
Graded Modal Dependent Type Theory

Benjamin Moon1(�) , Harley Eades III2 , and Dominic Orchard1

1 University of Kent, Canterbury, UK
{bgm4,d.a.orchard}@kent.ac.uk

2 Augusta University, Augusta, USA
harley.eades@gmail.com

Abstract. Graded type theories are an emerging paradigm for aug-
menting the reasoning power of types with parameterizable, fine-grained
analyses of program properties. There have been many such theories
in recent years which equip a type theory with quantitative dataflow
tracking, usually via a semiring-like structure which provides analysis on
variables (often called ‘quantitative’ or ‘coeffect’ theories). We present
Graded Modal Dependent Type Theory (Grtt for short), which equips
a dependent type theory with a general, parameterizable analysis of the
flow of data, both in and between computational terms and types. In
this theory, it is possible to study, restrict, and reason about data use in
programs and types, enabling, for example, parametric quantifiers and
linearity to be captured in a dependent setting. We propose Grtt, study
its metatheory, and explore various case studies of its use in reasoning
about programs and studying other type theories. We have implemented
the theory and highlight the interesting details, including showing an
application of grading to optimising the type checking procedure itself.

1 Introduction

The difference between simply-typed, polymorphically-typed, and dependently-
typed languages can be characterised by the dataflow permitted by each type
theory. In each, dataflow can be enacted by substituting a term for occurrences
of a variable in another term, the scope of which is delineated by a binder. In
the simply-typed λ-calculus, data can only flow in ‘computational’ terms; com-
putations and types are separate syntactic categories, with variables, bindings
(λ), and substitution—and thus dataflow—only at the computational level. In
contrast, polymorphic calculi like System F [26,52] permit dataflow within types,
via type quantification (∀), and a limited form of dataflow from computations to
types, via type abstraction (Λ) and type application. Dependently-typed calculi
(e.g., [14,40,41,42]) break down the barrier between computations and types fur-
ther: variables are bound simultaneously in types and computations, such that
data can flow both to computations and types via dependent functions (Π) and
application. This pervasive dataflow enables the Curry-Howard correspondence
to be leveraged for program reasoning and theorem proving [59]. However, un-
restricted dataflow between computations and types can impede reasoning and
can interact poorly with other type theoretic ideas.

c© The Author(s) 2021
N. Yoshida (Ed.): ESOP 2021, LNCS 12648, pp. 462–490, 2021.
https://doi.org/10.1007/978-3-030-72019-3 17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72019-3_17&domain=pdf
http://orcid.org/0000-0003-2367-6321
http://orcid.org/0000-0001-8474-5971
http://orcid.org/0000-0002-7058-7842
https://doi.org/10.1007/978-3-030-72019-3_17

Graded Modal Dependent Type Theory 463

Firstly, System F allows parametric reasoning and notions of representa-
tion independence [53,57], but this is lost in general in dependently-typed lan-
guages when quantifying over higher-kinded types [45] (rather than just ‘small’
types [7,36]). Furthermore, unrestricted dataflow impedes efficient compilation
as compilers do not know, from the types alone, where a term is actually needed.
Additional static analyses are needed to recover dataflow information for opti-
misation and reasoning. For example, a term shown to be used only for type
checking (not flowing to the computational ‘run time’ level) can be erased [9].
Thus, dependent theories do not expose the distinction between proof relevant
and irrelevant terms, requiring extensions to capture irrelevance [4,50,51]. Whilst
unrestricted dataflow between computations and terms has its benefits, the per-
missive nature of dependent types can hide useful information. This permissive-
ness also interacts poorly with other type theories which seek to deliberately
restrict dataflow, notably linear types.

Linear types allow data to be treated as a ‘resource’ which must be consumed
exactly once: linearly-typed values are restricted to linear dataflow [27,58,60].
Reasoning about resourceful data has been exploited by several languages, e.g.,
ATS [54], Alms [56], Clean [18], Granule [46], and Linear Haskell [8]. However,
linear dataflow is rare in a dependently-typed setting. Consider typing the body
of the polymorphic identity function in Martin-Löf type theory:

a : Type, x : a � x : a

This judgment uses a twice (typing x in the context and the subject of the judg-
ment) and x once in the term but not at all in the type. There have been vari-
ous attempts to meaningfully reconcile linear and dependent types [12,15,37,39]
usually by keeping them separate, allowing types to depend only on non-linear
variables. All such theories cannot distinguish variables used for computation
from those used purely for type formation, which could be erased at runtime.

Recent work by McBride [43], refined by Atkey [6], generalises ideas from
‘coeffect analyses’ (variable usage analyses, like that of Petricek et al. [49]) to a
dependently-typed setting to reconcile the ubiquitous flow of data in dependent
types with the restricted dataflow of linearity. This approach, called Quantitative
Type Theory (Qtt), types the above example as:

a
0
: Type, x

1
: a � x

1
: a

The annotation 0 on a explains that we can use a to form a type, but we
cannot, or do not, use it at the term level, thus it can be erased at runtime. The
cornerstone of Qtt’s approach is that dataflow of a term to the type level counts
as 0 use, so arbitrary type-level use is allowed whilst still permitting quantitative
analysis of computation-level dataflow. Whilst this gives a useful way to relate
linear and dependent types, it cannot however reason about dataflow at the type-
level (all type-level usage counts as 0). Thus, for example, Qtt cannot express
that a variable is used just computationally but not at all in types.

In an extended abstract, Abel proposes a generalisation of Qtt to track vari-
able use in both types and computations [2], suggesting that tracking in types

464 B. Moon et al.

enables type checking optimisations and increased expressivity. We develop a
core dependent type theory along the same lines, using the paradigm of grading :
graded systems augment types with additional information, capturing the struc-
ture of programs [23,46]. We therefore name our approach Graded Modal Depen-
dent Type Theory (Grtt for short). Our type theory is parameterised by a semir-
ing which, like other coeffect and quantitative approaches [3,6,10,25,43,49,61],
describes dataflow through a program, but in both types and computations equally,
remedying Qtt’s inability to track type-level use. We extend Abel’s initial idea
by presenting a rich language, including dependent tensors, a complete metathe-
ory, and a graded modality which aids the practical use of this approach (e.g.,
enabling functions to use components of data non-uniformly). The result is a
calculus which extends the power of existing non-dependent graded languages,
like Granule [46], to a dependent setting.

We begin with the definition of Grtt in Section 2, before demonstrating the
power of Grtt through case studies in Section 3, where we show how to use
grading to restrict Grtt terms to simply-typed reasoning, parametric reasoning
(regaining universal quantification smoothly within a dependent theory), exis-
tential types, and linear types. The calculus can be instantiated to different kinds
of dataflow reasoning: we show an example application to information-flow secu-
rity. We then show the metatheory of Grtt in Section 4: admissibility of graded
structural rules, substitution, type preservation, and strong normalisation.

We implemented a prototype language based on Grtt called Gerty.3 We
briefly mention its syntax in Section 2.5 for use in examples. Later, Section 5
describes how the formal definition of Grtt is implemented as a bidirectional
type checking algorithm, interfacing with an SMT solver to solve constraints
over grades. Furthermore, Abel conjectured that a quantitative dependent the-
ory could enable usage-based optimisation of type-checking itself [2], which would
assist dependently-typed programming at scale. We validate this claim in Sec-
tion 5 showing a grade-directed optimisation to Gerty’s type checker.

Section 6 discusses next steps for increasing the expressive power of Grtt.
Full proofs and details are provided in the extended version of this paper [44].

Gerty has some similarity to Granule [46]: both are functional languages
with graded types. However, Granule has a linearly typed core and no dependent
types (only indexed types), thus has no need for resource tracking at the type
level (type indices are not subject to tracking and their syntax is restricted).

2 GrTT: Graded Modal Dependent Type Theory

Grtt augments a standard presentation of dependent type theory with ‘grades’
(elements of a semiring) which account for how variables are used, i.e., their
dataflow. Whilst existing work uses grades to describe usage only in computa-
tional terms (e.g. [10]), Grtt incorporates additional grades to account for how
variables are used in types. We introduce here the syntax and typing, and briefly
show the syntax of the implementation. Section 4 describes its metatheory.

3 https://github.com/granule-project/gerty/releases/tag/esop2021

https://github.com/granule-project/gerty/releases/tag/esop2021

Graded Modal Dependent Type Theory 465

2.1 Syntax

The syntax of Grtt is that of a standard Martin-Löf type theory, with the
addition of a graded modality and grade annotations on function and tensor
binders. Throughout, s and r range over grades, which are elements of a semiring
(R, ∗, 1,+, 0). It is instructive to instantiate this semiring to the natural number
semiring (N,×, 1,+, 0), which captures the exact number of times variables are
used. We appeal to this example in descriptions here.

Grtt has a single syntactic sort for computations and types:

(terms) t, A,B,C ::= x | Typel
| (x :(s,r) A)→ B | λx.t | t1 t2
| (x :r A)⊗B | (t1, t2) | let (x, y) = t1 in t2
| �sA | �t | let�x = t1 in t2

(levels) l ::= 0 | suc l | l1 	 l2

Terms include variables and a constructor for an inductive hierarchy of universes,
annotated by a level l. Dependent function types are annotated with a pair of
grades s and r, with s capturing how x is used in the body of the inhabiting
function and r capturing how x is used in the codomain B. Dependent tensors
have a single grade r, which describes how the first element is used in the typing
of the second. The graded modal type operator �sA ‘packages’ a term and its
dependencies so that values of type A can be used with grade s in the future.
Graded modal types are introduced via promotion �t and eliminated via let�x =
t1 in t2. The following sections explain the semantics of each piece of syntax with
respect to its typing. We typically use A and B to connote terms used as types.

2.2 Typing Judgments, Contexts, and Grading

Typing judgments are written in either of the following two equivalent forms:

(Δ | σ1 | σ2)9 Γ � t : A
(

Δ
σ1
σ2

)
9 Γ � t : A

The ‘horizontal’ syntax (left) is used most often, with the equivalent ‘vertical’
form (right) used for clarity in some places. Ignoring the part to the left of 9,
typing judgments and their rules are essentially those of Martin-Löf type theory
(with the addition of the modality) where Γ ranges over usual dependently-typed
typing contexts. The left of 9 provides the grading information, where σ and Δ
range over grade vectors and context grade vectors respectively, of the form:

(contexts) (grade vectors) (context grade vectors)
Γ ::= ∅ | Γ, x : A σ ::= ∅ | σ, s Δ ::= ∅ | Δ,σ

A grade vector σ is a vector of semiring elements, and a context vector Δ is a
vector of grade vectors. We write (s1, . . . , sn) to denote an n-vector and likewise
for context grade vectors. We omit parentheses when this would not cause ambi-
guity. Throughout, a comma is used to concatenate vectors and disjoint contexts,
and to extend vectors with a single grade, grade vector, or typing assumption.

466 B. Moon et al.

For a judgment (Δ | σs | σr) 9 Γ � t : A the vectors Γ , Δ, σs, and σr are
all of equal size. Given a typing assumption y : B at index i in Γ , the grade
σs[i] ∈ R denotes the use of y in t (the subject of the judgment), the grade
σr[i] ∈ R denotes the use of y in A (the subject’s type), and Δ[i] ∈ Ri (of size i)
describes how assumptions prior to y are used to form y’s type, B.

Consider the following example, which types the body of a function that
takes two arguments of type a, and returns only the first:(

(),(1),(1,0)
0,1,0
1,0,0

)
9 a : Typel, x : a, y : a � x : a

Let the context grade vector be calledΔ. Then,Δ[0] = () (empty vector) explains
that there are no assumptions that are used to type a in the context, as Typel
is a closed term and the first assumption. Δ[1] = (1) explains that the first
assumption a is used (grade 1) in the typing of x in the context, and Δ[2] = (1, 0),
explains that a is used once in the typing of y in the context, and x is unused in
the typing of y. The subject grade vector σs = (0, 1, 0) explains that a is unused
in the subject, x is used once, and y is unused. Finally, the subject type vector
σr = (1, 0, 0) explains that a appears once in the subject’s type (which is just
a), and x and y are unused in the formation of the subject’s type.

To aid reading, recall that standard typing rules typically have the form
context � subject : subject-type, the order of which is reflected by (Δ | σs | σr)9. . .
giving the context, subject, and subject-type grading respectively.

Well-formed Contexts The relation Δ9Γ � identifies a context Γ as well-formed
with respect to context grade vector Δ, defined by the following rules:

∅ 9 ∅ � wf∅
(Δ | σ | 0)9 Γ � A : Typel

Δ,σ 9 Γ, x : A � wfExt

Unlike typing, well-formedness does not need to include subject and subject-type
grade vectors, as it considers only the well-formedness of the assumptions in a
context with respect to prior assumptions in the context. The wf∅ rule states
that the empty context is well-formed with an empty context grade vector as
there are no assumptions to account for. The wfExt rule states that given A
is a type under the assumptions in Γ , with σ accounting for the usage of Γ
variables in A, and Δ accounting for usage within Γ , then we can form the well-
formed context Γ, x : A by extending Δ with σ to account for the usage of A
in forming the context. The notation 0 denotes a vector for which each element
is the semiring 0. Note that the well-formedness Δ 9 Γ � is inherent from the
premise of wfExt due to the following lemma:

Lemma 1 (Typing contexts are well-formed). If (Δ | σ1 | σ2)9 Γ � t : A
then Δ9 Γ �.

2.3 Typing Rules

We examine the typing rules of Grtt one at a time.

Graded Modal Dependent Type Theory 467

Variables are introduced as follows:

(Δ1, σ,Δ2)9 Γ1, x : A,Γ2 � |Δ1| = |Γ1|
(Δ1, σ,Δ2 | 0|Δ1|, 1,0 | σ, 0,0)9 Γ1, x : A,Γ2 � x : A

Var

The premise identifies Γ1, x : A,Γ2 as well-formed under the context grade vector
Δ1, σ,Δ2. By the size condition |Δ1| = |Γ1|, we are able to identify σ as capturing
the usage of the variables Γ1 in forming A. This information is used in the
conclusion, capturing type-level variable usage as σ, 0,0, which describes that Γ1

is used according to σ in the subject’s type (A), and that the x and the variables
of Γ2 are used with grade 0. For subject usage, we annotate the first zero vector
with a size |Δ1|, allowing us to single out x as being the only assumption used
with grade 1 in the subject; all other assumptions are used with grade 0.

For example, typing the body of the polymorphic identity ends with Var:

· · ·
((), (1))9 a : Type, x : a �

wfExt
|(())| = |a : Type|

(((), (1)) | 0, 1 | 1, 0)9 a : Type, x : a � x : a
Var

The premise implies that ((), 1, 0)9 a : Type � a : Type by the following lemma:

Lemma 2 (Typing an assumption in a well-formed context). If Δ1, σ,Δ2

9Γ1, x : A,Γ2 � with |Δ1| = |Γ1|, then (Δ1 | σ | 0)9 Γ1 � A : Typel for some l.

In the conclusion of Var, the typing ((), 1, 0)9a : Type � a : Type is ‘distributed’
to the typing of x in the context and to the formation the subject’s type. Thus
subject grade (0, 1) corresponds to the absence of a from the subject and the
presence of x, and subject-type grade (1, 0) corresponds to the presence of a in
the subject’s type (a), and the absence of x.

Typing universes are formed as follows:

Δ9 Γ �
(Δ | 0 | 0)9 Γ � Typel : Typesuc l

Type

We use an inductive hierarchy of universes [47] with ordering < such that
l < suc l. Universes can be formed under any well-formed context, with every
assumption graded with 0 subject and subject-type use, capturing the absence
of any assumptions from the universes, which are closed forms.

Functions Function types (x :(s,r) A) → B are annotated with two grades:
explaining that x is used with grade s in the body of the inhabiting function
and with grade r in B. Function types have the following formation rule:

(Δ | σ1 | 0)9 Γ � A : Typel1 (Δ,σ1 | σ2, r | 0)9 Γ, x : A � B : Typel2
(Δ | σ1 + σ2 | 0)9 Γ � (x :(s,r) A)→ B : Typel1 � l2

→

The usage of the dependencies of A and B (excepting x) are given by σ1 and σ2

in the premises (in the ‘subject’ position) which are combined as σ1 + σ2 (via

468 B. Moon et al.

pointwise vector addition using the + of the semiring), which serves to contract
the dependencies of the two types. The usage of x in B is captured by r, and
then internalised to the binder in the conclusion of the rule. An arbitrary grade
for s is allowed here as there is no information on how x is used in an inhabiting
function body. Function terms are then typed by the following rule:

(Δ,σ1 | σ3, r | 0)) Γ, x : A � B : Typel (Δ,σ1 | σ2, s | σ3, r)) Γ, x : A � t : B

(Δ | σ2 | σ1 + σ3)9 Γ � λx.t : (x :(s,r) A)→ B
λi

The second premise types the body of the λ-term, showing that s captures the
usage of x in t and r captures the usage of x in B; the subject and subject-type
grades of x are then internalised as annotations on the function type’s binder.

Dependent functions are eliminated through application:

(Δ,σ1 | σ3, r | 0)9 Γ, x : A � B : Typel
(Δ | σ2 | σ1 + σ3)9 Γ � t1 : (x :(s,r) A)→ B (Δ | σ4 | σ1)9 Γ � t2 : A

(Δ | σ2 + s ∗ σ4 | σ3 + r ∗ σ4)9 Γ � t1 t2 : [t2/x]B
λe

where ∗ is the scalar multiplication of a vector, using the semiring multiplication.
Given a function t1 which uses its parameter with grade s to compute and with
grade r in the typing of the result, we can apply it to a term t2, provided that
we have the resources required to form t2 scaled by s at the subject level and by
r at the subject-type level, since t2 is substituted into the return type B. This
scaling behaviour is akin to that used in coeffect calculi [25,49], Qtt [6,43] and
Linear Haskell [8], but scalar multiplication happens here at both the subject and
subject-type level. The use of variables in A is accounted for by σ1 as explained
in the third premise, but these usages are not present in the resulting application
since A no longer appears in the types or the terms.

Consider the constant function λx.λy.x : (x :(1,0) A)→ (y :(0,0) B)→ A (for
some A and B). Here the resources required for the second parameter will always
be scaled by 0, which is absorbing, meaning that anything passed as the second
argument has 0 subject and subject-type use. This example begins to show some
of the power of grading—the grades capture the program structure at all levels.

Tensors The rule for forming dependent tensor types is as follows:

(Δ | σ1 | 0)9 Γ � A : Typel (Δ,σ1 | σ2, r | 0)9 Γ, x : A � B : Typel
(Δ | σ1 + σ2 | 0)9 Γ � (x :r A)⊗B : Typel

⊗

This rule is almost identical to function type formation→ but with only a single
grade r on the binder, since x is only bound in B (the type of the second com-
ponent), and not computationally. For ‘quantitative’ semirings, where 0 really
means unused (see Section 3), (x :0 A)⊗B is then a product A×B.

Dependent tensors are introduced as follows:

(Δ,σ1 | σ3, r | 0)9 Γ, x : A � B : Typel
(Δ | σ2 | σ1)9 Γ � t1 : A (Δ | σ4 | σ3 + r ∗ σ2)9 Γ � t2 : [t1/x]B

(Δ | σ2 + σ4 | σ1 + σ3)9 Γ � (t1, t2) : (x :r A)⊗B
⊗i

Graded Modal Dependent Type Theory 469

In the typing premise for t2, occurrences of x are replaced with t1 in the type,
ensuring that the type of the second component (t2) is calculated using the
first component (t1). The resources for t1 in this substitution are scaled by r,
accounting for the existing usage of x in B. In the conclusion, we see the resources
for the two components (and their types) combined via the semiring addition.

Finally, tensors are eliminated with the following rule:

(Δ | σ3 | σ1 + σ2)9 Γ � t1 : (x :r A)⊗B
(Δ, (σ1 + σ2) | σ5, r

′ | 0)9 Γ, z : (x :r A)⊗B � C : Typel
(Δ,σ1, (σ2, r) | σ4, s, s | σ5, r

′, r′)9 Γ, x : A, y : B � t2 : [(x, y)/z]C

(Δ | σ4 + s ∗ σ3 | σ5 + r′ ∗ σ3)9 Γ � let (x, y) = t1 in t2 : [t1/z]C
⊗e

As this is a dependent eliminator, we allow the result type C to depend upon
the value of the tensor as a whole, bound as z in the second premise with grade
r′, into which is substituted our actual tensor term t1 in the conclusion.

Eliminating a tensor (t1) requires that we consider each component (x and
y) is used with the same grade s in the resulting expression t2, and that we scale
the resources of t1 by s. This is because we cannot inspect t1 itself, and semiring
addition is not injective (preventing us from splitting the grades required to
form t1). This prevents forming certain functions (e.g., projections) under some
semirings, but this can be overcome by the introduction of graded modalities.

Graded Modality Graded binders alone do not allow different parts of a value
to be used differently, e.g., computing the length of a list ignores the elements,
projecting from a pair discards one component. We therefore introduce a graded
modality (à la [10,46]) allowing us to capture the notion of local inspection on
data and internalising usage information into types. A type �sA denotes terms
of type A that are used with grade s. Type formation and introduction rules are:

(Δ | σ | 0)9 Γ � A : Typel
(Δ | σ | 0)9 Γ � �sA : Typel

�
(Δ | σ1 | σ2)9 Γ � t : A

(Δ | s ∗ σ1 | σ2)9 Γ � �t : �sA
�i

To form a term of type �sA, we ‘promote’ a term t of type A by requiring that
we can use the resources used to form t (σ1) according to grade s. This ‘promo-
tion’ resembles that of other graded modal systems (e.g., [3,10,23,46]), but the
elimination needs to also account for type usage due to dependent elimination.

We can see promotion �i as capturing t for later use according to grade s.
Thus, when eliminating a term of type �sA, we must consider how the ‘unboxed’
term is used with grade s, as per the following dependent eliminator:

(Δ,σ2 | σ4, r | 0)) Γ, z : �sA � B : Typel
(Δ | σ1 | σ2)) Γ � t1 : �sA (Δ,σ2 | σ3, s | σ4, (s ∗ r))) Γ, x : A � t2 : [�x/z]B

(Δ | σ1 + σ3 | σ4 + r ∗ σ1)9 Γ � let�x = t1 in t2 : [t1/z]B
�e

This rule can be understood as a kind of ‘cut’, connecting a ‘capability’ to use
a term of type A according to grade s with the requirement that x : A is used
according to grade s as a dependency of t2. Since we are in a dependently-typed

470 B. Moon et al.

setting, we also substitute t1 into the type level such that B can depend on
t1 according to grade r which then causes the dependencies of t1 (σ1) to be
scaled-up by r and added to the subject-type grading.

Equality, Conversion, and Subtyping A key part of dependent type theories is
a notion of term equality and type conversion [33]. Grtt term equality is via
judgments (Δ | σ1 | σ2) 9 Γ � t1 = t2 : A equating terms t1 and t2 of type A.
Equality includes full congruences as well as βη-equality for functions, tensors,
and graded modalities, of which the latter are:

(Δ,σ2 | σ4, r | 0)) Γ, z : �sA � B : Typel
(Δ | σ1 | σ2)) Γ � t1 : A (Δ,σ2 | σ3, s | σ4, (s ∗ r))) Γ, x : A � t2 : [�x/z]B

(Δ | σ3 + s ∗ σ1 | σ4 + s ∗ r ∗ σ1)) Γ � (let�x = �t1 in t2) = [t1/x]t2 : [�t1/z]B
Eq�c

(Δ | σ1 | σ2)) Γ � t : �sA

(Δ | σ1 | σ2)) Γ � t = (let�x = t in�x) : �sA
Eq�u

A subtyping relation ((Δ | σ)9 Γ � A ≤ B) subsumes equality, adding ordering
of universe levels. Type conversion allows re-typing terms based on the judgment:

(Δ | σ1 | σ2)9 Γ � t : A (Δ | σ2)9 Γ � A ≤ B

(Δ | σ1 | σ2)9 Γ � t : B
Conv

The full rules for equality and subtyping are in this paper’s extended version [44].

2.4 Operational Semantics

As with other graded modal calculi (e.g., [3,10,23]), the core calculus of Grtt
has a Call-by-Name small-step operational semantics with reductions t
 t′.
The rules are standard, with the addition of the β-rule for the graded modality:

let�x = �t1 in t2
 [t1/x]t2 (β�)

Type preservation and normalisation are considered in Section 4.

2.5 Implementation and Examples

To explore our theory, we provide an implementation, Gerty. Section 5 describes
how the declarative definition of the type theory is implemented as a bidirectional
type checking algorithm. We briefly mention the syntax here for use in later
examples. The following is the polymorphic identity function in Gerty:

id : (a : (.0, .2) Type 0) -> (x : (.1, .0) a) -> a

id = \a -> \x -> x

The syntax resembles the theory, where grading terms .n are syntactic sugar for
a unary encoding of grades in terms of 0 and repeated addition of 1, e.g., .2 =
(.0 + .1) + .1. This syntax can be used for grade terms of any semiring, which
can be resolved to particular built-in semirings at other points of type checking.

The following shows first projection on (non-dependent) pairs, using the
graded modality (at grade 0 here) to give fine-grained usage on compound data:

Graded Modal Dependent Type Theory 471

fst : (a : (.0, .2) Type 0) (b : (.0, .1) Type 0) -> <a * [.0] b> -> a

fst = \a b p -> case p of <x, y> -> let [z] = y in x

The implementation adds various built-in semirings, some syntactic sugar, and
extras such as: a singleton unit type, extensions of the theory to semirings with
a pre-ordering (discussed further in Section 6), and some implicit resolution.
Anywhere a grade is expected, an underscore can be supplied to indicate that
Gerty should try to resolve the grade implicitly. Grades may also be omit-
ted from binders (see above in fst), in which case they are treated as implicits.
Currently, implicits are handled by generating existentially quantified grade vari-
ables, and using SMT to solve the necessary constraints (see Section 5).

So far we have considered the natural numbers semiring providing an analy-
sis of usage. We come back to this and similar examples in Section 3. To show
another kind of example, we consider a lattice semiring of privacy levels (appear-
ing elsewhere [3,23,46]) which enforces information-flow control, akin to DCC [1].
Differently to DCC, dataflow is tracked through variable dependencies, rather
than through the results of computations in the monadic style of DCC.

Definition 1. [Security levels] Let R = Lo ≤ Hi be a set of labels with 0 = Hi

and 1 = Lo, semiring addition as the meet and multiplication as join. Here, 1 = Lo

treats the base notion of dataflow as being in the low security (public) domain.
Variables graded with Hi must then be unused, or guarded by a graded modality.
This semiring is primitive in Gerty; we can express the following example:

idLo : (a : (.0, .2) Type 0) -> (x : (Lo, Hi) a) -> a

idLo = \a -> \x -> x

-- The following is rejected as ill-typed

leak : (a : (.0, .2) Type 0) -> (x : (Hi, Hi) a) -> a

leak = \a -> \x -> idLo a x

The first definition is well-typed, but the second yields a typing error originating
from the application in its body:

At subject stage got the following mismatched grades:

For ’x’ expected Hi but got .1

where grade 1 is Lo here. Thus we can use this abstract label semiring as a way
of restricting flow of data between regions (cf. region typing systems [31,55]).
Note that the ordering is not leveraged here other than in the lattice operations.

3 Case Studies

We now demonstrate Grtt via several cases studies that focus the reasoning
power of dependent types via grading. Since grading in Grtt serves to explain
dataflow, we can characterise subsets of Grtt that correspond to various type
theories. We demonstrate the approach with simple types, parametric polymor-
phism, and linearity. In each case study, we restrict Grtt to a subset by a

472 B. Moon et al.

characterisation of the grades, rather than by, say, placing detailed syntactic re-
strictions or employing meta-level operations or predicates that restrict syntax
(as one might do for example to map a subset of Martin-Löf type theory into the
simply-typed λ-calculus by restriction to closed types, requiring deep inspection
of type terms). Since this restriction is only on grades, we can harness the specific
reasoning power of particular calculi from within the language itself, simply by
specifications on grades. In the context of an implementation like Gerty, this
amounts to using type signatures to restrict dataflow.

This section shows the power of tracking dataflow in types via grades, going
beyond Qtt [6] and GraD [13]. For ‘quantitative’ semirings, a 0 type-grade
means that we can recover simply-typed reasoning (Section 3.3) and distinguish
computational functions from type-parameter functions for parametric reasoning
(Section 3.4), embedding a grade-restricted subset of Grtt into System F.

Section 5 returns to a case study that builds on the implementation.

3.1 Recovering Martin-Löf Type Theory

When the semiring parameterising Grtt is the singleton semiring (i.e., any
semiring where 1 = 0), we have an isomorphism �rA ∼= A, and grade annotations
become redundant, as all grades are equal. All vectors and grades on binders may
then be omitted, and we can write typing judgments as Γ � t : A, giving rise to
a standard Martin-Löf type theory as a special case of Grtt.

3.2 Determining Usage via Quantitative Semirings

Unlike existing systems, we can use the fine-grained grading to guarantee the
relevance or irrelevance of assumptions in types. To do this we must consider a
subset of semirings (R, ∗, 1,+, 0) called quantitative semirings, satisfying:

(zero-unique) 1 �= 0;
(positivity) ∀r, s. r + s = 0 =⇒ r = 0 ∧ s = 0;

(zero-product) ∀r, s. r ∗ s = 0 =⇒ r = 0 ∨ s = 0.

These axioms4 ensure that a 0-grade in a quantitative semiring represents irrel-
evant variable use. This notion has recently been proved for computational use
by Choudhury et al. [13] via a heap-based semantics for grading (on computa-
tions) and the same result applies here. Conversely, in a quantitative semiring
any grade other than 0 denotes relevance. From this, we can directly encode
non-dependent tensors and arrows: in (x :0 A)⊗ B the grade 0 captures that x
cannot have any computational content in B, and likewise for (x :(s,0) A) → B
the grade 0 explains that x cannot have any computational content in B, but
may have computational use according to s in the inhabiting function. Thus,

4 Atkey requires positivity and zero-product for all semirings parameterising Qtt [6]
(as does Abel [2]). Atkey imposes this for admissibility of substitution. We need not
place this restriction on Grtt to have substitution in general (Sec. 4.1).

Graded Modal Dependent Type Theory 473

the grade 0 here describes that elimination forms cannot ever inspect the vari-
able during normalisation. Additionally, quantitative semirings can be used for
encoding simply-typed and polymorphic reasoning.

Example 1. Some quantitative semirings are:
– (Exact usage) (N,×, 1,+, 0);

– (0-1) The semiring over R = {0, 1} with 1 + 1 = 1 which describes relevant
vs. irrelevant dependencies, but no further information.

– (None-One-Tons [43]) The semiring on R = {0, 1,∞} is more fine-grained
than 0-1, where ∞ represents more than 1 usage, with 1 + 1 =∞ = 1 +∞.

3.3 Simply-typed Reasoning

As discussed in Section 1, the simply-typed λ-calculus (STLC) can be distin-
guished from dependently-typed calculi via the restriction of dataflow: in simple
types, data can only flow at the computational level, with no dataflow within,
into, or from types. We can thus view a Grtt function as simply typed when its
variable is irrelevant in the type, e.g., (x :(s,0) A)→ B for quantitative semirings.
We define a subset of Grtt restricted to simply-typed reasoning:

Definition 2. [Simply-typed Grtt] For a quantitative semiring, the following
predicate Stlc(−) determines a subset of simply-typed Grtt programs:

Stlc((∅ | ∅ | ∅)9 ∅ � t : A)

Stlc((Δ | σ1 | σ2)9 Γ � t : A) =⇒ Stlc((Δ,0 | σ1, s | σ2, 0)9 Γ, x : B � t : A)

That is, all subject-type grades are 0 (thus function types are of the form
(x :(s,0) A)→ B). A similar predicate is defined on well-formed contexts (elided),
restricting context grades of well-formed contexts to only zero grading vectors.

Under the restriction of Definition 2, a subset of Grtt terms embeds into
the simply-typed λ-calculus in a sound and complete way. Since STLC does not
have a notion of tensor or modality, this is omitted from the encoding:

�x� = x �λx.t� = λx.�t� �t1 t2� = �t1��t2� �(x :(s,0) A)→ B�τ =�A�τ → �B�τ
Variable contexts of Grtt are interpreted by point-wise applying �−�τ to typing
assumptions. We then get the following preservation of typing into the simply-
typed λ-calculus, and soundness and completeness of this encoding:

Lemma 3 (Soundness of typing). Given a derivation of (Δ | σ1 | σ2)9 Γ �
t : A such that Stlc((Δ | σ1 | σ2)9 Γ � t : A) then �Γ �τ � �t� : �A�τ in STLC.

Theorem 1 (Soundness and completeness of the embedding). Given
Stlc((Δ | σ1 | σ2) 9 Γ � t : A) and �(Δ | σ1 | σ2)9 Γ � t : A� then for CBN
reduction
stlc in simply-typed λ-calculus:

(soundness) ∀t′. if t
 t′ then �t�
stlc �t′�
(completeness) ∀ta. if �t�
stlc ta then ∃t′. t
 t′ ∧ �t′� ≡βη ta

Thus, we capture simply-typed reasoning just by restricting type grades to 0 for
quantitative semirings. We consider quantitative semirings again for parametric
reasoning, but first recall issues with parametricity and dependent types.

474 B. Moon et al.

3.4 Recovering Parametricity via Grading

One powerful feature of grading in a dependent type setting is the ability to
recover parametricity from dependent function types. Consider the following
type of functions in System F (we borrow this example from Nuyts et al. [45]):

RI A B � ∀γ.(γ → A)→ (γ → B)

Due to parametricity, we get the following notion of representation independence
in System F: for a function f : RI A B, some type γ′, and terms h : γ′ → A
and c : γ′, then we know that f can only use c by applying h c. Subsequently,
RI A B ∼= A→ B by parametricity [52], defined uniquely as:

iso : RI A B → (A→ B) iso−1 : (A→ B)→ RI A B
iso f = f A (id A) iso−1 g = Λγ. λh. λ(c : γ). g(h c)

In a dependently-typed language, one might seek to replace System F’s universal
quantifier with Π-types, i.e.

RI′ A B � (γ : Type)→ (γ → A)→ (γ → B)

However, we can no longer reason parametrically about the inhabitants of such
types (we cannot prove that RI′ A B ∼= A→ B) as the free interaction of types
and computational terms allows us to give the following non-parametric element
of RI′ A B over ‘large’ type instances:

leak = λγ. λh. λc. γ : RI′ A Type

Instead of applying h c, the above “leaks” the type parameter γ. Grtt can re-
cover universal quantification, and hence parametric reasoning, by using grading
to restrict the data-flow capabilities of a Π-type. We can refine representation
independence to the following:

RI′′ A B � (γ :(0,2) Type)→ (h :(s1,0) (x :(s2,0) γ)→ A)→ (c :(s3,0) γ)→ B

for some grades s1, s2, and s3, and with shorthand 2 = 1 + 1.
If we look at the definition of leak above, we see that γ is used in the body

of the function and thus requires usage 1, so leak cannot inhabit RI′′ A Type.
Instead, leak would be typed differently as:

leak : (γ :(1,2) Type)→ (h :(0,0) (x :(s,0) γ)→ A)→ (c :(0,0) γ)→ Type

The problematic behaviour (that the type parameter γ is returned by the inner
function) is exposed by the subject grade 1 on the binder of γ. We can thus
define a graded universal quantification from a graded Π-typed:

∀r(γ : A).B � (γ :(0,r) A)→ B (1)

This denotes that the type parameter γ can appear freely in B described by
grade r, but is irrelevant in the body of any corresponding λ-abstraction. This is
akin to the work of Nuyts et al. who develop a system with several modalities for
regaining parametricity within a dependent type theory [45]. Note however that
parametricity is recovered for us here as one of many possible options coming
from systematically specialising the grading.

Graded Modal Dependent Type Theory 475

Capturing Existential Types With the ability to capture universal quantifier, we
can similarly define existentials (allowing, e.g., abstraction [11]). We define the
existential type via a Church-encoding as follows:

∃r(x : A).B � ∀2(C : Typel).(f :(1,0) ∀r(x : A).(b :(s,0) B)→ C)→ C

Embedding into Stratified System F We show that parametricity is regained here
(and thus eqn. (1) really behaves as a universal quantifier and not a general Π-
type) by showing that we can embed a subset of Grtt into System F, based
solely on a classification of the grades. We follow a similar approach to Section 3.3
for simply-typed reasoning but rather than defining a purely syntactic encoding
(and then proving it type sound) our encoding is type directed since we embed
Grtt functions of type (x :(0,r) Typel)→ B as universal types in System F with
corresponding type abstractions (Λ) as their inhabitants. Since Grtt employs
a predicative hierarchy of universes, we target Stratified System F (hereafter
SSF) since it includes the analogous inductive hierarchy of kinds [38]. We use
the formulation of Eades and Stump [21] with terms ts and types T :

ts ::=x | λ(x : T).ts | ts t′s | Λ(X : K).ts | ts [T] T ::=X | T → T ′ | ∀(X : K).T

with kinds K ::= �l where l ∈ N providing the stratified kind hierarchy. Cap-
italised variables X are System F type variables and ts [T] is type applica-
tion. Contexts may contain both type and computational variables, and so free-
variable type assumptions may have dependencies, akin to dependent type sys-
tems. Kinding is via judgments Γ � T : �l and typing via Γ � t : T .

We define a type directed encoding on a subset of Grtt typing derivations
characterised by the following predicate:

Ssf((∅ | ∅ | ∅)) ∅ � t : A)

Ssf((Δ | σ1 | σ2)) Γ � t : A) =⇒ Ssf((Δ,0 | σ1, 0 | σ2, r)) Γ, x : Typel � t : A)

Ssf((Δ | σ1 | σ2)) Γ � t : A) ∧ Typel �∈
+ve B

=⇒ Ssf((Δ,σ3 | σ1, s | σ2, 0)) Γ, x : B � t : A)

By Typel �∈+ve B we mean Typel is not a positive subterm of B, avoiding higher-
order typing terms (e.g., type constructors) which do not exist in SSF.

Under this restriction, we give a type-directed encoding mapping derivations
of Grtt to SSF: given a Grtt derivation of judgment (Δ | σ1 | σ2)9 Γ � t : A
we have that ∃ts (an SSF term) such that there is a derivation of judgment
�Γ � � ts : �A�τ in SSF where we interpret a subset of Grtt terms A as types:

�x�τ = x
�Typel�τ = �l

�(x :(0,r) Typel)→ B�τ = ∀x : �l.�B�τ where Typel �∈+ve B
�(x :(s,0) A)→ B�τ = �A�τ → �B�τ where Typel �∈+ve A,B

Thus, dependent functions with Type parameters that are computationally irrel-
evant (subject grade 0) map to ∀ types, and dependent functions with param-
eters irrelevant in types (subject-type grade 0) map to regular function types.

476 B. Moon et al.

We elide the full details but sketch key parts where functions and applications
are translated inductively (where Tyl is shorthand for Typel):

�
(Δ,σ1 | σ2, 0 | σ3, r)) Γ, x : Tyl � t : B

(Δ | σ2 | σ1 + σ3)) Γ � λx.t : (x :(0,r) Tyl) → B
� =

�Γ �, x : �l � ts : �B�τ
�Γ � � Λ(x : �l).ts : ∀x : �l.�B�τ

�
(Δ,σ1 | σ2, s | σ3, 0)) Γ, x : A � t : B

(Δ | σ2 | σ1 + σ3)) Γ � λx.t : (x :(s,0) A) → B
�=

�Γ �, x : �A�τ � ts : �B�τ
�Γ � � λ(x : �A�τ).ts : �A�τ → �B�τ

�

(Δ | σ2 | σ1 + σ3)) Γ � t1 : (x :(0,r) Tyl) → B
(Δ | σ4 | σ1)) Γ � t2 : Tyl

(Δ | σ2 | σ3 + r ∗ σ4)) Γ � t1 t2 : [t2/x]B
� =

�Γ � � ts : ∀(x : �l).�B�τ
�Γ � � T : �l

�Γ � � ts[T] : [T/x]�B�τ

�

(Δ | σ2 | σ1 + σ3)) Γ � t1 : (x :(s,0) A) → B
(Δ | σ4 | σ1)) Γ � t2 : A

(Δ | σ2 + s ∗ σ4 | σ3)) Γ � t1 t2 : [t2/x]B
� =

�Γ � � ts : �A�τ → �B�τ
�Γ � � t′s : �A�τ
�Γ � � ts t′s : [t′s/x]�B�τ

In the last case, note the presence of [t′s/x]�B�τ . Reasoning under the context of
the encoding, this is proven equivalent to �B�τ since the subject type grade is 0
and therefore use of x in B is irrelevant.

Theorem 2 (Soundness and completeness of SSF embedding). Given
Ssf((Δ | σ1 | σ2)9 Γ � t : A) and ta in SSF where �(Δ | σ1 | σ2)9 Γ � t : A� =
�Γ � � ts : �A�τ then for CBN reduction
Ssf in Stratified System F:

(soundness) ∀t′. t
 t′ =⇒ ∃t′s.ts
SSF t′s
∧ �(Δ | σ1 | σ2)9 Γ � t′ : A� = �Γ � � t′s : �A�τ

(completeness) ∀t′s. ts
Ssf t′s =⇒ ∃t′.t
 t′

∧ �(Δ | σ1 | σ2)9 Γ � t′ : A� = �Γ � � t′s : �A�τ

Thus, we can capture parametricity in Grtt via the judicious use of 0 grading
(at either the type or computational level) for quantitative semirings. This em-
bedding is not possible from Qtt since Qtt variables graded with 0 may be
used arbitrarily in the types; the embedding here relies on Grtt’s 0 type-grade
capturing abscence in types for quantitative semirings.

3.5 Graded Modal Types and Non-dependent Linear Types

Grtt can embed the reasoning present in other graded modal type theories
(which often have a linear base), for example the explicit semiring-graded neces-
sity modality found in coeffect calculi [10,23] and Granule [46]. We can recover
the axioms of a graded necessity modality (usually modelled by an exponential
graded comonad [23]). For example, in Gerty the following are well typed:

counit : (a : (.0, .2) Type) -> (z : (.1 , .0) [.1] a) -> a

counit = \a z -> case z of [y] -> y

comult : (a : (.0, .2) Type) -> (z : (.1 , .0) [.6] a) -> [.2] ([.3] a)

comult = \a z -> case z of [y] -> [[y]]

Graded Modal Dependent Type Theory 477

corresponding to ε : �1A → A and δr,s : �r∗sA → �r(�sA): operations of
graded necessity / graded comonads. Since we cannot use arbitrary terms for
grades in the implementation, we have picked some particular grades here for
comult. First-class grading is future work, discussed in Section 6.

Linear functions can be captured as A 	 B � (x :(1,r) A)→ B for an exact
usage semiring. It is straightforward to characterise a subset of Grtt programs
that maps to the linear λ-calculus akin to the encodings above. Thus, Grtt
provides a suitable basis for studying both linear and non-linear theories alike.

4 Metatheory

We now study Grtt’s metatheory. We first explain how substitution presents
itself in the theory, and how type preservation follows from a relationship between
equality and reduction. We then show admissibility of graded structural rules
for contraction, exchange, and weakening, and strong normalization.

4.1 Substitution

We introducing substitution for well-formed contexts and then typing.

Lemma 4 (Substitution for well-formed contexts). If the following hold:

1. (Δ | σ2 | σ1)9 Γ1 � t : A and 2. (Δ,σ1, Δ
′)9 Γ1, x : A,Γ2 �

Then: Δ, (Δ′\ |Δ|+ (Δ′/ |Δ|) ∗ σ2)9 Γ1, [t/x]Γ2 �
That is, given Γ1, x : A,Γ2 is well-formed, we can cut out x by substituting t for
x in Γ2, accounting for the new usage in the context grade vectors. The usage of
Γ1 in t is given by σ2, and the usage in A by σ1. When substituting, Δ remains
the same, as Γ1 is unchanged. However, to account for the usage in [t/x]Γ2, we
have to form a new context grade vector Δ′\ |Δ|+ (Δ′/ |Δ|) ∗ σ2.

The operation Δ′\ |Δ| (pronounced ‘discard’) removes grades corresponding
to x, by removing the grade at index |Δ| from each grade vector in Δ′. Every-
thing previously used in the typing of x in the context must now be distributed
across [t/x]Γ2, which is done by adding on (Δ′/ |Δ|) ∗ σ2, which uses Δ′/ |Δ|
(pronounced ‘choose’) to produce a vector of grades, which correspond to the
grades cut out in Δ′\ |Δ|. The multiplication of (Δ′/ |Δ|)∗σ2 produces a context
grade vector by scaling σ2 by each element of (Δ′/ |Δ|). When adding vectors,
if the sizes of the vectors are different, then the shorter vector is right-padded
with zeroes. Thus Δ′\ |Δ|+ (Δ′/ |Δ|) ∗ σ2 can be read as ‘Δ′ without the grades
corresponding to x, plus the usage of t scaled by the prior usage of x’.

For example, given typing ((), (1) | 0, 1 | 1, 0) 9 a : Type, y : a � y : a and
well-formed context ((), (1), (1, 0), (0, 0, 2)) 9 a : Type, y : a, x : a, z : t′ �, where
t′ uses x twice, we can substitute y for x. Therefore, let Γ1 = a : Type, y : a thus
|Γ1| = 2 and Γ2 = z : x and Δ′ = ((0, 0, 2)) and σ1 = 1, 0 and σ2 = 0, 1. Then
the context grade of the substitution [y/x]Γ2 is calculated as:

((0, 0, 2))\ |Γ1| = ((0, 0)) (((0, 1, 2))/ |Γ1|) ∗ σ2 = (2) ∗ (0, 1) = ((0, 2))

478 B. Moon et al.

Thus the resulting judgment is ((), (1), (0, 2))9 a : Type, y : a, z : [y/x]t′ �.

Lemma 5 (Substitution for typing). If the following premises hold:

1. (Δ | σ2 | σ1)9 Γ1 � t : A
2. (Δ,σ1, Δ

′ | σ3, s, σ4 | σ5, r, σ6)9 Γ1, x : A,Γ2 � t′ : B
3. |σ3| = |σ5| = |Γ1|

Then

(
Δ,(Δ′\|Δ|+(Δ′/|Δ|)∗σ2)

(σ3+s∗σ2),σ4

(σ5+r∗σ2),σ6

)
9 Γ1, [t/x]Γ2 � [t/x]t′ : [t/x]B.

As with substitution for well-formed contexts, we account for the replacement of
x with t in Γ2 by ‘cutting out’ x from the context grade vectors, and adding on
the grades required to form t, scaled by the grades that described x’s usage. We
additionally must account for the altered subject and subject-type usage. We do
this in a similar manner, by taking, for example, the usage of Γ1 in the subject
(σ3), and adding on the grades required to form t, scaled by the grade with
which x was previously used (s). Subject-type grades are calculated similarly.

4.2 Type Preservation

Lemma 6. Reduction implies equality If (Δ | σ1 | σ2)9Γ � t1 : A and t1
 t2,
then (Δ | σ1 | σ2)9 Γ � t1 = t2 : A.

Lemma 7. Equality inversion If (Δ | σ1 | σ2)9 Γ � t1 = t2 : A, then (Δ | σ1 |
σ2)9 Γ � t1 : A and (Δ | σ1 | σ2)9 Γ � t2 : A.

Lemma 8. Type preservation If (Δ | σ1 | σ2) 9 Γ � t : A and t
 t′, then
(Δ | σ1 | σ2)9 Γ � t′ : A.

Proof. By Lemma 6 we have (Δ | σ1 | σ2) 9 Γ � t = t′ : A, and therefore by
Lemma 7 we have (Δ | σ1 | σ2)9 Γ � t′ : A, as required.

4.3 Structural Rules

We now consider the structural rules of contraction, exchange, and weakening.

Lemma 9 (Contraction). The following rule is admissible:(
Δ1,σ1,(σ1,0),Δ2

σ2,s1,s2,σ3
σ4,r1,r2,σ5

)
9 Γ1, x : A, y : A,Γ2 � t : B |Δ1| = |σ2| = |σ4| = |Γ1|(

Δ1,σ1,contr(|Δ1|;Δ2)
σ2,(s1+s2),σ3

σ4,(r1+r2),σ5

)
9 Γ1, z : A, [z, z/x, y]Γ2 � [z, z/x, y]t : [z, z/x, y]B

Contr

The operation contr(π;Δ) contracts the elements at index π and π + 1 for each
vector in Δ by combining them with the semiring addition, defined contr(π;Δ) =
Δ\(π+1)+Δ/(π+1)∗ (0π, 1). Admissibility follows from the semiring addition,
which serves to contract dependencies, being threaded throughout the rules.

Graded Modal Dependent Type Theory 479

Lemma 10 (Exchange). The following rule is admissible:

x �∈ FV (B)

|Δ1| = |σ3| = |σ5| = |Γ1|
(

Δ1,σ1,(σ2,0),Δ2
σ3,s1,s2,σ4
σ5,r1,r2,σ6

)
9 Γ1, x : A, y : B,Γ2 � t : C(

Δ1,σ2,(σ1,0),exch(|Δ1|;Δ2)
σ3,s2,s1,σ4
σ5,r2,r1,σ6

)
9 Γ1, y : B, x : A,Γ2 � t : C

Exc

Notice that if you strip away the vector fragment and sizing premise, this is
exactly the form of exchange we would expect in a dependent type theory: if
x and y are assumptions in a context typing t : C, and the type of y does not
depend upon x, then we can type t : C when we swap the order of x and y.

The action on grade vectors is simple: we swap the grades associated with
each of the variables. For the context grade vector however, we must do two
things: first, we capture the formation of A with σ1, and the formation of B
with σ1, 0 (indicating x being used with grade 0 in B), then swap these around,
cutting the final grade from σ2, 0, and adding 0 to the end of σ1 to ensure
correct sizing. Next, the operation exch(|Δ1| ;Δ2) swaps the element at index
|Δ1| (i.e., that corresponding to usage of x) with the element at index |Δ1|+ 1
(corresponding to y) for every vector in Δ2; this exchange operation ensures that
usage in the trailing context is reordered appropriately.

Lemma 11 (Weakening). The following rule is admissible:

(Δ1, Δ2 | σ1, σ
′
1 | σ2, σ

′
2)9 Γ1, Γ2 � t : B

(Δ1 | σ3 | 0)9 Γ1 � A : Typel |σ1| = |σ2| = |Γ1|
(Δ1, σ3, ins(|Δ1| ; 0;Δ2) | σ1, 0, σ

′
1 | σ2, 0, σ

′
2)9 Γ1, x : A,Γ2 � t : B

Weak

Weakening introduces irrelevant assumptions to a context. We do this by captur-
ing the usage in the formation of the assumption’s type with σ3 to preserve the
well-formedness of the context. We then indicate irrelevance of the assumption
by grading with 0 in appropriate places. The operation ins(π; s;Δ) inserts the
element s at index π for each σ in Δ, such that all elements preceding index π
(in σ) keep their positions, and every element at index π or greater (in σ) will
be shifted one index later in the new vector. The 0 grades in the subject and
subject-type grade vector positions correspond to the absence of the irrelevant
assumption from the subject and subject’s type.

4.4 Strong Normalization

We adapt Geuvers’ strong normalization proof for the Calculus of Constructions
(CC) [24] to a fragment of Grtt (called Grtt{0,1}) restricted to two universe
levels and without variables of type Type1. This results in a less expressive system
than full Grtt when it comes to higher kinds, but this is orthogonal to the main
idea here of grading. We briefly overview the strong normalization proof; details
can be found in the extended version [44]. Note this strong normalization result
is with respect to β-reduction only (our semantics does not include η-reduction).

480 B. Moon et al.

We use the proof technique of saturated sets, based on the reducibility candi-
dates of Girard [29]. While Grtt{0,1} has a collapsed syntax we use judgments
to break typing up into stages. We use these sets to match on whether a term is
a kind, type, constructor, or a function (we will refer to these as terms).

Definition 3. Typing can be broken up into the following stages:

Kind := {A | ∃Δ,σ1, Γ.(Δ | σ1 | 0)) Γ � A : Type1}
Type := {A | ∃Δ,σ1, Γ.(Δ | σ1 | 0)) Γ � A : Type0}
Con := {t | ∃Δ,σ1, σ2, Γ,A.(Δ | σ1 | σ2)) Γ � t : A ∧ (Δ | σ2 | 0)) Γ � A : Type1}
Term := {t | ∃Δ,σ1, σ2, Γ,A.(Δ | σ1 | σ2)) Γ � t : A ∧ (Δ | σ2 | 0)) Γ � A : Type0}

Lemma 12 (Classification). We have Kind ∩ Type = ∅ and Con ∩ Term = ∅.

The classification lemma states that we can safely case split over kinds and types,
or constructors and terms without fear of an overlap occurring.

Saturated sets are essentially collections of strongly normalizing terms that
are closed under β-reduction. The intuition behind this proof is that every ty-
pable program ends up in some saturated set, and hence, is strongly normalizing.

Definition 4. [Base terms and saturated terms] Informally, the set of base
terms B is inductively defined from variables and Type0 and Type1, and com-
pound terms over base B and strongly normalising terms SN.

A set of terms X is saturated if X ⊂ SN, B ⊂ X, and if redk t ∈ X and
t ∈ SN, then t ∈ X. Thus saturated sets are closed under strongly normalizing
terms with a key redex, denoted redk t, which are redexes or a redex at the head
of an elimination form. SAT denotes the collection of saturated sets.

Lemma 13 (SN saturated). All saturated sets are non-empty; SN is saturated.

Since Grtt{0,1} allows computation in types as well as in types, we separate the
interpretations for kinds and types, where the former is a set of the latter.

Definition 5. For A ∈ Kind, the kind interpretation, K�A�, is defined:

K�Type0� = SAT K�(x :(s,r) A) → B� = {f | f : K�A� → K�B�}, if A,B ∈ Kind
K��sA� = K�A� K�(x :(s,r) A) → B� = K�A�, if A ∈ Kind, B ∈ Type

K�(x :(s,r) A) → B� = K�B�, if A ∈ Type, B ∈ Kind
K�(x :r A)⊗B� = K�A� ×K�B�, if A,B ∈ Kind
K�(x :r A)⊗B� = K�A�, if A ∈ Kind, B ∈ Type
K�(x :r A)⊗B� = K�B�, if A ∈ Type, B ∈ Kind

Next we define the interpretation of types, which requires the interpretation to be
parametric on an interpretation of type variables called a type evaluation. This is
necessary to make the interpretation well-founded (first realized by Girard [29]).

Definition 6. Type valuations, Δ9 Γ |= ε, are defined as follows:

∅) ∅ |= ∅ E

X ∈ K�A� Δ) Γ |= ε
(Δ | σ | 0)) Γ � A : Type1

(Δ,σ)) (Γ, x : A) |= ε[x �→ X]
Ty

Δ) Γ |= ε
(Δ | σ | 0)) Γ � A : Type0
(Δ,σ)) (Γ, x : A) |= ε

Tm

Graded Modal Dependent Type Theory 481

Type valuations ignore term variables (rule Tm), in fact, the interpretations
of both types and kinds ignores them because we are defining sets of terms
over types, and thus terms in types do not contribute to the definition of these
sets. However as these interpretations define sets of open terms we must carry a
graded context around where necessary. Thus, type valuations are with respect
to a well-formed graded context Δ9Γ . We now outline the type interpretation.

Definition 7. For type valuation Δ9Γ |= ε and a type A ∈ (Kind∪Type∪Con)
with A typable in Δ9Γ , the interpretation of types �A�ε is defined inductively.
For brevity, we list just a few illustrative cases, including modalities and some
function cases; the complete definition is given in the extended version [44].

�Type1�ε = SN
�Type0�ε = λX ∈ SAT.SN

�x�ε = ε x if x ∈ Con
��sA�ε = �A�ε

�λx : A.B�ε = λX ∈ K�A�.�B�ε[x
→X] if A ∈ Kind, B ∈ Con
�AB�ε = �A�ε(�B�ε) if B ∈ Con

�(x :(s,r) A) → B�ε = λX ∈ K�A� → K�B�.
⋂

Y ∈K�A�(�A�ε Y → �B�ε[x
→Y] (X (Y)))

if A,B ∈ Kind

Grades play no role in the reduction relation for Grtt, and hence, our inter-
pretation erases graded modalities and their introductory and elimination forms
(translated into substitutions). In fact, the above interpretation can be seen as a
translation ofGrtt{0,1} into non-substructural set theory; there is no data-usage
tracking in the image of the interpretation. Tensors are translated into Cartesian
products whose eliminators are translated into substitutions similarly to graded
modalities. All terms however remain well-typed through the interpretation.

The interpretation of terms corresponds to term valuations that are used to
close the term before interpreting it into the interpretation of its type.

Definition 8. Valid term valuations, Δ9 Γ |=ε ρ, are defined as follows:

∅ 9 ∅ |=∅ ∅
E

t ∈ (�A�ε) (ε x)
Δ) Γ |=ε ρ
(Δ | σ | 0)) Γ � A : Type1

(Δ,σ)9 Γ, x : A |=ε ρ[x �→ t]
Ty

t ∈ �A�ε
Δ) Γ |=ε ρ
(Δ | σ | 0)) Γ � A : Type0

(Δ,σ)9 Γ, x : A |=ε ρ[x �→ t]
Tm

We interpret terms as substitutions, but graded modalities must be erased and
their elimination forms converted into substitutions (and similarly for the elim-
inator for tensor products).

Definition 9. Suppose Δ 9 Γ |=ε ρ. Then the interpretation of a term t ty-
pable in Δ 9 Γ is �t�ρ = ρ t, but where all let-expressions are translated into
substitutions, and all graded modalities are erased.

Finally, we prove our main result using semantic typing which will imply strong
normalization. Suppose (Δ | σ1 | σ2)9 Γ � t : A, then:

482 B. Moon et al.

Definition 10. Semantic typing, (Δ | σ1 | σ2)9Γ |= t : A, is defined as follows:

1. If (Δ | σ | 0)) Γ � A : Type1, then for every Δ) Γ |=ε ρ, �t�ρ ∈ �A�ε (�t�ε).
2. If (Δ | σ | 0)) Γ � A : Type0, then for every Δ) Γ |=ε ρ, �t�ρ ∈ �A�ε.

Theorem 3 (Soundness for Semantic Typing). (Δ | σ1 | σ2)9 Γ |= t : A.

Corollary 1 (Strong Normalization). We have t ∈ SN.

5 Implementation

Our implementation Gerty is based on a bidirectionalised version of the typing
rules here, somewhat following traditional schemes of bidirectional typing [19,20]
but with grading (similar to Granule [46] but adapted considerably for the de-
pendent setting). We briefly outline the implementation scheme and highlight
a few key points, rules, and examples. We use this implementation to explore
further applications of Grtt, namely optimising type checking algorithms.

Bidirectional typing splits declarative typing rules into check and infer modes.
Furthermore, bidirectional Grtt rules split the grading context (left of 9) into
input and output contexts where (Δ | σ1 | σ2)9 Γ � t : A is implemented via:

(check) Δ;Γ � t⇐ A;σ1;σ2 or (infer) Δ;Γ � t⇒ A;σ1;σ2

where ⇐ rules check that t has type A and ⇒ rules infer (calculate) that t
has type A. In both judgments, the context grading Δ and context Γ left of
� are inputs whereas the grade vectors σ1 and σ2 to the right of A are out-
puts. This input-output context approach resembles that employed in linear
type checking [5,32,62]. Rather than following a “left over” scheme as in these
works (where the output context explains what resources are left), the output
grades here explain what has been used according to the analysis of grading
(‘adding up’ rather than ‘taking away’).

For example, the following is the infer rule for function elimination:

Δ;Γ � t1 ⇒ (x :(s,r) A)→ B;σ2;σ13

Δ;Γ � t2 ⇐ A;σ4;σ1

Δ,σ1;Γ, x : A � B ⇒ Typel;σ3, r;0 σ13 = σ1 + σ3

Δ;Γ � t1 t2 ⇒ [t2/x]B;σ2 + s ∗ σ4;σ3 + r ∗ σ4
⇒ λe

The rule can be read by starting at the input of the conclusion (left of �), then
reading top down through each premise, to calculate the output grades in the
rule’s conclusion. Any concrete value or already-bound variable appearing in the
output grades of a premise can be read as causing an equality check in the type
checker. The last premise checks that the output subject-type grade σ13 from
the first premise matches σ1 + σ3 (which were calculated by later premises).

In contrast, function introduction is a check rule:

Δ;Γ � A⇒ Typel;σ1;0 Δ,σ1;Γ, x : A � t⇐ B;σ2, s;σ3, r

Δ;Γ � λx.t⇐ (x :(s,r) A)→ B;σ2;σ1 + σ3
⇐ λi

Graded Modal Dependent Type Theory 483

Thus, dependent functions can be checked against type (x :(s,r) A) → B given
input Δ;Γ by first inferring the type of A and checking that its output subject-
type grade comprises all zeros 0. Then the body of the function t is checked
against B under the context Δ,σ1;Γ, x : A producing grade vectors σ2, s

′ and
σ1, r

′ where it is checked that s = s′ and r = r′ (described implicitly in the rule),
i.e., the calculated grades match those of the binder.

The implementation anticipates some further work for Grtt: the potential
for grades which are first-class terms, for which we anticipate complex equations
on grades. For grade equality, Gerty has two modes: one which normalises
terms and then compares for syntactic equality, and the other which discharges
constraints via an off-the-shelf SMT solver (we use Z3 [17]). We discuss briefly
some performance implications in the next section.

Using Grades to Optimise Type Checking Abel posited that a dependent theory
with quantitative resource tracking at the type level could leverage linearity-
like optimisations in type checking [2]. Our implementation provides a research
vehicle for exploring this idea; we consider one possible optimisation here.

Key to dependent type checking is the substitution of terms into types in
elimination forms (i.e., application, tensor elimination). However, in a quanti-
tative semiring setting, if a variable has 0 subject-type grade, then we know it
is irrelevant to type formation (it is not semantically depended upon, i.e., dur-
ing normalisation). Subsequently, substitutions into a 0-graded variable can be
elided (or allocations to a closure environment can be avoided). We implemented
this optimisation in Gerty when inferring the type of an application for t1 t2
(rule ⇒ λe above), where the type of t1 is inferred as (x :(s,0) A) → B. For a
quantitative semiring we know that x irrelevant in B, thus we need not perform
the substitution [t2/x]B when type checking the application.

We evaluate this on simple Gerty programs of an n-ary “fanout” combinator
implemented via an n-ary application combinator, e.g., for arity 3:

app3 : (a : (0, 6) Type 0) -> (b : (0, 2) Type 0)

-> (x0 : (1, 0) a) -> (x1 : (1, 0) a) -> (x2 : (1, 0) a)

-> (f:(1, 0) ((y0:(1,0) a) -> (y1:(1,0) a) -> (y2:(1,0) a) -> b)) -> b

app3 = \a -> \b -> \x0 -> \x1 -> \x2 -> \f -> f x0 x1 x2

fan3 : (a : (0, 4) Type 0) -> (b : (0, 2) Type 0)

-> (f : (1,0) ((z0 : (1,0) a) -> (z1 : (1,0) a) -> (z2 : (1,0) a) -> b))

-> (x : (3, 0) a) -> b

fan3 = \a -> \b -> \f -> \x -> app3 a b x x x f

Note that fan3 uses its parameter x three times (hence the grade 3) which then
incurs substitutions into the type of app3 during type checking, but each such
substitution is redundant since the type does not depend on these parameters,
as reflected by the 0 subject-type grades.

To evaluate the optimisation and SMT solving vs. normalisation-based equal-
ity, we ranGerty on the fan out program for arities from 3 to 8, with and without
the optimisation and under the two equality approaches.

484 B. Moon et al.

Normalisation SMT
n Base ms Optimised ms Speedup Base ms Optimised ms Speedup

3 45.71 (1.72) 44.08 (1.28) 1.04 77.12 (2.65) 76.91 (2.36) 1.00
4 108.75 (4.09) 89.73 (4.73) 1.21 136.18 (5.23) 162.95 (3.62) 0.84
5 190.57 (8.31) 191.25 (8.13) 1.00 279.49 (15.73) 289.73 (23.30) 0.96
6 552.11 (29.00) 445.26 (23.50) 1.24 680.11 (16.28) 557.08 (13.87) 1.22
7 1821.49 (49.44) 1348.85 (26.37) 1.35 1797.09 (43.53) 1368.45 (20.16) 1.31
8 6059.30 (132.01) 4403.10 (86.57) 1.38 5913.06 (118.83) 4396.90 (59.82) 1.34

Table 1. Performance analysis of grade-based optimisations to type checking. Times
in milliseconds to 2 d.p. with the standard error given in brackets. Measurements are
the mean of 10 trials (run on a 2.7 Ghz Intel Core, 8Gb of RAM, Z3 4.8.8).

Table 1 gives the results. For grade equality by normalisation, the optimisation
has a positive effect on speedup, getting increasingly significant (up to 38%)
as the overall cost increases. For SMT-based grade equality, the optimisation
causes some slow down for arity 4 and 5 (and just breaking even for arity 3).
This is because working out whether the optimisation can be applied requires
checking whether grades are equal to 0, which incurs extra SMT solver calls.
Eventually, this cost is outweighed by the time saved by reducing substitutions.
Since the grades here are all relatively simple, it is usually more efficient for the
type checker to normalise and compare terms rather than compiling to SMT and
starting up the external solver, as seen by longer times for the SMT approach.

The baseline performance here is poor (the implementation is not highly opti-
mised) partly due to the overhead of computing type formation judgments often
to accurately account for grading. However, such checks are often recomputed
and could be optimised away by memoisation. Nevertheless this experiment gives
the evidence that grades can indeed be used to optimise type checking. A thor-
ough investigation of grade-directed optimisations is future work.

6 Discussion

Grading, Coeffects, and Quantitative Types The notion of coeffects, describing
how a program depends on its context, arose in the literature from two directions:
as a dualisation of effect types [48,49] and a generalisation of Bounded Linear
Logic to general resource semirings [25,10]. Coeffect systems can capture reuse
bounds, information flow security [23], hardware scheduling constraints [25], and
sensitivity for differential privacy [16,22]. A coeffect-style approach also enables
linear types to be retrofitted to Haskell [8]. A common thread is the annotation
of variables in the context with usage information, drawn from a semiring. Our
approach generalises this idea to capture type, context, and computational usage.

McBride [43] reconciles linear and dependent types, allowing types to depend
on linear values, refined by Atkey [6] as Quantitative Type Theory. Qtt employs
coeffect-style annotation of each assumption in a context with an element of a
resource accounting algebra, with judgments of the form:

x1
ρ1
: A1, . . . , xn

ρn
: An �M

ρ
: B

Graded Modal Dependent Type Theory 485

where ρi, ρ are elements of a semiring, and ρ = 0 or ρ = 1, respectively denoting
a term which can be used in type formation (erased at runtime) or at runtime.

Dependent function arrows are of the form (x
ρ
: A) → B, where ρ is a semiring

element that denotes the computational usage of the parameter.
Variables used for type formation but not computation are annotated by 0.

Subsequently, type formation rules are all of the form 0Γ � T , meaning every
variable assumption has a 0 annotation. Grtt is similar to Qtt, but differs in
its more extensive grading to track usage in types, rather than blanketing all
type usage with 0. In Atkey’s formulation, a term can be promoted to a type if
its result and dependency quantities are all 0. A set of rules provide formation of
computational type terms, but these are also graded at 0. Subsequently, it is not
possible to construct an inhabitant of Type that can be used at runtime. We avoid
this shortcoming allowing matching on types. For example, a computation t that
inspects a type variable a would be typed as: (Δ,0, Δ′ | σ1, 1, σ

′
1 | σ2, r, σ

′
2)9Γ, a :

Type, Γ ′ � t : B denoting 1 computational use and r type uses in B.
At first glance, it seems Qtt could be encoded into Grtt taking the semiring

R of Qtt and parameterising Grtt by the semiring R ∪ {0̂} where 0̂ denotes
arbitrary usage in type formation. However, there is impedance between the two
systems as Qtt always annotates type use with 0. It is not clear how to make
this happen in Grtt whilst still having non-0 tracking at the computational
level, since we use one semiring for both. Exploring an encoding is future work.

Choudhury et al. [13] give a system closely related (but arguably simpler) to
Qtt called GraD. One key difference is that rather than annotating type usage
with 0, grades are simply ignored in types. This makes for a surprisingly flexible
system. In addition, they show that irrelevance is captured by the 0 grade using
a heap-based semantics (a result leveraged in Section 3). GraD however does
not have the power of type-grades presented here.

Dependent Types and Modalities Dal Lago and Gaboardi extend PCF with lin-
ear and lightweight dependent types [15] (then adapted for differential privacy
analysis [22]). They add a natural number type indexed by upper and lower
bound terms which index a modality. Combined with linear arrows of the form
[a < I].σ 	 τ these describe functions using the parameter at most I times
(where the modality acts as a binder for index variable a which denotes in-
stantiations). Their system is leveraged to give fine-grained cost analyses in the
context of Implicit Computational Complexity. Whilst a powerful system, their
approach is restricted in terms of dependency, where only a specialised type can
depend on specialised natural-number indexed terms (which are non-linear).

Gratzer et al. define a dependently-typed language with a Fitch-style modal-
ity [30]. It seems that such an approach could also be generalised to a graded
modality, although we have used the natural-deduction style for our graded
modality rather than the Fitch-style.

As discussed in Section 1, our approach closely resembles Abel’s resource-
ful dependent types [2]. Our work expands on the idea, including tensors and
the graded modalities. We considerably developed the associated metatheory,
provide an implementation, and study applications.

486 B. Moon et al.

Further Work One expressive extension is to capture analyses which have an
ordering, e.g., grading by a pre-ordered semiring, allowing a notion of approxi-
mation. This would enable analyses such as bounded reuse from Bounded Linear
Logic [28], intervals with least- and upper-bounds on use [46], and top-completed
semirings, with an ∞-element denoting arbitrary usage as a fall-back. We have
made progress into exploring the interaction between approximation and depen-
dent types, and the remainder of this is left as future work.

A powerful extension of Grtt for future work is to allow grades to be first-
class terms. Typing rules in Grtt involving grades could be adapted to in-
ternalise the elements as first-class terms. We could then, e.g., define the map
function over sized vectors, which requires that the parameter function is used
exactly the same number of times as the length of the vector:

map : (n :(0,5) nat) → (a :(0,n+1) Type) → (b :(0,n+1) Type) →
(f :(n,0) (x :(1,0) a) → b) → (xs :(1,0) Vecna) → Vecn b

This type provides strong guarantees: the only well-typed implementations do
the correct thing, up to permutations of the result vector. Without the grading,
an implementation could apply f fewer than n times, replicating some of the
transformed elements; here we know that f must be applied exactly n-times.

A further appealing possibility for Grtt is to allow the semiring to be defined
internally, rather than as a meta-level parameter, leveraging dependent types for
proofs of key properties. An implementation could specify what is required for a
semiring instance, e.g., a record type capturing the operations and properties of a
semiring. The rules of Grtt could then be extended, similarly to the extension
to first-class grades, with the provision of the semiring(s) coming from Grtt
terms. Thus, anywhere with a grading premise (Δ | σ1 | σ2) 9 Γ � r : R would
also require a premise (Δ | σ2 | 0)9 Γ � R : Semiring. This opens up the ability
for programmers and library developers to provide custom modes of resource
tracking with their libraries, allowing domain-specific program verification.

Conclusions The paradigm of ‘grading’ exposes the inherent structure of a type
theory, proof theory, or semantics by matching the underlying structure with
some algebraic structure augmenting the types. This idea has been employed for
reasoning about side effects via graded monads [35], and reasoning about data
flow as discussed here by semiring grading. Richer algebras could be employed
to capture other aspects, such as ordered logics in which the exchange rule can
be controlled via grading (existing work has done this via modalities [34]).

We developed the core of grading in the context of dependent-types, treating
types and terms equally (as one comes to expect in dependent-type theories).
The tracking of data flow in types appears complex since we must account for
how variables are used to form types in both the context and in the subject
type, making sure not to repeat context formation use. The result however is
a powerful system for studying dependencies in type theories, as shown by our
ability to study different theories just be specialising grades. Whilst not yet a
fully fledged implementation, Gerty is a useful test bed for further exploration.

Acknowledgments Orchard is supported by EPSRC grant EP/T013516/1.

Graded Modal Dependent Type Theory 487

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.: A Core Calculus of Dependency.
In: POPL. ACM (1999). https://doi.org/10.1145/292540.292555

2. Abel, A.: Resourceful Dependent Types. In: 24th International Conference on
Types for Proofs and Programs, Abstracts (2018)

3. Abel, A., Bernardy, J.: A unified view of modalities in type systems. Proc. ACM
Program. Lang. 4(ICFP), 90:1–90:28 (2020). https://doi.org/10.1145/3408972

4. Abel, A., Scherer, G.: On irrelevance and algorithmic equality in predicative type
theory. Log. Methods Comput. Sci. 8(1) (2012). https://doi.org/10.2168/LMCS-
8(1:29)2012

5. Allais, G.: Typing with Leftovers - A mechanization of Intuitionistic Multiplicative-
Additive Linear Logic. In: Abel, A., Forsberg, F.N., Kaposi, A. (eds.) 23rd In-
ternational Conference on Types for Proofs and Programs (TYPES 2017). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 104, pp. 1:1–1:22.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018).
https://doi.org/10.4230/LIPIcs.TYPES.2017.1

6. Atkey, R.: Syntax and Semantics of Quantitative Type Theory. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 56–65 (2018).
https://doi.org/10.1145/3209108.3209189

7. Atkey, R., Ghani, N., Johann, P.: A relationally parametric model of de-
pendent type theory. In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 503–515 (2014).
https://doi.org/10.1145/2535838.2535852

8. Bernardy, J.P., Boespflug, M., Newton, R.R., Peyton Jones, S., Spiwack, A.:
Linear Haskell: practical linearity in a higher-order polymorphic language.
Proceedings of the ACM on Programming Languages 2(POPL), 5 (2017).
https://doi.org/10.1145/3158093

9. Brady, E., McBride, C., McKinna, J.: Inductive families need not store their in-
dices. In: International Workshop on Types for Proofs and Programs. pp. 115–129.
Springer (2003). https://doi.org/10.1007/978-3-540-24849-1 8

10. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A Core Quantitative Coeffect
Calculus. In: Shao, Z. (ed.) Programming Languages and Systems - 23rd European
Symposium on Programming, ESOP 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014, Proceedings. Lecture Notes in Computer Science, vol. 8410, pp.
351–370. Springer (2014). https://doi.org/10.1007/978-3-642-54833-8 19

11. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys 17(4), 471–523 (Dec 1985).
https://doi.org/10.1145/6041.6042

12. Cervesato, I., Pfenning, F.: A linear logical framework. Information and Compu-
tation 179(1), 19–75 (2002). https://doi.org/10.1109/LICS.1996.561339

13. Choudhury, P., Eades III, H., Eisenberg, R.A., Weirich, S.: A Graded Depen-
dent Type System with a Usage-Aware Semantics. Proc. ACM Program. Lang.
5(POPL) (Jan 2021). https://doi.org/10.1145/3434331

14. Coquand, T., Huet, G.: The Calculus of Constructions. Ph.D. thesis, INRIA (1986)
15. Dal Lago, U., Gaboardi, M.: Linear dependent types and relative completeness. In:

Logic in Computer Science (LICS), 2011 26th Annual IEEE Symposium on. pp.
133–142. IEEE (2011). https://doi.org/10.1109/LICS.2011.22

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/3408972
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.4230/LIPIcs.TYPES.2017.1
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/3158093
https://doi.org/10.1007/978-3-540-24849-1_8
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1145/6041.6042
https://doi.org/10.1109/LICS.1996.561339
https://doi.org/10.1145/3434331
https://doi.org/10.1109/LICS.2011.22

488 B. Moon et al.

16. De Amorim, A.A., Gaboardi, M., Gallego Arias, E.J., Hsu, J.: Really Natural
Linear Indexed Type Checking. In: Proceedings of the 26nd 2014 International
Symposium on Implementation and Application of Functional Languages. p. 5.
ACM (2014). https://doi.org/10.1145/2746325.2746335

17. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3 24

18. De Vries, E., Plasmeijer, R., Abrahamson, D.M.: Uniqueness typing simplified.
In: Symposium on Implementation and Application of Functional Languages. pp.
201–218. Springer (2007). https://doi.org/10.1007/978-3-540-85373-2 12

19. Dunfield, J., Krishnaswami, N.R.: Sound and complete bidirectional typecheck-
ing for higher-rank polymorphism with existentials and indexed types. PACMPL
3(POPL), 9:1–9:28 (2019). https://doi.org/10.1145/3290322

20. Dunfield, J., Pfenning, F.: Tridirectional typechecking. In: Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 281–292. POPL ’04, ACM, New York, NY, USA (2004).
https://doi.org/10.1145/964001.964025

21. Eades, H., Stump, A.: Hereditary substitution for Stratified System F. In: Inter-
national Workshop on Proof-Search in Type Theories, PSTT. vol. 10 (2010)

22. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear
dependent types for differential privacy. In: POPL. pp. 357–370 (2013).
https://doi.org/10.1145/2429069.2429113

23. Gaboardi, M., Katsumata, S.y., Orchard, D., Breuvart, F., Uustalu, T.: Com-
bining Effects and Coeffects via Grading. In: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming. p. 476–489.
ICFP 2016, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2951913.2951939

24. Geuvers, H.: A short and flexible proof of strong normalization for the calculus
of constructions. In: Dybjer, P., Nordström, B., Smith, J. (eds.) Types for Proofs
and Programs. pp. 14–38. Springer Berlin Heidelberg, Berlin, Heidelberg (1995).
https://doi.org/10.1007/3-540-60579-7 2

25. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: ESOP.
pp. 331–350 (2014). https://doi.org/10.1007/978-3-642-54833-8 18

26. Girard, J.Y.: Une extension de l’interpretation de gödel a l’analyse, et son applica-
tion a l’elimination des coupures dans l’analyse et la theorie des types. In: Studies
in Logic and the Foundations of Mathematics, vol. 63, pp. 63–92. Elsevier (1971)

27. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
28. Girard, J.Y., Scedrov, A., Scott, P.J.: Bounded linear logic: a modular approach to

polynomial-time computability. Theoretical computer science 97(1), 1–66 (1992).
https://doi.org/10.1016/0304-3975(92)90386-T

29. Girard, J., Taylor, P., Lafont, Y.: Proofs and types, vol. 7. Cambridge University
Press Cambridge (1989)

30. Gratzer, D., Sterling, J., Birkedal, L.: Implementing a modal dependent
type theory. Proc. ACM Program. Lang. 3(ICFP), 107:1–107:29 (2019).
https://doi.org/10.1145/3341711

31. Henglein, F., Makholm, H., Niss, H.: Effect types and region-based memory man-
agement. Advanced Topics in Types and Programming Languages pp. 87–135
(2005)

32. Hodas, J.S.: Logic programming in intutionistic linear logic: Theory, design and
implementation. PhD Thesis, University of Pennsylvania, Department of Computer
and Information Science (1994)

https://doi.org/10.1145/2746325.2746335
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-85373-2_12
https://doi.org/10.1145/3290322
https://doi.org/10.1145/964001.964025
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1145/3341711

Graded Modal Dependent Type Theory 489

33. Hofmann, M.: Syntax and semantics of dependent types. Semantics and logics of
computation 14, 79 (1997)

34. Jiang, J., Eades III, H., de Paiva, V.: On the lambek calculus with an exchange
modality. In: Ehrhard, T., Fernández, M., de Paiva, V., de Falco, L.T. (eds.) Pro-
ceedings Joint International Workshop on Linearity & Trends in Linear Logic and
Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018. EPTCS,
vol. 292, pp. 43–89 (2018). https://doi.org/10.4204/EPTCS.292.4

35. Katsumata, S.: Parametric effect monads and semantics of ef-
fect systems. In: Proceedings of POPL. pp. 633–646. ACM (2014).
https://doi.org/10.1145/2535838.2535846

36. Krishnaswami, N.R., Dreyer, D.: Internalizing relational parametricity in
the extensional calculus of constructions. In: Computer Science Logic
2013 (CSL 2013). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013).
https://doi.org/10.4230/LIPIcs.CSL.2013.432

37. Krishnaswami, N.R., Pradic, P., Benton, N.: Integrating linear and dependent
types. In: ACM SIGPLAN Notices. vol. 50, pp. 17–30. ACM (2015)

38. Leivant, D.: Finitely stratified polymorphism. Information and Computation 93(1),
93–113 (1991). https://doi.org/10.1016/0890-5401(91)90053-5

39. Luo, Z., Zhang, Y.: A linear dependent type theory. Types for Proofs and Programs
(TYPES 2016), Novi Sad (2016)

40. Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. In: Rose,
H.E., Shepherdson, J.C. (eds.) Studies in Logic and the Foundations of Math-
ematics, Logic Colloquium ’73, vol. 80, pp. 73–118. Elsevier (Jan 1975).
https://doi.org/10.1016/S0049-237X(08)71945-1

41. Martin-Löf, P.: Intuitionistic Type Theory (Jun 1980)

42. Martin-Löf, P.: Constructive Mathematics and Computer Programming. In:
Cohen, L.J., �Loś, J., Pfeiffer, H., Podewski, K.P. (eds.) Studies in Logic and
the Foundations of Mathematics, Logic, Methodology and Philosophy of Science
VI, vol. 104, pp. 153–175. Elsevier (Jan 1982). https://doi.org/10.1016/S0049-
237X(09)70189-2

43. McBride, C.: I Got Plenty o’ Nuttin’, pp. 207–233. Springer International Publish-
ing, Cham (2016). https://doi.org/10.1007/978-3-319-30936-1 12

44. Moon, B., Eades III, H., Orchard, D.: Graded modal dependent type theory. CoRR
abs/2010.13163 (2020), https://arxiv.org/abs/2010.13163

45. Nuyts, A., Vezzosi, A., Devriese, D.: Parametric quantifiers for dependent type
theory. Proceedings of the ACM on Programming Languages 1(ICFP), 32:1–32:29
(Aug 2017). https://doi.org/10.1145/3110276

46. Orchard, D., Liepelt, V.B., Eades III, H.: Quantitative Program Reasoning with
Graded Modal Types. Proc. ACM Program. Lang. 3(ICFP), 110:1–110:30 (Jul
2019). https://doi.org/10.1145/3341714

47. Palmgren, E.: On universes in type theory. Twenty-five years of constructive type
theory 36, 191–204 (1998)

48. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: Unified Static Anal-
ysis of Context-Dependence. In: ICALP (2). pp. 385–397 (2013).
https://doi.org/10.1007/978-3-642-39212-2 35

49. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: A calculus of context-dependent
computation. In: Proceedings of the 19th ACM SIGPLAN International Con-
ference on Functional Programming. pp. 123–135. ICFP ’14, ACM (2014).
https://doi.org/10.1145/2628136.2628160

https://doi.org/10.4204/EPTCS.292.4
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.4230/LIPIcs.CSL.2013.432
https://doi.org/10.1016/0890-5401(91)90053-5
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1007/978-3-319-30936-1_12
https://arxiv.org/abs/2010.13163
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3341714
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1145/2628136.2628160

490 B. Moon et al.

50. Pfenning, F.: Intensionality, extensionality, and proof irrelevance in modal type
theory. In: Proceedings 16th Annual IEEE Symposium on Logic in Computer Sci-
ence. pp. 221–230. IEEE (2001). https://doi.org/10.1109/LICS.2001.932499

51. Reed, J.: Extending higher-order unification to support proof irrelevance. In: In-
ternational Conference on Theorem Proving in Higher Order Logics. pp. 238–252.
Springer (2003). https://doi.org/10.1007/10930755 16

52. Reynolds, J.C.: Towards a theory of type structure. In: Programming Symposium.
pp. 408–425. Springer (1974). https://doi.org/10.1007/3-540-06859-7 148

53. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Information
Processing 83, Proceedings of the IFIP 9th World Computer Congres. pp. 513–523
(1983)

54. Shi, R., Xi, H.: A linear type system for multicore programming in
ATS. Science of Computer Programming 78(8), 1176–1192 (2013).
https://doi.org/10.1016/j.scico.2012.09.005

55. Tofte, M., Talpin, J.P.: Region-based memory management. Information and com-
putation 132(2), 109–176 (1997). https://doi.org/10.1006/inco.1996.2613

56. Tov, J.A., Pucella, R.: Practical affine types. In: Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2011, Austin, TX, USA, January 26-28, 2011. pp. 447–458 (2011).
https://doi.org/10.1145/1926385.1926436

57. Wadler, P.: Theorems for free! In: Proceedings of the fourth international confer-
ence on Functional programming languages and computer architecture. pp. 347–
359 (1989). https://doi.org/10.1145/99370.99404

58. Wadler, P.: Linear Types Can Change the World! In: Programming Concepts and
Methods. North (1990)

59. Wadler, P.: Propositions as types. Communications of the ACM 58(12), 75–84
(2015). https://doi.org/10.1145/2699407

60. Walker, D.: Substructural type systems. Advanced Topics in Types and Program-
ming Languages pp. 3–44 (2005)

61. Wood, J., Atkey, R.: A Linear Algebra Approach to Linear Metatheory. CoRR
abs/2005.02247 (2020), https://arxiv.org/abs/2005.02247

62. Zalakain, U., Dardha, O.: Pi with leftovers: a mechanisation in Agda. arXiv
preprint arXiv:2005.05902 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1007/10930755_16
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1016/j.scico.2012.09.005
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/1926385.1926436
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/2699407
https://arxiv.org/abs/2005.02247
http://creativecommons.org/licenses/by/4.0/

	Graded Modal Dependent Type Theory
	1 Introduction
	2 GrTT: Graded Modal Dependent Type Theory
	2.1 Syntax
	2.2 Typing Judgments, Contexts, and Grading
	2.3 Typing Rules
	2.4 Operational Semantics
	2.5 Implementation and Examples

	3 Case Studies
	3.1 Recovering Martin-L¨of Type Theory
	3.2 Determining Usage via Quantitative Semirings
	3.3 Simply-typed Reasoning
	3.4 Recovering Parametricity via Grading
	3.5 Graded Modal Types and Non-dependent Linear Types

	4 Metatheory
	4.1 Substitution
	4.2 Type Preservation
	4.3 Structural Rules
	4.4 Strong Normalization

	5 Implementation
	6 Discussion
	References

