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Abstract. The termination behavior of probabilistic programs depends on the
outcomes of random assignments. Almost sure termination (AST) is concerned
with the question whether a program terminates with probability one on all possible
inputs. Positive almost sure termination (PAST) focuses on termination in a finite
expected number of steps. This paper presents a fully automated approach to the
termination analysis of probabilistic while-programs whose guards and expressions
are polynomial expressions. As proving (positive) AST is undecidable in general,
existing proof rules typically provide sufficient conditions. These conditions mostly
involve constraints on supermartingales. We consider four proof rules from the
literature and extend these with generalizations of existing proof rules for (P)AST.
We automate the resulting set of proof rules by effectively computing asymptotic
bounds on polynomials over the program variables. These bounds are used to decide
the sufficient conditions – including the constraints on supermartingales – of a
proof rule. Our software tool AMBER can thus check AST, PAST, as well as their
negations for a large class of polynomial probabilistic programs, while carrying out
the termination reasoning fully with polynomial witnesses. Experimental results
show the merits of our generalized proof rules and demonstrate that AMBER can
handle probabilistic programs that are out of reach for other state-of-the-art tools.

Keywords: Probabilistic Programming · Almost sure Termination · Martingales
· Asymptotic Bounds · Linear Recurrences

1 Introduction

Classical program termination. Termination is a key property in program analysis [16].
The question whether a program terminates on all possible inputs – the universal halting
problem – is undecidable. Proof rules based on ranking functions have been developed that
impose sufficient conditions implying (non-)termination. Automated termination check-
ing has given rise to powerful software tools such as AProVE [21] and NaTT [44] (using
term rewriting), and UltimateAutomizer [26] (using automata theory). These tools have
shown to be able to determine the termination of several intricate programs. The industrial
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x := 10
while x>0 do

x := x+1 [1/2]x−1
end

(a)

x := 10
while x>0 do

x := x−1 [1/2]x+2
end

(b)

x := 0, y := 0
while x2+y2<100 do

x := x+1 [1/2]x−1
y := y+x [1/2]y−x

end

(c)

x := 10, y := 0
while x>0 do

y := y+1
x := x+4y [1/2]x−y2

end

(d)

Fig. 1: Examples of probabilistic programs in our probabilistic language. Program 1a is a symmetric
1D random walk. The program is almost surely terminating (AST) but not positively almost surely
terminating (PAST). Program 1b is not AST. Programs 1c and 1d contain dependent variable
updates with polynomial guards and both programs are PAST.

tool Terminator [15] has taken termination proving into practice and is able to prove
termination – or even more general liveness properties – of e.g., device driver software.
Rather than seeking a single ranking function, it takes a disjunctive termination argument
using sets of ranking functions. Other results include termination proving methods for
specific program classes such as linear and polynomial programs, see, e.g., [9,24].

Termination of probabilistic program. Probabilistic programs extend sequential pro-
grams with the ability to draw samples from probability distributions. They are used
e.g. for, encoding randomized algorithms, planning in AI, security mechanisms, and in
cognitive science. In this paper, we consider probabilistic while-programs with discrete
probabilistic choices, in the vein of the seminal works [34] and [37]. Termination of
probabilistic programs differs from the classical halting problem in several respects, e.g.,
probabilistic programs may exhibit diverging runs that have probability mass zero in total.
Such programs do not always terminate, but terminate with probability one – they almost
surely terminate. An example of such a program is given in Figure 1a where variable x is
incremented by 1 with probability 1/2, and otherwise decremented with this amount. This
program encodes a one-dimensional (1D) left-bounded random walk starting at position
10. Another important difference to classical termination is that the expected number
of program steps until termination may be infinite, even if the program almost surely
terminates. Thus, almost sure termination (AST) does not imply that the expected number
of steps until termination is finite. Programs that have a finite expected runtime are referred
to as positively almost surely terminating (PAST). Figure 1c is a sample program that is
PAST. While PAST implies AST, the converse does not hold, as evidenced by Figure 1a:
the program of Figure 1a terminates with probability one but needs infinitely many steps
on average to reach x=0, hence is not PAST. (The terminology AST and PAST was coined
in [8] and has its roots in the theory of Markov processes.)

Proof rules for AST and PAST. Proving termination of probabilistic programs is hard:
AST for a single input is as hard as the universal halting problem, whereas PAST is even
harder [30]. Termination analysis of probabilistic programs is currently attracting quite
some attention. It is not just of theoretical interest. For instance, a popular way to analyze
probabilistic programs in machine learning is by using some advanced form of simulation.
If, however, a program is not PAST, the simulation may take forever. In addition, the use
of probabilistic programs in safety-critical environments [2,7,20] necessitates providing
formal guarantees on termination. Different techniques are considered for probabilistic
program termination ranging from probabilistic term rewriting [3], sized types [17], and
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Büchi automata theory [14], to weakest pre-condition calculi for checking PAST [31]. A
large body of works considers proof rules that provide sufficient conditions for proving
AST, PAST, or their negations. These rules are based on martingale theory, in particular su-
permartingales. They are stochastic processes that can be (phrased in a simplified manner)
viewed as the probabilistic analog of ranking functions: the value of a random variable rep-
resents the “value” of the function at the beginning of a loop iteration. Successive random
variables model the evolution of the program loop. Being a supermartingale means that
the expected value of the random variables at the end of a loop does not exceed its value at
the start of the loop. Constraints on supermartingales form the essential part of proof rules.
For example, the AST proof rule in [38] requires the existence of a supermartingale whose
value decreases at least with a certain amount by at least a certain probability on each loop
iteration. Intuitively speaking, the closer the supermartingales comes to zero – indicating
termination – the more probable it is that it increases more. The AST proof rule in [38] is ap-
plicable to prove AST for the program in Figure 1a; yet, it cannot be used to prove PAST of
Figures 1c-1d. On the other hand, the PAST proof rule in [10,19] requires that the expected
decrease of the supermartingale on each loop iteration is at least some positive constant
ε and on loop termination needs to be at most zero – very similar to the usual constraint on
ranking functions. While [10,19] can be used to prove the program in Figure 1c to be PAST,
these works cannot be used for Figure 1a. They cannot be used for proving Figure 1d to
be PAST either. The rule for showing non-AST [13] requires the supermartingale to be
repulsing. This intuitively means that the supermartingale decreases on average with at
least ε and is positive on termination. Figuratively speaking, it repulses terminating states.
It can be used to prove the program in Figure 1b to be not AST. In summary, while existing
works for proving AST, PAST, and their negations are generic in nature, they are also
restricted for classes of probabilistic programs. In this paper, we propose relaxed versions
of existing proof rules for probabilistic termination that turn out to treat quite a number of
programs that could not be proven otherwise (Section 4). In particular, (non-)termination
of all four programs of Figure 1 can be proven using our proof rules.

Automated termination checking of AST and PAST. Whereas there is a large body of
techniques and proof rules, software tool support to automate checking termination of
probabilistic programs is still in its infancy. This paper presents novel algorithms to
automate various proof rules for probabilistic programs: the three aforementioned proof
rules [10,19,38,13] and a variant of the non-AST proof rule to prove non-PAST [13]3.
We also present relaxed versions of each of the proof rules, going beyond the state-
of-the-art in the termination analysis of probabilistic programs. We focus on so-called
Prob-solvable loops, extending [4]. Namely, we define Prob-solvable loops as probabilis-
tic while-programs whose guards compare two polynomials (over program variables)
and whose body is a sequence of random assignments with polynomials as right-hand
side such that a variable x, say, only depends on variables preceding x in the loop body.
While restrictive, Prob-solvable loops cover a vast set of interesting probabilistic programs
(see Remark 1). An essential property of our programs is that the statistical moments of
program variables can be obtained as closed-form formulas [4]. The key of our algorithmic

3 For automation, the proof rule of [38] is considered for constant decrease and probability
functions.
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approach is a procedure for computing asymptotic lower, upper and absolute bounds
on polynomial expressions over program variables in our programs (Section 5). This
enables a novel method for automating probabilistic termination and non-termination
proof rules based on (super)martingales, going beyond the state-of-the-art in probabilistic
termination. Our relaxed proof rules allow us to fully automate (P)AST analysis by using
only polynomial witnesses. Our experiments provide practical evidence that polynomial
witnesses within Prob-solvable loops are sufficient to certify most examples from the
literature and even beyond (Section 6).

Our termination tool AMBER. We have implemented our algorithmic approach in the
publicly available tool AMBER. It exploits asymptotic bounds over polynomial mar-
tingales and uses the tool MORA [4] for computing the first-order moments of program
variables and the computer algebra system packagediofant. It employs over- and under-
approximations realized by a simple static analysis. AMBER establishes probabilistic
termination in a fully automated manner and has the following unique characteristics:
– it includes the first implementation of the AST proof rule of [38], and
– it is the first tool capable of certifying AST for programs that are not PAST and cannot

be split into PAST subprograms, and
– it is the first tool that brings the various proof rules under a single umbrella: AST, PAST,

non-AST and non-PAST.
An experimental evaluation on various benchmarks shows that: (1) AMBER is superior to
existing tools for automating PAST [42] and AST [10], (2) the relaxed proof rules enable
proving substantially more programs, and (3) AMBER is able to automate the termination
checking of intricate probabilistic programs (within the class of programs considered)
that could not be automatically handled so far (Section 6). For example, AMBER solves
23 termination benchmarks that no other automated approach could so far handle.

Main contributions. To summarize, the main contributions of this paper are:
1. Relaxed proof rules for (non-)termination, enabling treating a wider class of programs

(Section 4).
2. Efficient algorithms to compute asymptotic bounds on polynomial expressions of

program variables (Section 5).
3. Automation: a realisation of our algorithms in the tool AMBER (Section 6).
4. Experiments showing the superiority of AMBER over existing tools for proving (P)AST

(Section 6).

2 Preliminaries

We denote by N and R the set of natural and real numbers, respectively. Further, let R
denote R∪{+∞,−∞}, R+

0 the non-negative reals and R[x1,...,xm] the polynomial ring
in x1,...,xm over R. We write x :=E(1) [p1]E(2) [p2]...[pm−1]E(m) for the probabilistic
update of program variable x, denoting the execution of x :=E(j) with probability pj ,
for j=1,...,m−1, and the execution of x :=E(m) with probability 1−

∑m−1
j=1 pj , where

m∈N. We write indices of expressions over program variables in round brackets and
use Ei for the stochastic process induced by expression E. This section introduces our
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programming language extending Prob-solvable loops [4] and defines the probability
space introduced by such programs. Let E denote the expectation operator with respect
to a probability space. We assume the reader to be familiar with probability theory [33].

2.1 Programming Model: Prob-Solvable Loops

Prob-solvable loops [4] are syntactically restricted probabilistic programs with polynomial
expressions over program variables. The statistical higher-order moments of program vari-
ables, like expectation and variance of such loops, can always be computed as functions
of the loop counter. In this paper, we extend Prob-solvable loops with polynomial loop
guards in order to study their termination behavior, as follows.

Definition 1 (Prob-solvable loop L). A Prob-solvable loop L with real-valued variables
x(1),...,x(m), where m∈N, is a program of the form: IL while GL do UL end, with
– (Init) IL is a sequence x(1) :=r(1),...,x(m) :=r(m) of m assignments, with r(j)∈R
– (Guard) GL is a strict inequality P >Q, where P, Q∈R[x(1),...,x(m)]
– (Update) UL is a sequence of m probabilistic updates of the form

x(j) :=a(j1)x(j)+P(j1) [pj1] a(j2)x(j)+P(j2) [pj2] ... [pj(lj−1)] a(jlj)x(j)+P(jlj),

where a(jk)∈R+
0 are constants, P(jk)∈R[x(1),...,x(j−1)] are polynomials, p(jk)∈

[0,1] and
∑

k pjk<1.

If L is clear from the context, the subscript L is omitted from IL, GL, and UL. Figure 1
gives four example Prob-solvable loops.

Remark 1 (Prob-solvable expressiveness). The enforced order of assignments in the loop
body of Prob-solvable loops seems restrictive. However, many non-trivial probabilistic
programs can be naturally modeled as succinct Prob-solvable loops. These include com-
plex stochastic processes such as 2D random walks and dynamic Bayesian networks [5].
Almost all existing benchmarks on automated probabilistic termination analysis fall within
the scope of Prob-solvable loops (cf. Section 6).

In the sequel, we consider an arbitrary Prob-solvable loop L and provide all definitions
relative to L. The semantics of L is defined next, by associating L with a probability space.

2.2 Canonical Probability Space

A probabilistic program, and thus a Prob-solvable loop, can be semantically described as
a probabilistic transition system [10] or as a probabilistic control flow graph [13], which
in turn induce an infinite Markov chain (MC) 4. An MC is associated with a sequence
space [33], a special probability space. In the sequel, we associate L with the sequence
space of its corresponding MC, similarly as in [25].

4 In fact, [13] consider Markov decision processes, but in absence of non-determinism in
Prob-solvable loops, Markov chains suffice for our purpose.



496 M. Moosbrugger et al.

Definition 2 (State, Run of L). The state of Prob-solvable loop L over m variables, is a
vector s∈Rm. Let s[j] or s[x(j)] denote the j-th component of s representing the value of
the variable x(j) in state s. A run ϑ of L is an infinite sequence of states.

Note that any infinite sequence of states is a run. Infeasible runs will however be assigned
measure 0. We write s�B to denote that the logical formula B holds in state s.

Definition 3 (Loop Space of L). The Prob-solvable loop L induces a canonical filtered
probability space (ΩL,ΣL,(FL

i )i∈N,PL), called loop space, where
– the sample space ΩL :=(Rm)ω is the set of all program runs,
– the σ-algebraΣL is the smallest σ-algebra containing all cylinder setsCyl(π) :={πϑ |

ϑ∈(Rm)ω} for all finite prefixes π∈(Rm)+, that is ΣL :=〈{Cyl(π) |π∈(Rm)+}〉σ ,
– the filtration (FL

i )i∈N contains the smallest σ-algebras containing all cylinder sets for
all prefixes of length i+1, i.e. FL

i :=〈{Cyl(π) |π∈(Rm)+, |π|= i+1}〉σ .
– the probability measure PL is defined as PL(Cyl(π)) :=p(π), where p is given by

p(s) :=μI(s), p(πss′) :=

{
p(πs)·[s′=s], if s�¬GL

p(πs)·μU (s,s
′), if s�GL.

μI(s) denotes the probability that, after initialization IL, the loop L is in state s.
μU (s,s

′) denotes the probability that, after one loop iteration starting in state s, the
resulting program state is s′. [...] represent the Iverson brackets, i.e. [s′=s] is 1 iff s′=s.

Intuitively, P(Cyl(π)) is the probability that prefix π is the sequence of the first |π|
program states when executing L. Moreover, the σ-algebra Fi intuitively captures the
information about the program run after the loop body U has been executed i times. We
note that the effect of the loop body U is considered as atomic.

In order to formalize termination properties of a Prob-solvable loop L, we define the
looping time of L to be a random variable in L’s loop space.

Definition 4 (Looping Time of L). The looping time of L is the random variable T¬G :
Ω→N∪{∞}, where T¬G(ϑ) :=inf{i∈N |ϑi�¬G}.

Intuitively, the looping time T¬G maps a program run of L to the index of the first state fal-
sifying the loop guard G ofL or to∞ if no such state exists. We now formalize termination
properties of L using the looping time T¬G .

Definition 5 (Termination of L). The Prob-solvable loop L is AST if P(T¬G<∞)=1.
L is PAST if E(T¬G)<∞.

2.3 Martingales

While for arbitrary probabilistic programs, answering P(T¬G <∞) and E(T¬G <∞)
is undecidable, sufficient conditions for AST, PAST and their negations have been de-
veloped [10,19,38,13]. These works use (super)martingales which are special stochastic
processes. In this section, we adopt the general setting of martingale theory to a Prob-
solvable loop L and then formalize sufficient termination conditions for L in Section 3.
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Definition 6 (Stochastic Process ofL). Every arithmetic expression E over the program
variables of L induces the stochastic process (Ei)i∈N, Ei :Ω→R with Ei(ϑ) :=E(ϑi).
For a run ϑ of L, Ei(ϑ) is the evaluation of E in the i-th state of ϑ.

In the sequel, for a boolean condition B over program variables x of L, we write Bi to
refer to the result of substituting x by xi in B.

Definition 7 (Martingales). Let (Ω,Σ,(Fi)i∈N,P) be a filtered probability space and
(Mi)i∈N be an integrable stochastic process adapted to (Fi)i∈N. Then (Mi)i∈N is a
martingale if E(Mi+1 | Fi) = Mi (or equivalently E(Mi+1−Mi | Fi) = 0). More-
over, (Mi)i∈N is called a supermartingale (SM) if E(Mi+1 | Fi)≤Mi (or equivalently
E(Mi+1−Mi |Fi)≤0). For an arithmetic expression E over the program variables of L,
the conditional expected value E(Ei+1−Ei |Fi) is called the martingale expression of E.

3 Proof Rules for Probabilistic Termination

While AST and PAST are undecidable in general [30], sufficient conditions, called proof
rules, for AST and PAST have been introduced, see e.g. [10,19,38,13]. In this section, we
survey four proof rules, adapted to Prob-solvable loops. In the sequel, a pure invariant
is a loop invariant in the classical deterministic sense [27]. Based on the probability space
corresponding to L, a pure invariant holds before and after every iteration of L.

3.1 Positive Almost Sure Termination (PAST)

The proof rule for PAST introduced in [10] relies on the notion of ranking supermartin-
gales (RSMs), which is a SM that decreases by a fixed positive ε on average at every loop
iteration. Intuitively, RSMs resemble ranking functions for deterministic programs, yet
for probabilistic programs.

Theorem 1 (Ranking-Supermartingale-Rule (RSM-Rule) [10], [19]). Let M :Rm→
R be an expression over the program variables of L and I a pure invariant of L. Assume
the following conditions hold for all i∈N:

1. (Termination) G∧I =⇒M>0
2. (RSM Condition) Gi∧Ii =⇒ E(Mi+1−Mi |Fi)≤−ε, for some ε>0.

Then, L is PAST. Further, M is called an ε-ranking supermartingale.

Example 1. Consider Figure 1c, set M :=100−x2−y2 and ε :=2 and let I be true. Con-
dition (1) of Theorem 1 trivially holds. Further, M is also an ε-ranking supermartingale, as
E(Mi+1−Mi |Fi)=100−E(x2

i+1 |Fi)−E(y2i+1 |Fi)−100+x2
i +y2i =−2−x2

i ≤−2.
That is because E(x2

i+1 | Fi)=x2
i +1 and E(y2i+1 | Fi)= y2i +x2

i +1. Figure 1c is thus
proved PAST using the RSM-Rule.
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3.2 Almost Sure Termination (AST)

Recall that Figure 1a is AST but not PAST, and hence the RSM-rule cannot be used
for Figure 1a. By relaxing the ranking conditions, the proof rule in [38] uses general
supermartingales to prove AST of programs that are not necessarily PAST.

Theorem 2 (Supermartingale-Rule (SM-Rule) [38]). LetM :Rm→R≥0 be an expres-
sion over the program variables of L and I a pure invariant of L. Let p :R≥0→(0,1] (for
probability) and d :R≥0→R>0 (for decrease) be antitone (i.e. monotonically decreasing)
functions. Assume the following conditions hold for all i∈N:
1. (Termination) G∧I =⇒M>0
2. (Decrease) Gi∧Ii =⇒ P(Mi+1−Mi≤−d(Mi) |Fi)≥p(Mi)
3. (SM Condition) Gi∧Ii =⇒ E(Mi+1−Mi |Fi)≤0.
Then, L is AST.

Intuitively, the requirement of d and p being antitone forbids that the “execution progress”
of L towards termination becomes infinitely small while still being positive.

Example 2. The SM-Rule can be used to prove AST for Figure 1a. Consider M := x,
p :=1/2, d :=1 and I := true. Clearly, p and d are antitone. The remaining conditions of
Theorem 2 also hold as (1) x> 0 =⇒ x> 0; (2) x decreases by d with probability p in
every iteration; and (3) E(Mi+1−Mi |Fi)=xi−xi≤0.

3.3 Non-Termination

While Theorems 1 and 2 can be used for proving AST and PAST, respectively, they are
not applicable to the analysis of non-terminating Prob-solvable loops. Two sufficient con-
ditions for certifying the negations of AST and PAST have been introduced in [13] using
so-called repulsing-supermartingales. Intuitively, a repulsing-supermartingale M on
average decreases in every iteration of L and on termination is non-negative. Figuratively,
M repulses terminating states.

Theorem 3 (Repulsing-AST-Rule (R-AST-Rule) [13]). Let M :Rm→R be an expres-
sion over the program variables of L and I a pure invariant of L. Assume the following
conditions hold for all i∈N:
1. (Negative) M0<0
2. (Non-Termination) ¬G∧I =⇒M≥0
3. (RSM Condition) Gi∧Ii =⇒ E(Mi+1−Mi |Fi)≤−ε, for some ε>0
4. (c-Bounded Differences) |Mi+1−Mi|<c, for some c>0.
Then,L is not AST.M is called an ε-repulsing supermartingale with c-bounded differences.

Example 3. Consider Figure 1b and let M :=−x, c :=3, ε :=1/2 and I := true. All four
above conditions hold: (1) −x0 =−10< 0; (2) x≤ 0 =⇒ −x≥ 0; (3) E(Mi+1−Mi |
Fi)=−xi−1/2+xi=−1/2≤−ε; and (4) |xi−xi+1|<3. Thus, Figure 1b is not AST.

While Theorem 3 can prove programs not to be AST, and thus also not PAST, it cannot
be used to prove programs not to be PAST when they are AST. For example, Theorem 3
cannot be used to prove that Figure 1a is not PAST. To address such cases, a variation of the
R-AST-Rule [13] for certifying programs not to be PAST arises by relaxing the condition
ε > 0 of the R-AST-Rule to ε ≥ 0. We refer to this variation by Repulsing-PAST-Rule
(R-PAST-Rule).
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4 Relaxed Proof Rules for Probabilistic Termination

While Theorems 1-3 provide sufficient conditions proving PAST, AST and their negations,
the applicability to Prob-solvable loops is somewhat restricted. For example, the RSM-
Rule cannot be used to prove Figure 1d to be PAST using the simple expression M :=x, as
explained in detail with Example 4, but may require more complex witnesses for certifying
PAST, complicating automation. In this section, we relax the conditions of Theorems 1-3
by requiring these conditions to only hold “eventually”. A property P (i) parameterized
by a natural number i∈N holds eventually if there is an i0∈N such that P (i) holds for all
i≥ i0. Our relaxations of probabilistic termination proof rules can intuitively be described
as follows: If L, after a fixed number of steps, almost surely reaches a state from which
the program is PAST or AST, then the program is PAST or AST, respectively. Let us first
illustrate the benefits of reasoning with “eventually” holding properties for probabilistic
termination in the following example.

x := x0, y := 0
while x>0 do

y := y+1
x := x+(y−5) [1/2]x−(y−5)

end

(a)

x := 1, y := 2
while x>0 do

y := 1/2·y
x := x+1−y [2/3]x−1+y

end

(b)

Fig. 2: Prob-solvable loops which require our relaxed proof rules for termination analysis.

Example 4 (Limits of the RSM-Rule and SM-Rule). Consider Figure 1d. Setting M :=x,
we have the martingale expression E(Mi+1−Mi |Fi)=−y2

i/2+yi+3/2=−i2/2+i+3/2.
Since E(xi+1−xi |Fi) is non-negative for i∈{0,1,2,3}, we conclude that M is not an
RSM. However, Figure 1d either terminates within the first three iterations or, after three
loop iterations, is in a state such that the RSM-Rule is applicable. Therefore, Figure 1d is
PAST but the RSM-Rule cannot directly prove using M :=x. A similar restriction of the
SM-Rule can be observed for Figure 2a. By considering M :=x, we derive the martingale
expression E(xi+1−xi |Fi)=0, implying that M is a martingale for Figure 2a. However,
the decrease function d for the SM-Rule cannot be defined because, for example, in the
fifth loop iteration of Figure 2a, there is no progress as x is almost surely updated with its
previous value. However, after the fifth iteration of Figure 2a, x always decreases by at
least 1 with probability 1/2 and all conditions of the SM-Rule are satisfied. Thus, Figure 2a
either terminates within the first five iterations or reaches a state from which it terminates
almost surely. Consequently, Figure 2a is AST but the SM-Rule cannot directly prove it
using M :=x.

We therefore relax the RSM-Rule and SM-Rule of Theorems 1 and 2 as follows.

Theorem 4 (Relaxed Termination Proof Rules). For the RSM-Rule to certify PAST of
L, it is sufficient that conditions (1)-(2) of Theorem 1 hold eventually (instead of for all
i∈N). Similarly, for the SM-Rule to certify AST of L, it is sufficient that conditions (1)-(3)
of Theorem 2 hold eventually.
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Proof. We prove the relaxation of the RSM-Rule. The proof of the relaxed SM-Rule is
analogous. Let L :=I while G do U end be as in Definition 1. Assume L satisfies the con-
ditions (1)-(2) of Theorem 1 after some i0∈N. We construct the following probabilistic
program P , where i is a new variable not appearing in L:

I;i :=0
while i<i0 do U ;i := i+1 end
while G do U end

(1)

We first argue that if P is PAST, then so is L. Assume P to be PAST. Then, the looping
time of L is either bounded by i0 or it is PAST, by the definition of P . In both cases, L
is PAST. Finally, observe that P is PAST if and only if its second while-loop is PAST.
However, the second while-loop of P can be certified to be PAST using the RSM-Rule
and additionally using i≥ i0 as an invariant. "	

Remark 2. The central point of our proof rule relaxations is that they allow for simpler
witnesses. While for Example 4 it can be checked that M := x+2y+5 is an RSM, the
example illustrates that the relaxed proof rule allows for a much simpler PAST witness
(linear instead of exponential). This simplicity is key for automation.

Similar to Theorem 4, we relax the R-AST-Rule and the R-PAST-Rule. However, com-
pared to Theorem 4, it is not enough for a non-termination proof rule to certify non-AST
from some state onward, because L may never reach this state as it might terminate earlier.
Therefore, a necessary assumption when relaxing non-termination proof rules comes with
ensuring that L has a positive probability of reaching the state after which a proof rule
witnesses non-termination. This is illustrated in the following example .

Example 5 (Limits of the R-AST-Rule). Consider Figure 2b and set M :=−x. As a result,
we get E(Mi+1−Mi | Fi) = yi/6− 1/3= 2−i

/3− 1/3. Thus, E(Mi+1−Mi | Fi) = 0 for
i=0, implying that M cannot be an ε-repulsing supermartingale with ε>0 for all i∈N.
However, after the first iteration of L, M satisfies all requirements of the R-AST-Rule.
Moreover, L always reaches the second iteration because in the first iteration x almost
surely does not change. From this follows that Figure 2b is not AST.

The following theorem formalizes the observation of Example 5 relaxing the R-AST-
Rule and R-PAST-Rule of Theorem 3.

Theorem 5 (Relaxed Non-Termination Proof Rules for). For the R-AST-Rule to certify
non-AST for L (Theorem 3), as well as for the R-PAST-Rule to certify non-PAST for L
(Theorem 3), if P(Mi0 <0)>0 for some i0≥0, it suffices that conditions (2)-(4) hold for
all i≥ i0 (instead of for all i∈N).

The proof of Theorem 5 is similar to the one of Theorem 4 and available in [40]. In
what follows, whenever we write RSM-Rule, SM-Rule, R-AST-Rule or R-PAST-Rule we
refer to our relaxed versions of the proof rules.
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5 Algorithmic Termination Analysis through Asymptotic Bounds

The two major challenges when automating reasoning with the proof rules of Sections 3
and 4 are (i) constructing expressions M over the program variables and (ii) proving
inequalities involvingE(Mi+1−Mi |Fi). In this section, we address these two challenges
for Prob-solvable loops. For the loop guard GL=P >Q, let GL denote the polynomial
P −Q. As before, if L is clear from the context, we omit the subscript L. It holds that
G>0 is equivalent to G.

(i) Constructing (super)martingales M : For a Prob-solvable loop L, the polynomial G
is a natural candidate for the expression M in termination proof rules (RSM-Rule, SM-
Rule) and −G in the non-termination proof rules (R-AST-Rule, R-PAST-Rule). Hence,
we construct potential (super)martingales M by setting M :=G for the RSM-Rule and
the SM-Rule, and M :=−G for the R-AST-Rule and the R-PAST-Rule. The property
G =⇒G>0, a condition of the RSM-Rule and the SM-Rule, trivially holds. Moreover,
for the R-AST-Rule and R-PAST-Rule the condition ¬G =⇒ −G≥ 0 is satisfied. The
remaining conditions of the proof rules are:
– RSM-Rule: (a) Gi =⇒ E(Gi+1−Gi |Fi)≤−ε for some ε>0
– SM-Rule: (a)Gi =⇒ E(Gi+1−Gi |Fi)≤0 and (b)Gi =⇒ P(Gi+1−Gi≤−d |Fi)≥p

for some p∈(0,1] and d∈R+ (for the purpose of efficient automation, we restrict the
functions d(r) and p(r) to be constant)

– R-AST-Rule: (a)Gi =⇒ E(−Gi+1+Gi |Fi)≤−ε for some ε>0 and (b) |Gi+1−Gi|≤
c, for some c>0.

All these conditions express bounds over Gi. Choosing G as the potential witness may
seem simplistic. However, Example 4 already illustrated how our relaxed proof rules can
mitigate the need for more complex witnesses (even exponential ones). The computational
effort in our approach does not lie in synthesizing a complex witness but in constructing
asymptotic bounds for the loop guard. Our approach can therefore be seen as comple-
mentary to approaches synthesizing more complex witnesses [10,11,13]. The martingale
expressionE(Gi+1−Gi |Fi) is an expression over program variables, whereasGi+1−Gi

cannot be interpreted as a single expression but through a distribution of expressions.

Definition 8 (One-step Distribution). For expression H over the program variables of
Prob-solvable loopL, let the one-step distributionUH

L be defined byE �→P(Hi+1=E |Fi)
with support set supp(UH

L ) :={B |UH
L (B)>0}. We refer to expressions B∈supp(UH

L )
by branches of H .

The notation UH
L is chosen to suggest that the loop body UL is “applied” to the expression

H , leading to a distribution over expressions. Intuitively, the support supp(UH
L ) of an

expression H contains all possible updates of H after executing a single iteration of UL.

(ii) Proving inequalities involvingE(Mi+1−Mi |Fi): To automate the termination analy-
sis ofLwith the proof rules from Section 3, we need to compute bounds for the expression
E(Gi+1−Gi |Fi) as well as for the branches ofG. In addition, our relaxed proof rules from
Section 4 only need asymptotic bounds, i.e. bounds which hold eventually. In Section 5.2,
we propose Algorithm 1 for computing asymptotic lower and upper bounds for any poly-
nomial expression over program variables of L. Our procedure allows us to derive bounds
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for E(Gi+1−Gi |Fi) and the branches of G. Before formalizing our method, let us first il-
lustrate how reasoning with asymptotic bounds helps to apply termination proof rules toL.

Example 6 (Asymptotic Bounds for the RSM-Rule). Consider the following program:

x := 1, y := 0
while x<100 do

y := y+1
x := 2x+y2 [1/2] 1/2·x

end

Observe yi = i. The martingale expression for G = 100− x is E(Gi+1 −Gi | Fi) =
1/2(100−2xi−(i+1)2)+1/2(100−xi/2)−(100−xi)=−xi/4−i2/2−i−1/2. Note that
if the term −xi/4 would not be present in E(Gi+1−Gi |Fi), we could certify the program
to be PAST using the RSM-Rule because −i2/2− i−1/2≤−1/2 for all i≥ 0. However,
by taking a closer look at the variable x, we observe that it is eventually and almost
surely lower bounded by the function α ·2−i for some α ∈ R+. Therefore, eventually
−xi/4≤−β ·2−i for some β∈R+. Thus, eventually E(Gi+1−Gi |Fi)≤−γ ·i2 for some
γ∈R+. By our RSM-Rule, the program is PAST.

Now, the question arises how the asymptotic lower bound α·2−i for x can be computed
automatically. In every iteration, x is either updated with 2x+y2 or 1/2·x. Considering
the updates as recurrences, we have the inhomogeneous parts y2 and 0. Asymptotic lower
bounds for these parts are i2 and 0, respectively, where 0 is the “asymptotically smallest
one“. Taking 0 as the inhomogeneous part, we construct two recurrences: (1) l0=α, li+1=
2li+0 and (2) l0=α, li+1=1/2·li+0, for someα∈R+. Solutions to these recurrences are
α·2i andα·2−i, where the last one is the desired lower bound because it is “asymptotically
smaller“. We will formalize this idea of computing asymptotic bounds in Algorithm 1.

We next present our method for computing asymptotic bounds over martingale expres-
sions in Sections 5.1-5.2. Based on these asymptotic bounds, in Section 5.3 we introduce
algorithmic approaches for our proof rules from Section 4, solving our aforementioned
challenges (i)-(ii) in a fully automated manner (Section 5.4).

5.1 Prob-solvable Loops and Monomials

Algorithm 1 computes asymptotic bounds on monomials over program variables in a
recursive manner. To ensure termination of Algorithm 1, it is important that there are no
circular dependencies among monomials. By the definition of Prob-solvable loops, this
indeed holds for program variables (monomials of order 1). Every Prob-solvable loop L
comes with an ordering on its variables and every variable is restricted to only depend
linearly on itself and polynomially on previous variables. Acyclic dependencies naturally
extend from single variables to monomials.

Definition 9 (Monomial Ordering). Let L be a Prob-solvable loop with variables
x(1),...,x(m). Let y1=

∏m
j=1x

pj

(j) and y2=
∏m

j=1x
qj
(j), where pj ,qj ∈N, be two monomials

over the program variables. The order 2 on monomials over the program variables of
L is defined by y1 2 y2 ⇐⇒ (pm, ...,p1) ≤lex (qm, ...,q1), where ≤lex is the lexico-
graphic order on Nm. The order 2 is total because ≤lex is total. With y1≺y2 we denote
y12y2∧y1 �=y2.
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To prove acyclic dependencies for monomials we exploit the following fact.

Lemma 1. Let y1,y2,z1,z2 be monomials. If y12z1 and y22z2 then y1 ·y22z1 ·z2.

By structural induction over monomials and Lemma 1, we establish:

Lemma 2 (Monomial Acyclic Dependency). Let x be a monomial over the program
variables of L. For every branch B∈supp(Ux

L) and monomial y in B, y2x holds.

Lemma 2 states that the value of a monomial x over the program variables of L only
depends on the value of monomials y which precede x in the monomial ordering 2. This
ensures the dependencies among monomials over the program variables of L to be acyclic.

5.2 Computing Asymptotic Bounds for Prob-solvable Loops

The structural result on monomial dependencies from Lemma 2 allows for recursive proce-
dures over monomials. This is exploited in Algorithm 1 for computing asymptotic bounds
for monomials. The standard Big-O notation does not differentiate between positive and
negative functions, as it considers the absolute value of functions. We, however, need to
differentiate between functions like 2i and −2i. Therefore, we introduce the notions of
Domination and Bounding Functions.

Definition 10 (Domination). Let F be a finite set of functions from N to R. A function
g :N→R is dominating F if eventually α·g(i)≥f(i) for all f ∈F and some α∈R+. A
function g :N→R is dominated by F if all f ∈F dominate {g}.

Intuitively, a function f dominates a function g if f eventually surpasses g modulo a
positive constant factor. Exponential polynomials are sums of products of polynomials
with exponential functions, i.e.

∑
j pj(x) · cxj , where cj ∈ R+

0 . All functions arising in
Algorithms 1-4 are exponential polynomials. For a finite setF of exponential polynomials,
a function dominating F and a function dominated by F are easily computable with
standard techniques, by analyzing the terms of the functions in the finite set F . With
dominating(F ) we denote an algorithm computing an exponential polynomial dominat-
ingF . With dominated(F )we denote an algorithm computing an exponential polynomial
dominated by F . We assume the functions returned by the algorithms dominating(F )
and dominated(F ) to be monotone and either non-negative or non-positive.

Example 7 (Domination). The following statements are true: 0 dominates {−i3+i2+5},
i2 dominates {2i2}, i2 · 2i dominates {i2 · 2i + i9, i5 + i3, 2−i}, i is dominated by
{i2−2i+1, 12 i−5} and −2i is dominated by {2i−i2,−10·2−i}.

Definition 11 (Bounding Function for L). Let E be an arithmetic expression over the
program variables of L. Let l,u :N→R be monotone and non-negative or non-positive.
1. l is a lower bounding function for E if eventually P(α · l(i)≤Ei | T¬G > i) = 1 for

some α∈R+.
2. u is an upper bounding function for E if eventually P(Ei≤α·u(i) |T¬G >i)=1 for

some α∈R+.
3. An absolute bounding function for E is an upper bounding function for |E|.



504 M. Moosbrugger et al.

A bounding function imposes a bound on an expression E over the program variables
holding eventually, almost surely, and modulo a positive constant factor. Moreover, bounds
on E only need to hold as long as the program has not yet terminated.

Given a Prob-solvable loop L and a monomial x over the program variables of L,
Algorithm 1 computes a lower and upper bounding function for x. Because every poly-
nomial expression is a linear combination of monomials, the procedure can be used to
compute lower and upper bounding functions for any polynomial expression over L’s
program variables by substituting every monomial with its lower or upper bounding
function depending on the sign of the monomial’s coefficient. Once a lower bounding
function l and an upper bounding function u are computed, an absolute bounding function
can be computed by dominating({u,−l}).

In Algorithm 1, candidates for bounding functions are modeled using recurrence
relations. Solutions s(i) of these recurrences are closed-form candidates for bounding
functions parameterized by loop iteration i. Algorithm 1 relies on the existence of closed-
form solutions of recurrences. While closed-forms of general recurrences do not always
exist, a property of C-finite recurrences, linear recurrences with constant coefficients, is
that their closed-forms always exist and are computable [32]. In all occurring recurrences,
we consider a monomial over program variables as a single function. Therefore, through-
out this section, all recurrences arising from a Prob-solvable loop L in Algorithm 1 are
C-finite or can be turned into C-finite recurrences. Moreover, closed-forms s(i) of C-finite
recurrences are given by exponential polynomials. Therefore, for any solution s(i) to a
C-finite recurrence and any constant r∈R, the following holds:

∃α,β∈R+,∃i0∈N :∀i≥ i0 :α·s(i)≤s(i+r)≤β ·s(i). (2)

Intuitively, the property states that constant shifts do not change the asymptotic behavior
of s. We use this property at various proof steps in this section. Moreover, we recall that
limits of exponential polynomials are computable [23].

For every monomial x, every branch B ∈ supp(Ux
L) is a polynomial over the pro-

gram variables. Let Rec(x) := {coefficient of x in B | B ∈ supp(Ux
L)} denote the set

of coefficients of the monomial x in all branches of L. Let Inhom(x) := {B− c · x |
B∈ supp(Ux

L) and c= coefficient of x in B} denote all the branches of the monomial x
without x and its coefficient. The symbolic constants c1 and c2 in Algorithm 1 represent
arbitrary initial values of the monomial x for which bounding functions are computed.
The fact that they are symbolic ensures that all potential initial values are accounted for.
c1 represents positive initial values and −c2 negative initial values. The symbolic constant
d is used in the recurrences to account for the fact that the bounding functions only hold
modulo a constant. Intuitively, if we use the bounding function in a recurrence we need
to restore the lost constant. Sign(x) is an over-approximation of the sign of the monomial
x, i.e., if ∃i :P(xi>0)>0, then +∈Sign(x) and if ∃i :P(xi<0)>0, then −∈Sign(x).

Lemma 2, the computability of closed-forms of C-finite recurrences and the fact
that within a Prob-solvable loop only finitely many monomials can occur, implies the
termination of Algorithm 1. Its correctness is stated in the next theorem.

Theorem 6 (Correctness of Algorithm 1). The functions l(i),u(i) returned by Algo-
rithm 1 on input L and x are a lower- and an upper bounding function for x, respectively.
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Algorithm 1: Computing bounding functions for monomials
Input: A Prob-solvable loop L and a monomial x over L’s variables
Output: Lower and upper bounding functions l(i), u(i) for x

1 inhomBoundsUpper :={upper bounding function of P |P ∈Inhom(x)} (recursive call)

2 inhomBoundsLower :={lower bounding function of P |P ∈Inhom(x)} (recursive call)

3 U(i) :=dominating(inhomBoundsUpper)
4 L(i) :=dominated(inhomBoundsLower)
5 maxRec :=maxRec(x)
6 minRec :=minRec(x)
7 I :=∅
8 if +∈Sign(x) then I :=I∪{c1} ;
9 if −∈Sign(x) then I :=I∪{−c2} ;

10 uCand := closed-forms of {yi+1=r ·yi+d·U(i) |r∈{minRec,maxRec},y0∈I}
11 lCand := closed-forms of {yi+1=r ·yi+d·L(i) |r∈{minRec,maxRec},y0∈I}
12 u(i) :=dominating(uCand)
13 l(i) :=dominated(lCand)
14 return l(i),u(i)

Proof. Intuitively, it has to be shown that regardless of the paths through the loop body
taken by any program run, the value ofx is always eventually upper bounded by some func-
tion in uCand and eventually lower bounded by some function in lCand (almost surely
and modulo positive constant factors). We show that x is always eventually upper bounded
by some function in uCand . The proof for the lower bounding function is analogous.

Let ϑ∈Σ be a possible program run, i.e. P(Cyl(π))>0 for all finite prefixes π of ϑ.
Then, for every i∈N, if T¬G(ϑ)>i, the following holds:

xi+1(ϑ)=a(1) ·xi(ϑ)+P(1)i(ϑ) or xi+1(ϑ)=a(2) ·xi(ϑ)+P(2)i(ϑ)

or ... or xi+1(ϑ)=a(k) ·xi(ϑ)+P(k)i(ϑ),

where a(j) ∈ Rec(x) and P(j) ∈ Inhom(x) are polynomials over program variables.
Let u1(i),...,uk(i) be upper bounding functions of P(1),...,P(k), which are computed
recursively at line 10. Moreover, let U(i) :=dominating({u1(i),...,uk(i)}), minRec=
minRec(x) and maxRec=maxRec(x). Let l0∈N be the smallest number such that for
all j∈{1,...,k} and i≥ l0:

P(P(j)i≤αj ·uj(i) |T¬G>i)=1 for some αj ∈R+, and (3)

uj(i)≤β ·U(i) for some β∈R+ (4)

Thus, all inequalities from the bounding functions uj and the dominating function U hold
from l0 onward. Because U is a dominating function, it is by definition either non-negative
or non-positive. AssumeU(i) to be non-negative, the case for whichU(i) is non-positive is
symmetric. Using the facts (3) and (4), we establish: For the constant γ :=β ·maxj=1..kαj ,
it holds thatP(P(j)i≤γ ·U(i) |T¬G>i)=1 for all j∈{1,...,k} and all i≥ l0. Let l1 be the
smallest number such that l1≥ l0 and U(i+l0)≤δ ·U(i) for all i≥ l1 and some δ∈R+.

Case 1, xi is almost surely negative for all i ≥ l1: Consider the recurrence relation
y0 =m, yi+1 =minRec · yi+ η ·U(i), where η := max(γ,δ) and m is the maximum
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value of xl1(ϑ) among all possible program runs ϑ. Note that m exists because there
are only finitely many values xl1(ϑ) for possible program runs ϑ. Moreover, m is neg-
ative by our case assumption. By induction, we get P(xi ≤ yi−l1 | T¬G > i) = 1 for all
i≥ l1. Therefore, for a closed-form solution s(i) of the recurrence relation yi, we get
P(xi≤s(i−l1) |T¬G>i)=1 for all i≥ l1. We emphasize that s exists and can effectively
be computed because yi is C-finite. Moreover, s(i− l1)≤ θ ·s(i) for all i≥ l2 for some
l2≥ l1 and some θ∈R+. Therefore, s satisfies the bound condition of an upper bounding
function. Also, s is present in uCand by choosing the symbolic constants c2 and d to
represent −m and η respectively. The function u(i) :=dominating(uCand), at line 12,
is dominating uCand (hence also s), is monotone and either non-positive or non-negative.
Therefore, u(i) is an upper bounding function for x.

Case 2, xi is not almost surely negative for all i ≥ l1: Thus, there is a possible pro-
gram run ϑ′ such that xi(ϑ

′) ≥ 0 for some i ≥ l1. Let l2 ≥ l1 be the smallest number
such that xl2(ϑ̂) ≥ 0 for some possible program run ϑ̂. This number certainly exists,
as xi(ϑ

′) is non-negative for some i ≥ l1. Consider the recurrence relation y0 = m,
yi+1 =maxRec · yi+ η ·U(i), where η := max(γ,δ) and m is the maximum value of
xl2(ϑ) among all possible program runsϑ. Note thatm exists because there are only finitely
many values xl2(ϑ) for possible program runs ϑ. Moreover, m is non-negative because
m≥xl2(ϑ̂)≥0. By induction, we get P(xi≤yi−l2 |T¬G>i)=1 for all i≥ l2. Therefore,
for a solution s(i) of the recurrence relation yi, we getP(xi≤s(i−l2) |T¬G>i)=1 for all
i≥ l2. As above, s exists and can effectively be computed because yi is C-finite. Moreover,
s(i−l2)≤θ ·s(i) for all i≥ l3 for some l3≥ l2 and some θ∈R+. Therefore, s satisfies the
bound condition of an upper bounding function Also, s is present in uCand by choosing
the symbolic constants c1 and d to represent m and η respectively. The function u(i) :=
dominating(uCand), at line 12, is dominating uCand (hence also s), is monotone and ei-
ther non-positive or non-negative. Therefore,u(i) is an upper bounding function forx. "	

Example 8 (Bounding functions). We illustrate Algorithm 1 by computing bounding
functions for x and the Prob-solvable loop from Example 6: We haveRec(x) :={2, 12} and
Inhom(x) = {y2,0}. Computing bounding functions recursively for P ∈ Inhom(x) =
{y2,0} is simple, as we can give exact bounds leading to inhomBoundsUpper={i2,0}
and inhomBoundsLower={i2,0}. Consequently, we getU(i)= i2,L(i)=0,maxRec=
2 andminRec= 1

2 . With a rudimentary static analysis of the loop, we determine the (exact)
over-approximation Sign(x) :={+} by observing that x0>0 and all P ∈Inhom(x) are
strictly positive. Therefore, uCand is the set of closed-form solutions of the recurrences
y0 := c1, yi+1 := 2yi + d · i2 and y0 := c1, yi+1 := 1

2yi + d · i2. Similarly, lCand is
the set of closed-form solutions of the recurrences y0 := c1, yi+1 := 2yi and y0 := c1,
yi+1 :=

1
2yi. Using any algorithm for computing closed-forms of C-finite recurrences,

we obtain uCand = {c12i−di2−2di+3d2i−3d, c12
−i+2di2−8di−12d2−i+12d}

and lCand={c12i, c12−i}. This leads to the upper bounding function u(i)=2i and the
lower bounding function l(i)=2−i. The bounding functions l(i) and u(i) can be used to
compute bounding functions for expressions containing x linearly by replacing x by l(i)
or u(i) depending on the sign of the coefficient of x. For instance, eventually and almost
surely the following inequality holds: −xi

4 − i2

2 − i− 1
2 ≤− 1

4 ·α ·2−i− i2

2 − i− 1
2 for

some α∈R+. The inequality results from replacing xi by l(i). Therefore, eventually and
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almost surely −xi

4 − i2

2 −i− 1
2 ≤−β ·i2 for some β∈R+. Thus, −i2 is an upper bounding

function for the expression −xi

4 − i2

2 −i− 1
2 .

Remark 3. Algorithm 1 describes a general procedure computing bounding functions for
special sequences. Figuratively, that is for sequences s such that si+1=f(si,i) but in every
step the function f is chosen non-deterministically among a fixed set of special functions
(corresponding to branches in our case). We reserve the investigation of applications of
bounding functions for such sequences beyond the probabilistic setting for future work.

5.3 Algorithms for Termination Analysis of Prob-solvable Loops

Using Algorithm 1 to compute bounding functions for polynomial expressions over
program variables at hand, we are now able to formalize our algorithmic approaches
automating the termination analysis of Prob-solvable loops using the proof rules from
Section 4. Given a Prob-solvable loopL and a polynomial expressionE overL’s variables,
we denote with lbf (E), ubf (E) and abf (E) functions computing a lower, upper and
absolute bounding function for E respectively. Our algorithmic approach for proving
PAST using the RSM-Rule is given in Algorithm 2.

Algorithm 2: Ranking-Supermartingale-Rule for proving PAST
Input: Prob-solvable loop L
Output: If true then L with G satisfies the RSM-Rule; hence L is PAST

1 E :=E(Gi+1−Gi |Fi)
2 u(i) :=ubf (E)
3 limit :=limi→∞u(i)
4 return limit<0

Example 9 (Algorithm 2). Let us illustrate Algorithm 2 with the Prob-solvable loop from
Examples 6 and 8. Applying Algorithm 2 on L leads to E=−xi

4 − i2

2 −i− 1
2 . We obtain

the upper bounding function u(i) :=−i2 for E. Because limi→∞u(i)<0, Algorithm 2
returns true. This is valid becauseu(i) having a negative limit witnesses thatE is eventually
bounded by a negative constant and therefore is eventually an RSM.

We recall that all functions arising fromL are exponential polynomials (see Section 5.2)
and that limits of exponential polynomials are computable [23]. Therefore, the termination
of Algorithm 2 is guaranteed and its correctness is stated next.

Theorem 7 (Correctness of Algorithm 2). If Algorithm 2 returns true on input L, then
L with GL satisfies the RSM-Rule.

Proof. When returning true at line 4 we have P(Ei ≤ α · u(i) | T¬G > i) = 1 for
all i ≥ i0 and some i0 ∈ N, α ∈ R+. Moreover, u(i) < −ε for all i ≥ i1 for some
i1 ∈N, by the definition of lim. From this follows that ∀i≥max(i0,i1) almost surely
Gi =⇒ E(Gi+1−Gi |Fi)≤−α·ε, which means G is eventually an RSM. "	

Our approach proving AST using the SM-Rule is captured with Algorithm 3.
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Algorithm 3: Supermartingale-Rule for proving AST
Input: Prob-solvable loop L
Output: If true, L with G satisfies the SM-Rule with constant d and p; hence L is AST

1 E :=E(Gi+1−Gi |Fi)
2 u(i) :=ubf (E)
3 if not eventually u(i)≤0 then return false ;
4 for B∈supp(UG

L ) do

5 d(i) :=ubf (B−G)
6 limit :=limi→∞d(i)
7 if limit<0 then return true ;
8 end

9 return false

Example 10 (Algorithm 3). Let us illustrate Algorithm 3 for the Prob-solvable loop L
from Figure 2a: Applying Algorithm 3 on L yields E≡0 and u(i)=0. The expression
G (= x) has two branches. One of them is xi− yi+4, which occurs with probability
1/2. When the for-loop of Algorithm 3 reaches this branch B = xi−yi+4 on line 4, it
computes the difference B−G=−yi+4. An upper bounding function for B−G is given
by d(i)=−i. Because limi→∞d(i)<0, Algorithm 3 returns true. This is valid because of
the branch B witnessing that G eventually decreases by at least a constant with probability
1/2. Therefore, all conditions of the SM-Rule are satisfied and L is AST.

Theorem 8 (Correctness of Algorithm 3). If Algorithm 3 returns true on input L, then
L with GL satisfies the SM-Rule with constant d and p.

The proof of Theorem 8, as well as of Theorem 9, are similar to the one of Theorem 7 and
can be found in [40].

As established in Section 4, the relaxation of the R-AST-Rule requires that there is a
positive probability of reaching the iteration i0 after which the conditions of the proof
rule hold. Regarding automation, we strengthen this condition by ensuring that there is
a positive probability of reaching any iteration, i.e. ∀i∈N :P(Gi)>0. Obviously, this im-
pliesP(Gi0)>0. Furthermore, withCanReachAnyIteration(L)we denote a computable
under-approximation of ∀i ∈ N : P(Gi) > 0. That means, CanReachAnyIteration(L)
implies ∀i∈N :P(Gi)>0. Our approach proving non-AST is summarized in Algorithm 4.

Example 11 (Algorithm 4). Let us illustrate Algorithm 4 for the Prob-solvable loop L
from Figure 2a: Applying Algorithm 4 on L leads to E = yi

6 − 1
3 = 2−i

3 − 1
3 and to the

upper bounding function u(i)=−1 for E on line 2. Therefore, the if-statement on line 3
is not executed, which means −G is eventually a ε-repulsing supermartingale. Moreover,
with a simple static analysis of the loop, we establish CanReachAnyIteration(L) to be
true, as there is a positive probability that the loop guard does not decrease. Thus, the
if-statement on line 4 is not executed. Also, the if-statement on line 6 is not executed,
because ε(i)=−u(i)=1 is constant and therefore in Ω(1). E eventually decreases by
ε=1 (modulo a positive constant factor), becauseu(i)=−1 is an upper bounding function
for E. We have differences={1− yi

2 ,1+ yi

2 }. Both expressions in differences have an
absolute bounding function of 1. Therefore, diffBounds={1}. As a result on line 9 we
have c(i)= 1, which eventually and almost surely is an upper bound on |−Gi+1+Gi|
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Algorithm 4: Repulsing-AST-Rule for proving non-AST
Input: Prob-solvable loop L
Output: if true, L with −G satisfies the R-AST-Rule; hence L is not AST

1 E :=E(−Gi+1+Gi |Fi)
2 u(i) :=ubf (E)
3 if not eventually u(i)≤0 then return false ;
4 if ¬CanReachAnyIteration(L) then return false ;
5 ε(i) :=−u(i)
6 if ε(i) �∈Ω(1) then return false ;
7 differences :={B+G |B∈supp(U−G

L )}
8 diffBounds :={abf (d) |d∈differences}
9 c(i) :=dominating(diffBounds)

10 return c(i)∈O(1)

(modulo a positive constant factor). Therefore, the algorithm returns true. This is correct,
as all the preconditions of the R-AST-Rule are satisfied (and therefore L is not AST).

Theorem 9 (Correctness of Algorithm 4). If Algorithm 4 returns true on input L, then
L with −GL satisfies the R-AST-Rule.

Because the R-PAST-Rule is a slight variation of the R-AST-Rule, Algorithm 4 can
be slightly modified to yield a procedure for the R-PAST-Rule. An algorithm for the
R-PAST-Rule is provided in [40].

5.4 Ruling out Proof Rules for Prob-Solvable Loops

A question arising when combining our algorithmic approaches from Section 5.3 into a
unifying framework is that, given a Prob-solvable loop L, what algorithm to apply first
for determining L’s termination behavior? In [4] the authors provide an algorithm for
computing an algebraically closed-form of E(Mi), where M is a polynomial over L’s
variables. The following lemma explains how the expression E(Mi+1−Mi) relates to the
expression E(Mi+1−Mi |Fi). The lemma follows from the monotonicity of E.

Lemma 3 (Rule out Rules forL). Let (Mi)i∈N be a stochastic process. IfE(Mi+1−Mi |
Fi)≤−ε then E(Mi+1−Mi)≤−ε, for any ε∈R+.

The contrapositive of Lemma 3 provides a criterion to rule out the viability of a given
proof rule. For a Prob-solvable loop L, if E(Gi+1−Gi) �≤0 then E(Gi+1−Gi |Fi) �≤0,
meaning G is not a supermartingale. The expression E(Gi+1−Gi) depends only on i and
can be computed by E(Gi+1−Gi)=E(Gi+1)−E(Gi), where the expected value E(Gi)
is computed as in [4]. Therefore, in some cases, proof rules can automatically be deemed
nonviable, without the need to compute bounding functions.

6 Implementation and Evaluation

6.1 Implementation

We implemented and combined our algorithmic approaches from Section 5 in the new
software tool AMBER to stand for Asymptotic Martingale Bounds. AMBER and all bench-
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marks are available at https://github.com/probing-lab/amber. AMBER uses MORA [4][6]
for computing the first-order moments of program variables and the DIOFANT package5

as its computer algebra system.

Computing dominating and dominated The dominating and dominated procedures
used in Algorithms 1 and 4 are implemented by combining standard algorithms for Big-O
analysis and bookkeeping of the asymptotic polarity of the input functions. Let us illustrate
this. Consider the following two input-output-pairs which our implementation would
produce: (a) dominating({i2+10,10·i5−i3})= i5 and (b) dominating({−i+50,−i8+
i2−3·i3})=−i. For (a) i5 is eventually greater than all functions in the input set modulo a
constant factor because all functions in the input set areO(i5). Therefore, i5 dominates the
input set. For (b), the first function is O(i) and the second is O(i8). In this case, however,
both functions are eventually negative. Therefore, −i is a function dominating the input
set. Important is the fact that an exponential polynomial

∑
jpj(i)·cij , where cj ∈R+

0 will
always be eventually either only positive or only negative (or 0 if identical to 0).

Sign Over-Approximation The over-approximation Sign(x) of the signs of a monomial
x used in Algorithm 1 is implemented by a simple static analysis: For a monomial x
consisting solely of even powers, Sign(x)={+}. For a general monomial x, if x0≥0 and
all monomials on which x depends, together with their associated coefficients are always
positive, then − �∈ Sign(x). For example, if supp(Ux

L)= {xi+2yi−3zi,xi+ui}, then
−�∈Sign(x) if x0≥0 as well as −�∈Sign(y), + �∈Sign(z) and −�∈Sign(u). Otherwise,
−∈Sign(x). The over-approximation for + �∈Sign(x) is analogous.

Reachability Under-Approximation CanReachAnyIteration(L), used in Algorithm 4,
needs to satisfy the property that if it returns true, then loop L reaches any iteration
with positive probability. In AMBER, we implement this under-approximation as follows:
CanReachAnyIteration(L) is true if there is a branchB of the loop guard polynomialGL
such that B−GLi is non-negative for all i∈N. Otherwise, CanReachAnyIteration(L)
is false. In other words, if CanReachAnyIteration(L) is true, then in any iteration there
is a positive probability of GL not decreasing.

Bound Computation Improvements In addition to Algorithm 1 computing bounding func-
tions for monomials of program variables, AMBER implements the following refinements:

1. A monomial x is deterministic, which means it is independent of probabilistic choices,
if x has a single branch and only depends on monomials having single branches. In
this case, the exact value of x in any iteration is given by its first-order moments and
bounding functions can be obtained by using these exact representations.

2. Bounding functions for an odd power p of a monomial x can be computed by u(i)p

and l(i)p, where u(i) is an upper- and l(i) a lower bounding function for x.

Whenever the above enhancements are applicable, AMBER prefers them over Algorithm 1.

5 https://github.com/diofant/diofant

https://github.com/probing-lab/amber
https://github.com/diofant/diofant
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6.2 Experimental Setting and Results

Experimental Setting and Comparisons Regarding programs which are PAST, we com-
pare AMBER against the tool ABSYNTH [42] and the tool in [10] which we refer to
as MGEN. ABSYNTH uses a system of inference rules over the syntax of probabilistic
programs to derive bounds on the expected resource consumption of a program and can,
therefore, be used to certify PAST. In comparison to AMBER, ABSYNTH requires the de-
gree of the bound to be provided upfront. Moreover, ABSYNTH cannot refute the existence
of a bound and therefore cannot handle programs that are not PAST. MGEN uses linear
programming to synthesize linear martingales and supermartingales for probabilistic
transition systems with linear variable updates. To certify PAST, we extended MGEN [10]
with the SMT solver Z3 [41] in order to find or refute the existence of conical combinations
of the (super)martingales derived by MGEN which yield RSMs.

With AMBER-LIGHT we refer to a variant of AMBER without the relaxations of the
proof rules introduced in Section 4. That is, with AMBER-LIGHT the conditions of the
proof rules need to hold for all i∈N, whereas with AMBER the conditions are allowed to
only hold eventually. For all benchmarks, we compare AMBER against AMBER-LIGHT to
show the effectiveness of the respective relaxations. For each experimental table (Tables 1-
3), � symbolizes that the respective tool successfully certified PAST/AST/non-AST for
the given program; � means it failed to certify PAST/AST/non-AST. Further, NA indicates
the respective tool failed to certify PAST/AST/non-AST because the given program is
out-of-scope of the tool’s capabilities. Every benchmark has been run on a machine with
a 2.2 GHz Intel i7 (Gen 6) processor and 16 GB of RAM and finished within a timeout
of 50 seconds, where most benchmarks terminated within a few seconds.

Benchmarks We evaluated AMBER against 38 probabilistic programs. We present our ex-
perimental results by separating our benchmarks within three categories: (i) 21 programs
which are PAST (Table 1), (ii) 11 programs which are AST (Table 2) but not necessarily
PAST, and (iii) 6 programs which are not AST (Table 3). The benchmarks have either been
introduced in the literature on probabilistic programming [42,10,4,22,38], are adaptations
of well-known stochastic processes or have been designed specifically to test unique
features of AMBER, like the ability to handle polynomial real arithmetic.

The 21 PAST benchmarks consist of 10 programs representing the original bench-
marks of MGEN [10] and ABSYNTH [42] augmented with 11 additional probabilistic
programs. Not all benchmarks of MGEN and ABSYNTH could be used for our comparison
as MGEN and ABSYNTH target related but different computation tasks than certifying
PAST. Namely, MGEN aims to synthesize (super)martingales, but not ranking ones,
whereas ABSYNTH focuses on computing bounds on the expected runtime. Therefore,
we adopted all (50) benchmarks from [10] (11) and [42] (39) for which the termination
behavior is non-trivial. A benchmark is trivial regarding PAST if either (i) there is no loop,
(ii) the loop is bounded by a constant, or (iii) the program is meant to run forever. Moreover,
we cleansed the benchmarks of programs for which the witness for PAST is just a trivial
combination of witnesses for already included programs. For instance, the benchmarks
of [42] contain multiple programs that are concatenated constant biased-random-walks.
These are relevant benchmarks when evaluating ABSYNTH for discovering bounds, but
would blur the picture when comparing against AMBER for PAST certification. With
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Program A
M

B
E

R

A
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R
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A
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M
G

E
N

+Z
3

2d_bounded_random_walk � � � NA

biased_random_walk_constant � � � �

biased_random_walk_exp � � � �

biased_random_walk_poly � � � �

binomial_past � � � �

complex_past � � � NA

consecutive_bernoulli_trails � � � �

coupon_collector_4 � � � �

coupon_collector_5 � � � �

dueling_cowboys � � � �

exponential_past_1 � � NA NA

Program A
M

B
E

R

A
M

B
E

R
-L
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E
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+Z
3

exponential_past_2 � � NA NA

geometric � � � �

geometric_exponential � � � �

linear_past_1 � � � �

linear_past_2 � � � NA

nested_loops NA NA � �

polynomial_past_1 � � � NA

polynomial_past_2 � � � NA

sequential_loops NA NA � �

tortoise_hare_race � � � �

Total � 18 12 8 9

Table 1: 21 programs which are PAST.

these criteria, 10 out of the 50 original benchmarks of [10] and [42] remain. We add 11
additional benchmarks which have either been introduced in the literature on probabilistic
programming [4,22,38], are adaptations of well-known stochastic processes or have been
designed specifically to test unique features of AMBER. Notably, out of the 50 original
benchmarks from [42] and [10], only 2 remain which are included in our benchmarks
and which AMBER cannot prove PAST (because they are not Prob-solvable). All our
benchmarks are available at https://github.com/probing-lab/amber.

Experiments with PAST – Table 1: Out of the 21 PAST benchmarks, AMBER certifies 18
programs. AMBER cannot handle the benchmarks nested_loops and sequential_loops, as
these examples use nested or sequential loops and thus are not expressible as Prob-solvable
loops. The benchmarks exponential_past_1 and exponential_past_2 are out of scope of
ABSYNTH because they require real numbers, while ABSYNTH can only handle integers.
MGEN+Z3 cannot handle benchmarks containing non-linear variable updates or non-
linear guards. Table 1 shows that AMBER outperforms both ABSYNTH and MGEN+Z3 for
Prob-solvable loops, even when our relaxed proof rules from Section 4 are not used. Yet,
our experiments show that our relaxed proof rules enable AMBER to certify 6 examples
to be PAST, which could not be proved without these relaxations by AMBER-LIGHT.

Experiments with AST – Table 2: We compare AMBER against AMBER-LIGHT on
11 benchmarks which are AST but not necessarily PAST and also cannot be split into
PAST subprograms. Therefore, the SM-Rule is needed to certify AST. To the best of
our knowledge, AMBER is the first tool able to certify AST for such programs. Existing
approaches like [1] and [14] can only witness AST for non-PAST programs, if - intuitively
speaking - the programs contain subprograms which are PAST. Therefore, we compared

https://github.com/probing-lab/amber
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AMBER only against AMBER-LIGHT on this set of examples. The benchmark symmet-
ric_2d_random_walk, which AMBER fails to certify as AST, models the symmetric ran-
dom walk inR2 and is still out of reach of current automation techniques. In [38] the authors
mention that a closed-form expressionM and functions p and d satisfying the conditions of
the SM-Rule have not been discovered yet. The benchmark fair_in_limit_random_walk in-
volves non-constant probabilities and can therefore not be modeled as a Prob-solvable loop.

Experiments with non-AST – Table 3: We compare AMBER against AMBER-LIGHT on
6 benchmarks which are not AST. To the best of our knowledge, AMBER is the first tool
able to certify non-AST for such programs, and thus we compared AMBER only against
AMBER-LIGHT. In [13], where the notion of repulsing supermartingales and the R-AST-
Rule are introduced, the authors also propose automation techniques. However, the authors
of [13] claim that their “experimental results are basic“ and their computational methods
are evaluated on only 3 examples, without having any available tool support. For the bench-
marks in Table 3, the outcomes of AMBER and AMBER-LIGHT coincide. The reason for
this is R-AST-Rule’s condition that the martingale expression has to have c-bounded differ-
ences. This condition forces a suitable martingale expression to be bounded by a linear func-
tion, which is also the reason why AMBER cannot certify the benchmark polynomial_nast.

Experimental Summary Our results from Tables 1-3 demonstrate that:
– AMBER outperforms the state-of-the-art in automating PAST certification for Prob-

solvable loops (Table 1).
– Complex probabilistic programs which are AST and not PAST as well as programs

which are not AST can automatically be certified as such by AMBER (Tables 2, 3).
– The relaxations of the proof rules introduced in Section 4 are helpful in automating

the termination analysis of probabilistic programs, as evidenced by the performance
of AMBER against AMBER-LIGHT (Tables 1-3).

7 Related Work

Proof Rules for Probabilistic Termination Several proof rules have been proposed in the
literature to provide sufficient conditions for the termination behavior of probabilistic
programs. The work of [10] uses martingale theory to characterize positive almost sure
termination (PAST). In particular, the notion of a ranking supermartingale (RSM) is intro-
duced together with a proof rule (RSM-Rule) to certify PAST, as discussed in Section 3.1.
The approach of [19] extended this method to include (demonic) non-determinism and
continuous probability distributions, showing the completeness of the RSM-Rule for this
program class. The compositional approach proposed in [19] was further strengthened
in [29] to a sound approach using the notion of descent supermartingale map. In [1], the
authors introduced lexicographic RSMs.

The SM-Rule discussed in Section 3.2 was introduced in [38]. It is worth mentioning
that this proof rule is also applicable to non-deterministic probabilistic programs. The work
of [28] presented an independent proof rule based on supermartingales with lower bounds
on conditional absolute differences. Both proof rules are based on supermartingales and
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Program AMBER AMBER-LIGHT

fair_in_limit_random_walk NA NA

gambling � �

symmetric_2d_random_walk � �

symmetric_random_walk_constant_1 � �

symmetric_random_walk_constant_2 � �

symmetric_random_walk_exp_1 � �

symmetric_random_walk_exp_2 � �

symmetric_random_walk_linear_1 � �

symmetric_random_walk_linear_2 � �

symmetric_random_walk_poly_1 � �

symmetric_random_walk_poly_2 � �

Total � 9 4

Table 2: 11 programs which are AST and not
necessarily PAST.

Program AMBER AMBER-LIGHT

biased_random_walk_nast_1 � �

biased_random_walk_nast_2 � �

biased_random_walk_nast_3 � �

biased_random_walk_nast_4 � �

binomial_nast � �

polynomial_nast � �

Total � 5 5

Table 3: 6 programs which are not AST.

can certify AST for programs that are not necessarily PAST. The approach of [43] exam-
ined martingale-based techniques for obtaining bounds on reachability probabilities — and
thus termination probabilities— from an order-theoretic viewpoint. The notions of nonneg-
ative repulsing supermartingales andγ-scaled submartingales, accompanied by sound and
complete proof rules, have also been introduced. The R-AST-Rule from Section 3.3 was
proposed in [13] mainly for obtaining bounds on the probability of stochastic invariants.

An alternative approach is to exploit weakest precondition techniques for probabilistic
programs, as presented in the seminal works [34,35] that can be used to certify AST. The
work of [37] extended this approach to programs with non-determinism and provided
several proof rules for termination. These techniques are purely syntax-based. In [31] a
weakest precondition calculus for obtaining bounds on expected termination times was
proposed. This calculus comes with proof rules to reason about loops.

Automation of Martingale Techniques The work of [10] proposed an automated procedure
— by using Farkas’ lemma — to synthesize linear (super)martingales for probabilistic
programs with linear variable updates. This technique was considered in our experimental
evaluation, cf. Section 6. The algorithmic construction of supermartingales was extended
to treat (demonic) non-determinism in [12] and to polynomial supermartingales in [11]
using semi-definite programming. The recent work of [14] uses ω-regular decomposition
to certify AST. They exploit so-called localized ranking supermartingales, which can be
synthesized efficiently but must be linear.

Other Approaches Abstract interpretation is used in [39] to prove the probabilistic ter-
mination of programs for which the probability of taking a loop k times decreases at least
exponentially with k. In [18], a sound and complete procedure deciding AST is given
for probabilistic programs with a finite number of reachable states from any initial state.
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The work of [42] gave an algorithmic approach based on potential functions for com-
puting bounds on the expected resource consumption of probabilistic programs. In [36],
model checking is exploited to automatically verify whether a parameterized family of
probabilistic concurrent systems is AST.

Finally, the class of Prob-solvable loops considered in this paper extends [4] to a wider
class of loops. While [4] focused on computing statistical higher-order moments, our
work addresses the termination behavior of probabilistic programs. The related approach
of [22] computes exact expected runtimes of constant probability programs and provides
a decision procedure for AST and PAST for such programs. Our programming model
strictly generalizes the constant probability programs of [22], by supporting polynomial
loop guards, updates and martingale expressions.

8 Conclusion

This paper reported on the automation of termination analysis of probabilistic while-
programs whose guards and expressions are polynomial expressions. To this end, we
introduced mild relaxations of existing proof rules for AST, PAST, and their negations,
by requiring their sufficient conditions to hold only eventually. The key to our approach
is that the structural constraints of Prob-solvable loops allow for automatically computing
almost sure asymptotic bounds on polynomials over program variables. Prob-solvable
loops cover a vast set of complex and relevant probabilistic processes including random
walks and dynamic Bayesian networks [5]. Only two out of 50 benchmarks in [10,42]
are outside the scope of Prob-solvable loops regarding PAST certification. The almost
sure asymptotic bounds were used to formalize algorithmic approaches for proving AST,
PAST, and their negations. Moreover, for Prob-solvable loops four different proof rules
from the literature uniformly come together in our work.

Our approach is implemented in the software tool AMBER (github.com/probing-
lab/amber), offering a fully automated approach to probabilistic termination. Our ex-
perimental results show that our relaxed proof rules enable proving probabilistic (non-)
termination of more programs than could be treated before. A comparison to the state-of-
art in automated analysis of probabilistic termination reveals that AMBER significantly
outperforms related approaches. To the best of our knowledge, AMBER is the first tool
to automate AST, PAST, non-AST and non-PAST in a single tool-chain.

There are several directions for future work. These include extensions to Prob-solvable
loops such as symbolic distributions, more complex control flow, and non-determinism.
We will also consider program transformations that translate programs into our format. Ex-
tensions of the SM-Rule algorithm with non-constant probability and decrease functions
are also in our interest.

https://github.com/probing-lab/amber
https://github.com/probing-lab/amber
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