which gives the program
the possibility to call the function rate
by feeding it an input value. Because
the behaviour of rate is unknown, its
output is treated as a new argument
to the program, represented by the
negative out node. The shaded region
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highlights the part of computation during which the program interacts with its
argument rate. The semantics accommodates the possibiliy that rate itself has
internal random choices; this will be accounted for in the compositional frame-
work of Sec. 4.

3.5 Bayesian event structures

We show now that event structures admit a probabilistic enrichment.2

Definition 3. A measurable event structure is an event structure together
with the assignment of a measurable space M(e) for every event e ∈ E. For any
X ⊆ E we set M(X) =

∏
e∈XM(e).

As is common in statistics, we often call e (or X) an element of M(e) (or
M(X)). We now proceed to equip this with a kernel for each event.

Definition 4. For E an event structure and e ∈ E, we define the parents pa(e)
of e as {d ∈ E | d ��� e}.
Definition 5. A quantitative event structure is a measurable event struc-
ture E with, for every non-negative e ∈ E, a kernel ke :M(pa(e)) 
M(e).

Our Bayesian event structures are quantitative event structures satisfying
an additional axiom, which we introduce next. This axiom is necessary for a
smooth combination of data flow and control flow; without it, the compositional
framework of the next section is not possible.

Definition 6. Let E be a quantitative event structure. We say that e ∈ E is
non-uniform if there are distinct pa(e), pa′(e) ∈M(pa(e)) such that

ke(pa(e),M(e)) �= ke(pa
′(e),M(e)).

We finally define:

Definition 7. A Bayesian event structure is a quantitative event structure
such that if e ∈ E is non-uniform, and e ≤ e′ with e and e′ not coincident, then
pa(e) ⊆ pa(e′).

The purpose of this condition is to ensure that Bayesian event structures support
a well-behaved notion of “hiding”, which we will define in the next section.

3.6 Symmetry

For higher-order programs, event structures in the sense of Definition 1 present
a limitation. This has to do with the possibility for a program to call a function
argument more than once, which the compositional framework of Sec. 4 does not
readily support. We will use a linear logic-inspired “!” to duplicate nodes, thus
making certain configurations available in infinitely many copies. The following
additional structure, called symmetry, is there to enforce that these configura-
tions yield equivalent behaviour.

2 We emphasise that our notion of “event” is not related to the usual notion of event
in probability theory.
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Definition 8 (Winskel [61]). A symmetry on an event structure E is a fam-
ily ∼=E of bijections θ : x ∼= y, with x, y ∈ C (E), containing all identity bijections
and closed under composition and inverses, satisfying the following axioms.

– For each θ : x ∼= y in ∼=E, if x ⊆ x′ then there is a bijection θ′ : x′ ∼= y′ in
∼=E, such that θ ⊆ θ′. The analogous property is required for every restriction
x′ ⊆ x.

– Each θ ∈ ∼=E preserves polarity (pol(e) = pol(θ(e))), data flow (e ��� e′ =⇒
θ(e) ��� θ(e′)), and measurable structure (M(e) =M(θ(e))).

We write θ : x ∼=E y if (θ : x ∼= y) ∈ ∼=E. When E is Bayesian, we additionally
require ke = kθ(e) for every non-negative e ∈ x. (This is well-defined because θ
preserves data flow and thus pa(θ(e)) = θ pa(e).)

Although symmetry can be mathematically subtle, combining it with addi-
tional data on event structures does not usually pose any difficulty [15,48].

In this section we have described Bayesian event structures with symmetry,
which are the basic mathematical objects we use to represent programs. A central
contribution of this paper is to define a compositional semantics, in which the
interpretation of a program is obtained from that of its sub-programs. This is
the topic of the next section.

4 Games and Bayesian strategies

The presentation is based on game semantics, a line of research in the semantics
of programming languages initiated in [3,33], though the subject has earlier roots
in the semantics of linear logic proofs (e.g. [10]).

It is typical of game semantics that programs are interpreted as concrete
computational trees, and that higher-order terms are described in terms of the
possible interactions with their arguments. As we have seen in the examples
of the previous section, this interaction takes the form of an exchange of first-
order values. The central technical achievement of game semantics is to provide
a method for composing such representations.

To the reader not familiar with game semantics, the terminology may be
misleading: the work of this paper hardly retains any connection to game theory.
In particular there is no notion of winning. The analogy may be understood
as follows for a given program of type Γ � M : A. There are two players: the
program itself, and its environment. The “game”, which we study from the point
of view of the program, takes place in the arena �Γ � A�, which specifies which
moves are allowed (calls to arguments in Γ , internal samples, return values in
A, etc.). The semantics of M is a strategy (written �M�), which specifies a
plan of action for the program to follow in reaction to the moves played by the
environment; this plan has to obey the constraints specified by the arena.

4.1 An introduction to game semantics based on event structures

There are many formulations of game semantics in the literature, with vary-
ing advantages. This paper proposes to use concurrent games, based on event
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structures, for reasoning about data flow in probabilistic programs. Originally
introduced in [51] (though some important ideas appeared earlier: [25,44]), con-
current games based on event structures have been extensively developed and
have found a range of applications.

In Sec. 2, we motivated our approach by assigning event structures to pro-
grams; these event structures are examples of strategies, which we will shortly
define. First we define arenas, which are the objects of the category we will
eventually build. (The morphisms will be strategies.)

Perhaps surprisingly, an arena is also defined as an event structure, though
a much simpler one, with no probabilistic information, empty data dependency
relation ���, and no neutral polarity events. We call this a simple event struc-
ture. This event structure does not itself represent any computation, but is sim-
ply there to constrain the shape of strategies, just as types constrain programs.
Before giving the definition, we present in Fig. 7 the arenas associated with the
strategies in Sec. 3.3 and Sec. 3.4, stating which types they represent. Note the
copy indices (0, 1, . . . ) in Fig. 7b; these point to duplicated (i.e. symmetric)
branches.

r1 : R r2 : R () : 1

(a) The arena �R,R � 1�.

r : Rλ : 1

r : R

r : R

. . .

r : R

r : R

out : R0

1

(b) The arena �R → R,R � R�.

Fig. 7: Examples of arenas.

Definition 9. An arena is a simple, measurable event structure with symmetry
A = (A,∼=A), together with two sub-symmetries ∼=+

A and ∼=−A, subject to the
following conditions:

– A is a simple event structure which is alternating: if a 	 b then pol(a) �=
pol(b); forest-shaped: if a ≤ b and c ≤ b then a ≤ c or c ≤ a (or both); and
race-free: if a b then pol(a) = pol(b).

– ∼=A, ∼=−A and ∼=+
A satisfy the axioms of thin concurrent games [17, 3.17].

– If a, a′ are symmetric moves ( i.e. there is θ ∈ ∼=A such that θ(a) = a′) then
M(a) =M(a′).

Write init(A) for the set of initial events, i.e. those minimal for ≤. We say
that A is positive if every a ∈ init(A) is positive. (Negative arenas are defined
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similarly.) We say that A is regular if whenever a, b ∈ init(A), either a b or
a b.

So, arenas provide a set of moves together with certain constraints for playing
those moves. Our definition of strategy is slightly technical, but the various
conditions ensure that strategies can be composed soundly; we will explore this
second point in Sec. 4.2.

For a strategy S to be well-defined relative to an arena A, each positive or
negative move of S must correspond to a move of A; however neutral moves of S
correspond to internal samples of the program; these should not be constrained
by the type. Accordingly, a strategy comprises a partial map S ⇀ A defined
precisely on the non-neutral events. The reader should be able to reconstruct
this map for the examples of Sec. 3.3 and Sec. 3.4.

Definition 10. A strategy on an arena A is a Bayesian event structure with
symmetry S = (S,∼=S), together with a partial function σ : S ⇀ A, whose
domain of definition is exactly the subset {s ∈ S | pol(s) �= 0}, and such that
whenever σ(s) is defined, M(σ(s)) =M(s) and pol(σ(s)) = pol(s). This data is
subject to the following additional conditions:

(1) σ preserves configurations: if x ∈ C (S) then σx ∈ C (A); and is locally
injective: for s, s′ ∈ x ∈ C (S), if σ(s) = σ(s′) then s = s′.

(2) σ is courteous: if s 	 s′ in S and either pol(s) = + or pol(s′) = −, then
σ(s) 	 σ(s′).

(3) σ preserves symmetry (θ : x ∼=S y =⇒ σθ : σx ∼=A σy), and it is ∼=-
receptive: if θ : x ∼=S y and σθ −⊂− ψ ∈ ∼=A then there exists a unique
θ′ ∈ ∼=S such that θ −⊂− θ′ and σθ′ = ψ ; and thin: if x ∈ C (S) and
idx −⊂+,0 θ for some θ ∈ ∼=S, then θ = idx′ for some x′ ∈ C (S).

(4) If s ��� s′ in S, then pol(s′) �= − and pol(s) �= +.

Condition (1) amounts to σ being a map of event structures [60]. Combined with
(2) and (3), we get the usual notion of a concurrent strategy on an arena with
symmetry [17]; and finally (4) is a form of ���-courtesy.

To these four conditions we add the following:

Definition 11. A strategy S is innocent if conflict is local: s s′ =⇒ [s) =
[s′), and for every s ∈ S, the following conditions hold:

– (backwards sequentiality) the history [s] is a total preorder; and
– ( forward sequentiality) if [s]−⊂s1

0,+ and [s]−⊂s2
0,+ and s1 �= s2, then s1 s2.

Innocence [33,56,16] prevents any non-local or concurrent behaviour. It is
typically used to characterise “purely functional” sequential programs, i.e. those
using no state or control features. Here, we use innocence as a way to confine
ourselves to a simpler semantic universe. In particular we avoid the need to deal
with the difficulties of combining concurrency and probability [62].

In the rest of the paper, a Bayesian strategy is an innocent strategy in the
sense of Definition 10 and Definition 11.
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4.2 Composition of strategies

At this point, we have seen how to define arenas, and we have said that the
event structures of Sec. 2 arise as strategies σ : S ⇀ A for an arena A. As usual
in denotational semantics, these will be obtained compositionally, by induction
on the syntax. For this we must move to a categorical setting, in which arenas
are objects and strategies are morphisms.

Strategies as morphisms. Before we introduce the notion of strategy from A
to B we must introduce some important construction on event structures.

Definition 12. If A is an event structure, its dual A⊥ is the event structure
whose structure is the same as A but for polarity, which is defined at polA⊥(a) =
−polA(a). (Negative moves become positive, and vice-versa, with neutral moves
not affected.) For arenas, we define (A,∼=A,∼=−A,∼=

+
A)
⊥ = (A⊥,∼=A,∼=+

A,
∼=−A).

Given a family (Ai)i∈I of event structures with symmetry, we define their
parallel composition to have events



i∈I Ai =

⋃
i∈I Ai × {i} with polarity,

conflict and both kinds of dependency obtained componentwise. Noticing that a
configuration x ∈ C (



i∈I Ai) corresponds to



i∈I xi where each xi ∈ C (Ai), and

xi = ∅ for all but finitely many i, we define the symmetry ∼=�
i∈I Ai

to contain

bijections


i θi :



i xi

∼=


i yi where each θi ∈ ∼=Ai

. If the Ai are arenas we define
the two other symmetries in the same way.

We can now define our morphisms: a strategy from A to B is a strategy
on the arena A⊥ ‖ B, i.e. a map σ : S ⇀ A⊥ ‖ B. The event structure S con-
sists of A-moves (those mapped to the A⊥ component), B-moves, and internal
(i.e. neutral) events. We sometimes write S : A +→ B.

The purpose of the composition operation 9 which we proceed to define is
therefore to produce, from a pair of strategies σ : S ⇀ A⊥ ‖ B and τ : T ⇀ B⊥ ‖
C, a strategy τ 9σ : T 9S ⇀ A⊥ ‖ C. A constant feature of denotational games
models is that composition is defined in two steps: interaction, in which S and
T synchronise by playing matching B-moves, and hiding, where the matching
pairs of events are deleted. The setting of this paper allows both σ and τ to be
partial maps, so that in general there can be neutral events in both S and T ;
these never synchronise, and indeed they should not be hidden, since we aim to
give an account of internal sampling.

Before moving on to composition, a word of warning: the resulting structure
will not be a category. Instead, arenas and strategies assemble into a weaker
structure called a bicategory [6]. Bicategories have objects, morphisms, and 2-
cells (morphisms between morphisms), and the associativity and identity laws
are relaxed, and only need to hold up to isomorphisms. (This situation is rela-
tively common for intensional models of non-determinism.)

Definition 13. Two strategies σ : S ⇀ A⊥ ‖ B and σ′ : S ′ ⇀ A⊥ ‖ B are
isomorphic if there is a bijection f : S ∼= S′ preserving all structure, and such
that for every x ∈ C (S), the bijection with graph {(σ(s), σ′(f(s))) | s ∈ x} is in
∼=+

A.
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Intuitively, S and S ′ have the same moves up to the choice of copy indices.
We know from [17] that isomorphism is preserved by composition (and all other
constructions), so from now on we always consider strategies up to isomorphism;
then we will get a category.

Interaction. In what follows we assume fixed Bayesian innocent strategies S :
A +→ B and T : B +→ C as above, and study their interaction. We have hinted
at the concept of “matching events” but the more convenient notion is that of
matching configurations, which we define next.

Definition 14. Configurations xS ∈ C (S) and xT ∈ C (T ) are matching if
there are xA ∈ C (A) and xC ∈ C (C) such that σxS ‖ xC = xA ‖ τxT .

There is an event structure with symmetry T � S whose configurations cor-
respond precisely to matching pairs; it is a well-known fact in game semantics
that innocent strategies compose “like relations” [43,15]. Because “matching” B-
moves have a different polarity in S and T , there is an ambiguity in the polarity
of some events in T � S; we address this after the lemma.

Lemma 1. Ignoring polarity, there is, up to isomorphism, a unique event struc-
ture with symmetry T � S, such that:

– There is an order-isomorphism C (T � S) ∼= {(xS , xT ) ∈ C (S) × C (T ) |
xS and xT matching }. Write xT � xS for the configuration corresponding
to (xS , xT ).

– There are partial functions ΠS : T � S ⇀ S and ΠT : T � S ⇀ T , such that
for every xT � xS ∈ C (T � S), ΠS(xT � xS) = xS and ΠS(xT � xS) = xT .

– For every e, e′ ∈ T�S, e 	 e′ iff either ΠS(e) 	 ΠS(e
′) or ΠT (e) 	 ΠT (e

′),
and the same property holds for the conflict and data dependency relations.

– ΠS and ΠT preserve and reflect labels.
– A bijection θ : xT � xS

∼= yT � yS is in ∼=T�S if both ΠT θ : xT
∼=T yT and

ΠSθ : xS
∼=S yS.

Furthermore, for every e ∈ T � S, at least one of ΠS(e) and ΠT (e) is defined.

When reasoning about the polarity of events in T � S, a subtlety arises
because B-moves are not assigned the same polarity in S and T . This is not sur-
prising: polarity is there precisely to allow strategies to communicate by sending
(+) and receiving (−) values; in this interaction, S and T play complementary
roles. To reason about the flow of information in the event structure T � S it
will be important, for each B-move e of T � S, to know whether it is positive
in S or in T ; in other words, whether information is flowing from S to T , or
vice-versa.

Accordingly, we define pol� : T � S → {+S ,+T , 0S , 0T ,−}, as follows:

pol�(e) =

⎧⎪⎨⎪⎩
+S (resp. 0S) if ΠS(e) is defined and pol(ΠS(e)) = + (resp. 0)

+T (resp. 0T ) if ΠT (e) is defined and pol(ΠT (e)) = + (resp. 0),

− otherwise.
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Probability in the interaction. Unlike with polarity, S and T agree on what
measurable space to assign to each B-move, since by the conditions on strategies,
this is determined by the arena. So for each e ∈ T � S we can set M(e) =
M(ΠS(e)) orM(ΠT (e)), unambiguously, and an easy argument shows that this
makes T � S a well-defined measurable event structure with symmetry.

We can turn T � S into a quantitative event structure by defining a kernel
k�e : M(pa�(e)) 
 M(e) for every e ∈ T � S such that pol�(e) �= −. The
key observation is that when pol�(e) ∈ {+S , 0S}, the parents of e correspond
precisely to the parents of ΠS(e) in S. Since ΠS preserves the measurable space
associated to an event, we may then take k�e = kΠS(e).

Hiding. Hiding is the process of deleting the B-moves from T � S, yielding a
strategy from A to C. The B-moves are exactly those on which both projections
are defined, so the new set of events is obtained as follows:

T 9 S = {e ∈ T � S | ΠS(e) and ΠT (e) are not both defined}.

This set inherits a preorder ≤, conflict relation #, and measurable structure
directly from T � S. Polarity is lifted from either S or T via the projections.
(Note that by removing the B-moves we resolved the mismatch.) To define the
data flow dependency, we must take care to ensure that the resulting T 9 S is
Bayesian. For e, e′ ∈ T 9 S, we say e ��� e′ if one of the following holds:

(1) There exist n ≥ 0 and e1, . . . , en ∈ T � S, all B-moves, such that e ���
e1 ��� · · · ��� en ��� e′ (in T � S).

(2) There exist a non-uniform d ∈ T � S, n ≥ 0 and e1, . . . , en ∈ T � S, all
B-moves, such that such that e ��� e1 ��� · · · ��� en ��� d and d ≤ e′.

From a configuration x ∈ C (T 9 S) we can recover the hidden moves to get
an interaction witness x = {e ∈ T � S | e ≤ e′ ∈ x}, a configuration of
C (T � S). For x, y ∈ C (T 9 S), a bijection θ : x ∼= y is in ∼=T S if there is
θ : x∼=T�S y which restricts to θ. This gives a measurable event structure with
symmetry T 9 S.

To make T 9S a Bayesian event structure, we must define for every e ∈ T9S
a kernel ke, which we denote k e to emphasise the difference with the kernel k�e
defined above. Indeed the parents pa�(e) of e in T � S may no longer exist in
T 9 S, where e has a different set of parents pa (e).

We therefore consider the subset of hidden ancestors of e which ought to
affect the kernel k e :

Definition 15. For strategies S : A +→ B and T : B +→ C, and e ∈ T 9 S, an
essential hidden ancestor of e is a B-move d ∈ T � S, such that d ≤ e and
one of the following holds:

(1) There are e1 ∈ pa (e), e2 ∈ pa�(e) such that e1 ��� · · · ��� d ��� · · · ��� e2.
(2) There are e0 ∈ pa (e), B-moves d′ and e1, . . . , en, with d′ non-uniform,

such that e0 ��� e1 ��� · · · ��� ej ��� d ��� ej+1 ��� · · · ��� en ��� d′.
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Since T 9 S is innocent, e has a sequential history, and thus the set of essential
hidden ancestors of e forms a finite, total preorder, for which there exists a linear
enumeration d1 ≤ · · · ≤ dn. We then define k e :M(pa(e)) 
M(e) as follows:

k e (pa
 (e), U) =

∫
d1

k(pa�(d1), dd1)· · ·
∫
dn

k(pa�(dn), ddn) [k
�
e (pa

�(e), U)]

where we abuse notation: using that for every i ≤ n, pa�(di) ⊆ pa (e) ∪ {dj |
j < i}, we may write pa�(di) for the only element of M(pa�(di)) compatible
with pa (e) and d1, . . . , di−1. The particular choice of linear enumeration does
not matter by Fubini’s theorem for s-finite kernels.

Lemma 2. There is a map τ 9 σ : T 9 S ⇀ A⊥ ‖ C making T 9 S a Bayesian
strategy. We call this the composition of S and T .

Copycat. We have defined morphisms between arenas, and how they compose.
We now define identities, called copycat strategies. In the semantics of our lan-
guage, these are used to interpret typing judgements of the form x : A � x : A,
and the copycat acts by forwarding values received on one side across to the
other. To guide the intuition, the copycat strategy for the game �R� 	 �R� is
pictured in Fig. 8. (We will define the 	 construction later.)

λ : 1

in : R

out : R

(a)

λ : 1

in : R

out : R

λ : 1

in : R

out : R

(b)

Fig. 8: The arena �R� 	 �R� (a), and the copycat strategy on it (b).

Formally, the copycat strategy on an arena A is a Bayesian event structure
(with symmetry) CCA, together with a (total) map ccA : CCA → A⊥ ‖ A. As
should be clear in the example of Fig. 8, the events, polarity, conflict, and measur-
able structure of CCA are those of A⊥ ‖ A. The order ≤ is the transitive closure
of that in A⊥ ‖ A enriched with the pairs {((a, 1), (a, 2)) | a ∈ A and polA(a) =
+} ∪ {((a, 2), (a, 1)) | polA(a) = −}. The same sets of pairs also make up the
data dependency relation in CCA; recall that there is no data dependency in the
event structure A. Note that because CCA is just A⊥ ‖ A with added constraints,
configurations of CCA can be seen as a subset of those of A⊥ ‖ A, and thus the
symmetry ∼=CCA

is inherited from ∼=A⊥‖A.
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To make copycat a Bayesian strategy, we observe that for every positive e ∈
CCA, pa(e) contains a single element, the correponding negative move in A⊥ ‖ A,
which carries the same measurable space. Naturally, we take ke :M(e) 
M(e)
to be the identity kernel.

We have defined objects, morphisms, composition, and identities. They as-
semble into a category.

Theorem 1. Arenas and Bayesian strategies, with the latter considered up to
isomorphism, form a category BG. BG has a subcategory BG+ whose ob-
jects are positive, regular arenas and whose morphisms are negative strategies
( i.e. strategies whose inital moves are negative), up to isomorphism.

The restriction implies (using receptivity) that for every strategy A +→ B in
BG+, initial moves of S correspond to init(A). This reflects the dynamics of a
call-by-value language, where arguments are received before anything else. We
now set out to define the semantics of our language in BG+.

5 A denotational model

In Sec. 5.1, we describe some abstract constructions in the category, which pro-
vide the necessary ingredients for interpreting types and terms in Sec. 5.2.

5.1 Categorical structure

The structure required to model a calculus of this kind is fairly standard. The
first games model for a call-by-value language was given by Honda and Yoshida
[31] (see also [4]). Their construction was re-enacted in the context of concurrent
games by Clairambault et al. [20], from whom we draw inspiration. The adapta-
tion is not however automatic as we must account for measurability, probability,
data flow, and an interpretation of product types based on coincidences.

Coproducts. Given arenas A and B, their sum A+B has events those of A ‖
B, and inherited polarity, preorder, and measurable structure, but the conflict
relation is extended so that a # b for every a ∈ A and b ∈ B. The symmetries
∼=A+B ,∼=−A+B and ∼=+

A+B are restricted from ∼=A‖B ,∼=−A‖B and ∼=+
A‖B .

The arena A+B is a coproduct of A and B in BG+. This means that there
are injections ιA : A +→ A+ B and ιB : B +→ A+ B behaving as copycat on the
appropriate component, and that any two strategies σ : A +→ C and τ : B +→ C
induce a unique co-pairing strategy denoted [σ, τ ] : A+B +→ C. This construction
can be performed for any arity, giving coproducts

∑
i∈I Ai.

Tensor. Tensor products are more subtle, partly because in this paper we use
coincidence to deal with pairs, as motivated in Sec. 3.3. For example, given two
arenas each having a single initial move, we construct their tensor product by
taking their parallel composition and making the two initial moves coincident.
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�R� +
S−→ �1�

a : R

� : R

() : 1

�R� +
T−→ �N�

b : R

�′ : R

n : N

�R� ⊗ �R� +
S⊗T−−−→ �1� ⊗ �N�

a : R

� : R

() : 1

b : R

�′ : R

n : N

�R� ⊗ �R� +
S⊗lT−−−−→ �1� ⊗ �N�

a : R

� : R

() : 1

b : R

�′ : R

n : N

Fig. 9: Example of tensor construction.

More generally, suppose A and B are arenas in which all inital events are coinci-
dent; we call these elementary arenas. Then A⊗B has all structure inherited
from A ‖ B, and additionally we set a b for every a ∈ init(A) and b ∈ init(B).
Since C (A⊗B) ⊆ C (A ‖ B), we can define symmetries on A⊗B by restricting
those in A ‖ B.

Now, because arenas in BG+ are regular (Definition 9), it is easy to see that
each A is isomorphic to a sum

∑
i∈I Ai with each Ai elementary. If B ∈ BG+ is

isomorphic to
∑

j∈J Bj with the Bj elementary, we define A⊗B =
∑

i,j Ai⊗Bj .
In order to give semantics to pairs of terms, we must define the action of ⊗

of strategies. Consider two strategies σ : S ⇀ A⊥ ‖ A′ and τ : T ⇀ B⊥ ‖ B′.
Let σ ‖ τ : S ‖ T ⇀ (A ‖ B)⊥ ‖ (A′ ‖ B′) be defined in the obvious way from
σ and τ (note the codomain was rearranged). We observe that C ((A ⊗ B)⊥ ‖
(A′ ⊗ B′)) ⊆ C ((A ‖ B)⊥ ‖ (A′ ‖ B′)) and show:

Lemma 3. Up to symmetry, there is a unique event structure S ⊗ T such that
C (S⊗T ) = {x ∈ C (S ‖ T ) | (σ ‖ τ)x ∈ C ((A⊗B)⊥ ‖ (A′⊗B′))} and such that
polarity, labelling, and data flow are lifted from S ‖ T via a projection function
S ⊗ T → S ‖ T .

Informally, the strategies synchronise at the start, i.e. all initial moves are re-
ceived at the same time, and they synchronise again when they are both ready
to move to the A′ ⊗ B′ side for the first time.

The operations − ⊗ B and A ⊗ − on BG+ define functors. However, as is
typically the case for models of call-by-value, the tensor fails to be bifunctorial,
and thus BG+ is not monoidal but only premonoidal [50]. The unit for ⊗ is the
arena 1 with one (positive) event () : 1. There are “copycat-like” associativity,
unit and braiding strategies, which we omit.

The failure of bifunctoriality in this setting means that for σ : A +→ A′ and
τ : B +→ B′, the strategy S ⊗ T is in general distinct from the following two
strategies:

S ⊗l T = (CCA′ ⊗ T )9 (S ⊗ CCB) S ⊗r T = (S ⊗ CCB′)9 (CCA ⊗ T )

See Fig. 9 for an example of the ⊗ and ⊗l constructions on simple strategies.
Observe that the data flow relation is not affected by the choice of tensor: this is
related to our discussion of commutativity in Sec. 1.1: a commutative semantics
is one that satisfies ⊗l = ⊗r = ⊗.
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We will make use of the left tensor ⊗l in our denotational semantics, because
it reflects a left-to-right evaluation strategy, which is standard. It will also be
important that the interpretation of values lies in the centre of the premonoidal
category, which consists of those strategies S for which S ⊗l T = S ⊗r T and
T ⊗l S = T ⊗r S for every T . Finally we note that ⊗ distributes over +, in the
sense that for every A,B, C the canonical strategy (A⊗B)+(A⊗C) +→ A⊗(B+C)
has an inverse λ.

Function spaces. We now investigate the construction of arenas of the form
A 	 B. This is a linear function space construction, allowing at most one call
to the argument A; in Sec. 5.1 we will construct an extended arena !(A 	 B)
permitting arbitrary usage. Given A and B we construct A	 B as follows. (This
construction is the same as in other call-by-value game semantics, e.g. [31,20].)
Recall that we can write A =

∑
i∈I Ai with each Ai an elementary arena. Then,

A 	 B has the same set of events as 1 ‖
∑

i∈I(A⊥i ‖ B), with inherited polarity
and measurable structure, but with a preorder enriched with the pairs {(λ, a) |
a ∈ init(A)} ∪ {(ai, (i, b)) | a ∈ init(Ai), b ∈ init(B)}, where in this case we call
λ the unique move of 1.

For every strategy σ : A ⊗ B +→ C we call Λ(σ) : A +→ B 	 C the strategy
which, upon receiving an opening A-move (or coincidence) a, deterministically
(and with no data-flow link) plays the move λ in B 	 C, waits for Opponent
to play a B-move (or coincidence) b and continues as σ would on input a b.
Additionally there is for every B and C an evaluation morphism evB,C : (B 	
C)⊗ B +→ C defined as in [20].

Lemma 4. For a strategy σ : A ⊗ B +→ C, the strategy Λ(σ) is central and
satisfies ev 9 (Λ(σ)⊗ cc) = σ.

Duplication. We define, for every arena A, a “reusable” arena !A. Its precise
purpose will become clear when we define the semantics of our language. It is
helpful to start with the observation that ground type values are readily duplica-
ble, in the sense that there is a strategy �R� +→ �R�⊗�R� in BG. Therefore ! will
have no effect on �R�, but only on more sophisticated arenas (e.g. �R� 	 �R�) for
which no such (well-behaved) map exists. We start by studying negative arenas.

Definition 16. Let A be a negative arena. We define !A to be the measurable
event structure !A =‖i∈ω A, equipped with the following symmetries:

– ∼=!A contains those θ :‖i∈ω xi
∼=‖i∈ω yi for which there is π : ω ∼= ω and

θi : xi
∼=Ai

xπ(i) such that θ(a, i) = (θi(a), π(i)) for each (a, i) ∈ !A.

– ∼=−!A contains bijections θ : x∼=!A y such that for each i ∈ ω, θi : xi
∼=−A yπ(i).

– ∼=+
!A contains bijections θ : x ∼=!A y s.t. π = id and for each i, θi : xi

∼=+
A yi.

It can be shown that !A is a well-defined negative arena, i.e.meets the condi-
tions of Definition 9. Observe that an elementary positive arena B corresponds
precisely to a set e of coincident positive events, all initial for 	, immediately
followed by a negative arena which we call B−. Followed here means that e ≤ b
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�Rn� +
dist�−−−→ �X�

� : X
r1 : R

. . .
rn : R

X : X
δ�

μdist(r1,...,rn)

1 +
n−→ �N�

() : 1
N : N

δn

1 +
r−→ �R�

() : 1
X : R
δr

�N� +
0?−→ �B�

r : N
tt : 1

ff : 1
[r �= 0]

[r = 0]

�R� +
score−−−→ �1�

r : R
() : 1

|r| · δ()

1 +
f−→ !(�Rn� 	 �R�)

() : 1
λ : 1

r1 : R
i

. . .

i
rn : R

X : R

δ

δf(r1,...,rn)

Fig. 10: Constant strategies. (The copy indices i in f indicate that we have ω
symmetric branches.)

for all e ∈ e and b ∈ B−, and we write B = e ·B−. We define !B = e · !B−. Finally,
recall that an arbitrary positive arena B can be written as a sum of elementary
ones: B =

∑
i∈I Bi. We then define !B =

∑
i∈I !Bi.

For positive A and B, a central strategy σ : A +→ B induces a strategy
!σ : !A +→ !B, and this is functorial. The functor ! extends to a linear exponential
comonad on the category with elementary arenas as objects and central strategies
as morphisms (see [20] for the details of a similar construction).

Recursion. To interpret fixed points, we consider an ordering relation on strate-
gies. We momentarily break our habit of considering strategies up to isomor-
phism, as in this instance it becomes technically inconvenient [17].

Definition 17. If σ : S ⇀ A and τ : T ⇀ A are strategies, we write S � T if
S ⊆ T , the inclusion map is a map of event structures, preserves all structure,
including kernels, and for every s ∈ S, σ(s) = τ(s).

Lemma 5. Every ω-chain S0 � S1 � . . . has a least upper bound
∨

i∈ω Si, given
by the union

⋃
i∈ω Si, with all structure obtained by componentwise union.

There is also a least strategy ⊥ on every arena, unique up to isomorphism. We
are now ready to give the semantics of our language.

5.2 Denotational semantics

The interpretation of types is as follows:

�1� = () : 1 �R� = a : R �N� = a : N
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�()�Γ = �Γ �
wΓ−−→ 1 = �1� �n�Γ = �Γ �

wΓ−−→ 1
n−→ �N�

�r�Γ = �Γ �
wΓ−−→ 1

r−→ �R� �f�Γ = �Γ �
wΓ−−→ 1

f−→ �Rn → R�

�x�Γ,x:A = �Γ � ⊗ �A�
wΓ⊗cc�A�−−−−−−→ 1⊗ �A�

∼=−→ �A�

�λx.M�Γ = �Γ �
hΓ−−→ !�Γ �

!Λ(�M�Γ,x:A)
−−−−−−−−−→ !(�A� 	 �B�)

�M N�Γ = �Γ �
cΓ−−→ �Γ � ⊗ �Γ �

�M�Γ⊗l�N�Γ−−−−−−−−−→ �A → B� ⊗ �A�
ε⊗cc−−−→ (�A� 	 �B�)⊗ �A� ev−→ �B�

�(M,N)�Γ = �Γ �
cΓ−−→ �Γ � ⊗ �Γ �

�M�Γ⊗l�N�Γ−−−−−−−−−→ �A×B�

�match M with (x, y) → N�Γ = �Γ �
cΓ−−→ �Γ � ⊗ �Γ �

cc⊗�M�Γ−−−−−−→ �Γ � ⊗ �A×B�
�N�Γ,x,y

−−−−−−→ �C�
�match M with [inlx → N1 | inrx → N2]�Γ = �Γ �

cΓ−−→ �Γ � ⊗ �Γ �
cc⊗�M�Γ−−−−−−→ �Γ � ⊗ (�A1� + �A2�)

λ−→ �Γ � ⊗ �A1� + �Γ � ⊗ �A2�
[�N1�,�N2�]−−−−−−−→ �B�

�M =? 0�Γ : �Γ �
�M�Γ−−−−→ �N� 0?−→ �B� �score M�Γ = �Γ �

�M�Γ−−−−→ �R� score−−−→ �1�

�sample� dist(M1, . . . ,Mn)� = �Γ �
cΓ−−→ �Γ � ⊗ . . .⊗ �Γ �

�M1�Γ⊗l...⊗l�Mn�Γ−−−−−−−−−−−−−−→ �Rn�
dist�−−−→ �X�

�μx.M�Γ =
∨

i∈ω�M�Γ,x
i (⊥),

where �M�Γ,x
0 (⊥) = ⊥ and �M�Γ,x

n+1(⊥) = �M�Γ,x ) (ccΓ ⊗ �M�Γ,x
n (⊥))) cΓ

Fig. 11: Interpretation of terms as strategies.

�A+B� = �A� + �B� �A×B� = �A�⊗ �B� �A→ B� = !(�A� 	 �B�)

This interpretation extends to contexts via �·� = 1 and �x1 : A1, . . . , xn : An� =
�A1�⊗ . . .⊗ �An�. (In Fig. 7 we used �Γ � A� to refer to the arena �Γ �⊥ ‖ �A�.)

A term Γ � M : A is interpreted as a strategy �M�Γ : �Γ � → �A�, defined
inductively. For every type A, the arena �A� is both a !-coalgebra and a commu-
tative comonoid, so there are strategies wA : �A� +→ 1, cA : �A� +→ �A�⊗�A�, and
hA : �A� +→ !�A�. Using that the comonad ! is monoidal, this structure extends
to contexts; we write cΓ ,wΓ and hΓ for the induced maps. The interpretation of
constants is shown in Fig. 10, and the rest of the semantics is given in Fig. 11.

Lemma 6. For a value Γ � V : A, the strategy �V �Γ is central.

The semantics is sound for the usual call-by-value equations.

Proposition 1. For arbitrary terms M,P,N1, N2 and values V,W ,

�(λx.M)V �Γ = �M [V/x]�Γ

�match (V,W ) with (x, y)→ P �Γ = �P [V/x][W/y]�Γ

�match inlV with [inlx→ N1 | inrx→ N2]�Γ = �N1[V/x]�Γ .

The equations are directly verified. Standard reasoning principles apply given
the categorical structure we have outlined above. (It is well known that pre-
monoidal categories provide models for call-by-value [50], and our interpretation
is a version of Girard’s translation of call-by-value into linear logic [29].)
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6 Conclusion and perspectives

We have defined, for every term Γ �M : A, a strategy �M�Γ . This gives a model
for probabilistic programming which provides an explicit representation of data
flow. In particular, if � M : 1, and M has no subterm of type B + C, then the
Bayesian strategy �M� is a Bayesian network equipped with a total ordering
of its nodes: the control flow relation ≤. Our proposed compositional semantics
additionally supports sum types, higher types, and open terms.

This paper does not contain an adequacy result, largely for lack of space:
the ‘Monte Carlo’ operational semantics of probabilistic programs is difficult to
define in full rigour. In further work I hope to address this and carry out the
integration of causal models into the framework of [53]. The objective remains
to obtain proofs of correctness for existing and new inference algorithms.

Related work on denotational semantics. Our representation of data flow based
on coincidences and a relation ��� is novel, but the underlying machinery relies
on existing work in concurrent game semantics, in particular the framework of
games with symmetry developed by Castellan et al. [17]. This was applied to
a language with discrete probability in [15], and to a call-by-name and affine
language with continuous probability in [49]. This paper is the first instance
of a concurrent games model for a higher-order language with recursion and
continuous probability, and the first to track internal sampling and data flow.

There are other interactive models for statistical languages, e.g. by Ong and
Vákár [47] and Dal Lago et al. [38]. Their objectives are different: they do not
address data flow (i.e. their semantics only represents the control flow), and do
not record internal samples.

Prior to the development of probabilistic concurrent games, probabilistic no-
tions of event structures were considered by several authors (see [58,1,59]). The
literature on probabilistic Petri nets important related work, as Petri nets can
sometimes provide finite representations for infinite event structures. Markov
nets [7,2] satisfy conditional independence conditions based on the causal struc-
ture of Petri nets. More recently Bruni et al. [12,13] relate a form of Petri nets
to Bayesian networks and inference, though their probability spaces are discrete.

Related work on graphical representations. Our event structures are reminiscent
of Jeffrey’s graphical language for premonoidal categories [35], which combines
string diagrams [36] with a control flow relation. Note that in event structures
the conflict relation provides a model for sum types, which is difficult to obtain
in Jeffrey’s setting. The problem of representing sum types arises also in proba-
bilistic modelling, because Bayesian networks do not support them: [45] propose
an extended graphical language, which could serve to interpret first-order proba-
bilistic programs with conditionals. Another approach is by [42], whose Bayesian
networks have edges labelled by predicates describing the branching condition.
Finally, the theory of Bayesian networks has also been investigated extensively
by Jacobs [34] with a categorical viewpoint. It will be important to understand
the formal connections between our work and the above.
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