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Abstract. Probabilistic programming is an approach to reasoning un-
der uncertainty by encoding inference problems as programs. In order
to solve these inference problems, probabilistic programming languages
(PPLs) employ different inference algorithms, such as sequential Monte
Carlo (SMC), Markov chain Monte Carlo (MCMC), or variational meth-
ods. Existing research on such algorithms mainly concerns their imple-
mentation and efficiency, rather than the correctness of the algorithms
themselves when applied in the context of expressive PPLs. To rem-
edy this, we give a correctness proof for SMC methods in the context
of an expressive PPL calculus, representative of popular PPLs such as
WebPPL, Anglican, and Birch. Previous work have studied correctness
of MCMC using an operational semantics, and correctness of SMC and
MCMC in a denotational setting without term recursion. However, for
SMC inference—one of the most commonly used algorithms in PPLs as
of today—no formal correctness proof exists in an operational setting. In
particular, an open question is if the resample locations in a probabilistic
program affects the correctness of SMC. We solve this fundamental prob-
lem, and make four novel contributions: (i) we extend an untyped PPL
lambda calculus and operational semantics to include explicit resample
terms, expressing synchronization points in SMC inference; (ii) we prove,
for the first time, that subject to mild restrictions, any placement of the
explicit resample terms is valid for a generic form of SMC inference; (iii)
as a result of (ii), our calculus benefits from classic results from the SMC
literature: a law of large numbers and an unbiased estimate of the model
evidence; and (iv) we formalize the bootstrap particle filter for the cal-
culus and discuss how our results can be further extended to other SMC
algorithms.
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1 Introduction

Probabilistic programming is a programming paradigm for probabilistic mod-
els, encompassing a wide range of programming languages, libraries, and plat-
forms [5,13,14,25,32,37,38]. Such probabilistic models are typically created to
express inference problems, which are ubiquitous and highly significant in, for
instance, machine learning [1], artificial intelligence [31], phylogenetics [29,30],
and topic modeling [2].

In order to solve such inference problems, an inference algorithm is required.
Common general-purpose algorithm choices for inference problems include se-
quential Monte Carlo (SMC) methods [9], Markov chain Monte Carlo (MCMC)
methods [12], and variational methods [42]. In traditional settings, correctness
results for such algorithms often come in the form of laws of large numbers,
central limit theorems, or optimality arguments. However, for general-purpose
probabilistic programming languages (PPLs), the emphasis has predominantly
been on algorithm implementations and their efficiency [14,25,37], rather than
the correctness of the algorithms themselves. In particular, explicit connections
between traditional theoretical SMC results and PPL semantics have been lim-
ited. In this paper, we bridge this gap by formally connecting fundamental SMC
results to the context of an expressive PPL calculus.

Essentially, SMC works by simulating many executions of a probabilistic
program concurrently, occasionally resampling the different executions. In this
resampling step, SMC discards less likely executions, and replicates more likely
executions, while remembering the average likelihood at each resampling step in
order to estimate the overall likelihood. In expressive PPLs, there is freedom in
choosing where in a program this resampling occurs. For example, most SMC
implementations, such as WebPPL [14], Anglican [43], and Birch [25], always
resample when all executions have reached a call to the weighting construct in
the language. At possible resampling locations, Anglican takes a conservative
approach by dynamically checking during runtime if all executions have either
stopped at a weighting construct, or all have finished. If none of these two cases
apply, report a runtime error. In contrast, WebPPL does not perform any checks
and simply includes the executions that have finished in the resampling step.
There are also heuristic approaches [21] that automatically align resampling lo-
cations in programs, ensuring that all executions finish after encountering the
same number of them. The motivations for using the above approaches are all
based on experimental validation. As such, an open research problem is whether
there are any inherent restrictions when selecting resampling locations, or if the
correctness of SMC is independent of this selection. This is not only important
theoretically to guarantee the correctness of inference results, but also for infer-
ence performance, both since inference performance is affected by the locations
of resampling locations [21] and since dynamic checks result in direct runtime
overhead. We address this research problem in this paper.

In the following, we give an overview of the paper and our contributions. In
Section 2, we begin by giving a motivating example from phylogenetics, illus-
trating the usefulness of our results. Next, in Section 3, we define the syntax and
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operational semantics of an expressive functional PPL calculus based on the op-
erational formalization in Borgström et al. [3], representative of common PPLs.
The operational semantics assign to each pair of term t and initial random trace
(sequences of random samples) a non-negative weight. This weight is accumu-
lated during evaluation through a weight construct, which, in current calculi
and implementations of SMC, is (implicitly) always followed by a resampling.
To decouple resampling from weighting, we present our first contribution.

(i) We extend the calculus from Borgström et al. [3] to include explicit resample
terms, expressing explicit synchronization points for performing resampling
in SMC. With this extension, we also define a semantics which limits the
number of evaluated resample terms, laying the foundation for the remaining
contributions.

In Section 4, we define the probabilistic semantics of the calculus. The weight
from the operational semantics is used to define unnormalized distributions 〈〈t〉〉
over traces and �t� over result terms. The measure �t� is called the target mea-
sure, and finding a representation of this is the main objective of inference algo-
rithms.

We give a formal definition of SMC inference based on Chopin [6] in Section 5.
This includes both a generic SMC algorithm, and two standard correctness re-
sults from the SMC literature: a law of large numbers [6], and the unbiasedness
of the likelihood estimate [26].

In Section 6, we proceed to present the main contributions.

(ii) From the SMC formulation by Chopin [6], we formalize a sequence of dis-
tributions 〈〈t〉〉n, indexed by n, such that 〈〈t〉〉n allows for evaluating at most
n resamples. This sequence is determined by the placement of resamples
in t. Our first result is Theorem 1, showing that 〈〈t〉〉n eventually equals
〈〈t〉〉 if the number of calls to resample is upper bounded. Because of the
explicit resample construct, this also implies that, for all resample place-
ments such that the number of calls to resample is upper bounded, 〈〈t〉〉n
eventually equals 〈〈t〉〉. We further relax the finite upper bound restriction
and investigate under which conditions limn→∞〈〈t〉〉n = 〈〈t〉〉 pointwise. In
particular, we relate this equality to the dominated convergence theorem in
Theorem 2, which states that the limit converges as long as there exists a
function dominating the weights encountered during evaluation. This gives
an alternative set of conditions under which 〈〈t〉〉n converges to 〈〈t〉〉 (now
asymptotically, in the number of resamplings n).

The contribution is fundamental, in that it provides us with a sequence of approx-
imating distributions 〈〈t〉〉n of 〈〈t〉〉 that can be targeted by the SMC algorithm
of Section 5. As a consequence, we can extend the standard correctness results
of that section to our calculus. This is our next contribution.

(iii) Given a suitable sequence of transition kernels (ways of moving between the
〈〈t〉〉n), we can correctly approximate 〈〈t〉〉n with the SMC algorithm from
Section 5. The approximation is correct in the sense of Section 5: the law of
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large numbers and the unbiasedness of the likelihood estimate holds. As a
consequence of (ii), SMC also correctly approximates 〈〈t〉〉, and in turn the
target measure �t�. Crucially, this also means estimating the model evidence
(likelihood), which allows for compositionality [15] and comparisons between
different models [30]. This contribution is summarized in Theorem 3.

Related to the above contributions, Ścibior et al. [33] formalizes SMC and
MCMC inference as transformations over monadic inference representations us-
ing a denotational approach (in contrast to our operational approach). They
prove that their SMC transformations preserve the measure of the initial rep-
resentation of the program (i.e., the target measure). Furthermore, their for-
malization is based on a simply-typed lambda calculus with primitive recursion,
while our formalization is based on an untyped lambda calculus which naturally
supports full term recursion. Our approach is also rather more elementary, only
requiring basic measure theory compared to the relatively heavy mathematics
(category theory and synthetic measure theory) used by them. Regarding gen-
eralizability, their approach is both general and compositional in the different
inference transformations, while we abstract over parts of the SMC algorithm.
This allows us, in particular, to relate directly to standard SMC correctness
results.

Section 7 concerns the instantiation of the transition kernels from (iii), and
also discusses other SMC algorithms. Our last contribution is the following.

(iv) We define a sequence of sub-probability kernels kt,n induced by a given
program t, corresponding to the fundamental SMC algorithm known as the
bootstrap particle filter (BPF) for our calculus. This is the most common
version of SMC, and we present a concrete SMC algorithm corresponding
to these kernels. We also discuss other SMC algorithms and their relation
to our formalization: the resample-move [11], alive [19], and auxiliary [28]
particle filters.

Importantly, by combining the above contributions, we justify that the imple-
mentation strategies of the BPFs in WebPPL, Anglican, and Birch are indeed
correct. In fact, our results show that the strategy in Anglican, in which every
evaluation path must resample the same number of times, is too conservative.

An extended version of this paper is also available [20]. This extended version
includes rigorous definitions and detailed proofs for many lemmas found in the
paper, as well as further examples and comments. The lemmas proved in the
extended version are explicitly marked with †.

2 A Motivating Example from Phylogenetics

In this section, we give a motivating example from phylogenetics. The example
is written in a functional PPL3 developed as part of this paper, in order to verify

3 The implementation is an interpreter written in OCaml. It largely follows the same
approach as Anglican and WebPPL, and uses continuation-passing style in order to
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1 let tree = {
2 left:{left:{age:0},right:{age:0},age:4},
3 right:{left:{age:0},right:{age:0},age:6},
4 age:10
5 } in
6

7 let lambda = 0.2 in let mu = 0.1 in
8

9 let crbdGoesExtinct startTime =
10 let curTime = startTime
11 - (sample (exponential (lambda + mu)))
12 in
13 if curTime < 0 then false
14 else
15 let speciation = sample
16 (bernoulli (lambda / (lambda + mu))) in
17 if !speciation then true
18 else crbdGoesExtinct curTime
19 && crbdGoesExtinct curTime in
20

21 let simBranch startTime stopTime =
22 let curTime = startTime -
23 sample (exponential lambda) in
24 if curTime < stopTime then ()
25 else if not (crbdGoesExtinct curTime)
26 then weight (log 0) // #1
27 else (weight (log 2); // #2
28 simBranch curTime stopTime) in
29

30 let simTree tree parent =
31 let w = -mu * (parent.age - tree.age) in
32 weight w; // #3
33 simBranch parent.age tree.age;
34 match tree with
35 | {left,right,age} ->
36 simTree left tree; simTree right tree
37 | {age} -> () in
38

39 simTree tree.left tree;
40 simTree tree.right tree

Fig. 1: A simplified version of a phylogenetic birth-death model from [30]. See
the text for a description.

and experiment with the presented concepts and results. In particular, this PPL
supports SMC inference (Algorithm 2) with decoupled resamples and weights4,
as well as sampling from random distributions with a sample construct.

Consider the program in Fig. 1, encoding a simplified version of a phylo-
genetic birth-death model (see Ronquist et al. [30] for the full version). The
problem is to find the model evidence for a particular birth rate (lambda =

0.2) and death rate (mu = 0.1), given an observed phylogenetic tree. The tree
represents known lineages of evolution, where the leaves are extant (surviving
to the present) species. Most importantly, for illustrating the usefulness of the
results in this paper, the recursive function simBranch, with its two weight ap-
plications #1 and #2, is called a random number of times for each branch in the
observed tree. Thus, different SMC executions encounter differing numbers of
calls to weight. When resampling is performed after every call to weight (#1, #2,
and #3), it is, because of the differing numbers of resamples, not obvious that
inference is correct (e.g., the equivalent program in Anglican gives a runtime
error). Our results show that such a resampling strategy is indeed correct.

This strategy is far from optimal, however. For instance, only resampling at
#3, which is encountered the same number of times in each execution, performs
much better [21,30]. Our results show that this is correct as well, and that it gives
the same asymptotic results as the naive strategy in the previous paragraph.

Another strategy is to resample only at #1 and #3, again causing executions
to encounter differing numbers of resamples. Because #1 weights with (log) 0, this

pause and resume executions as part of inference. It is available at https://github.
com/miking-lang/miking-dppl/tree/pplcore. The example in Fig. 1 can be found
under examples/crbd/crbd-esop.ppl

4 The implementation uses log weights as arguments to weight for numerical reasons.

https://github.com/miking-lang/miking-dppl/tree/pplcore
https://github.com/miking-lang/miking-dppl/tree/pplcore
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approach gives the same accuracy as resampling only at #3, but avoids useless
computation since a zero-weight execution can never obtain non-zero weight.
Equivalently to resampling at #1, zero-weight executions can also be identified
and stopped automatically at runtime. This gives a direct performance gain,
and both are correct by our results. We compared the three strategies above for
SMC inference with 50 000 particles5: resampling at #1,#2, and #3 resulted in a
runtime of 15.0 seconds, at #3 in a runtime of 12.6 seconds, and at #1 and #3 in
a runtime of 11.2 seconds. Furthermore, resampling at #1,#2, and #3 resulted in
significantly worse accuracy compared to the other two strategies [21,30].

Summarizing the above, the results in this paper ensure correctness when
exploring different resampling placement strategies. As just demonstrated, this
is useful, because resampling strategies can have a large impact on SMC accuracy
and performance.

3 A Calculus for Probabilistic Programming Languages

In this section, we define the calculus used throughout the paper. In Section 3.1,
we begin by defining the syntax, and demonstrate how a simple probability dis-
tribution can be encoded using it. In Section 3.2, we define the semantics and
demonstrate it on the previously encoded probability distribution. This seman-
tics is used in Section 4 to define the target measure for any given program. In
Section 3.3, we extend the semantics of Section 3.2 to limit the number of al-
lowed resamples in an evaluation. This extended semantics forms the foundation
for formalizing SMC in Sections 6 and 7.

3.1 Syntax

The main difference between the calculus presented in this section and the stan-
dard untyped lambda calculus is the addition of real numbers, functions oper-
ating on real numbers, a sampling construct for drawing random values from
real-valued probability distributions, and a construct for weighting executions.
The rationale for making these additions is that, in addition to discrete prob-
ability distributions, continuous distributions are ubiquitous in most real-world
models, and the weighting construct is essential for encoding inference problems.
In order to define the calculus, we let X be a countable set of variable names;
D ∈ D range over a countable set D of identifiers for families of probability
distributions over R, where the family for each identifier D has a fixed number
of real parameters |D|; and g ∈ G range over a countable set G of identifiers for
real-valued functions with respective arities |g|. More precisely, for each g, there
is a measurable function σg : R|g| → R. For simplicity, we often use g to denote
both the identifier and its measurable function. We can now give an inductive
definition of the abstract syntax, consisting of values v and terms t.

5 We repeated each experiment 20 times on a machine running Ubuntu 20.04 with an
Intel i5-2500K CPU (4 cores) and 8GB memory. The standard deviation was under
0.1 seconds in all three cases.
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sampleBeta(2, 2)

(a)

let p = sampleBeta(2, 2) in

let observe o =

weight(fBern(p, o)) in

iter observe [true, false, true]; p

(b)

0 0.5 1
0

1

2

Outcome

D
e
n
si
ty

(c)

Fig. 2: The Beta(2, 2) distribution as a program in (a), and visualized with a
solid line in (c). Also, the program tobs in (b), visualized with a dashed line
in (c). The iter function in (b) simply maps the given function over the given
list and returns (). That is, it calls observe true, observe false, and observe true
purely for the side-effect of weighting.

Definition 1.

v ::= c | λx.t
t ::= v | x | t t | if t then t else t | g(t1, . . . , t|g|)

| sampleD(t1, . . . , t|D|) | weight(t) | resample
(1)

Here, c ∈ R, x ∈ X, D ∈ D, g ∈ G. We denote the set of all terms by T and the
set of all values by V.

The formal semantics is given in Section 3.2. Here, we instead give an informal
description of the various language constructs.

Some examples of distribution identifiers are N ∈ D, the identifier for the
family of normal distributions, and U ∈ D, the identifier for the family of con-
tinuous uniform distributions. The semantics of the term sampleN (0, 1) is, in-
formally, “draw a random sample from the normal distribution with mean 0 and
variance 1”. The weight construct is illustrated later in this section, and we
discuss the resample construct in detail in Sections 3.3 and 6.

We use common syntactic sugar throughout the paper. Most importantly, we
use false and true as aliases for 0 and 1, respectively, and () (unit) as another alias
for 0. Furthermore, we often write g ∈ G as infix operators. For instance, 1+2 is
a valid term, where + ∈ G. Now, let R+ denote the non-negative reals. We define
fD : R|D|+1 → R+ as the function fD ∈ G such that fD(c1, . . . , c|D|, ·) is the
probability density (continuous distribution) or mass function (discrete distribu-
tion) for the probability distribution corresponding to D ∈ D and (c1, . . . , c|D|).

For example, fN (0, 1, x) = 1√
2π

· e− 1
2 ·x

2

is the standard probability density of

the normal distribution with mean 0 and variance 1. Lastly, we will also use let
bindings, let rec bindings, sequencing using ;, and lists (all of which can be
encoded in the calculus). Sequencing is required for the side-effects produced by
weight (see Definition 5) and resample (see Sections 3.3 and 6).

We now consider an example. In Sections 3.2 and 4.3 this example will be
further considered to illustrate the semantics, and target measure, respectively.
Here, we first give the syntax, and informally visualize the probability distribu-
tions (i.e., the target measures, as we will see in Section 4.3) for the example.
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Consider first the program in Fig. 2a, directly encoding the Beta(2, 2) distri-
bution, illustrated in Fig. 2c. This distribution naturally represents the uncer-
tainty in the bias of a coin—in this case, the coin is most likely unbiased (bias
0.5), and biases closer to 0 and 1 are less likely. In Fig. 2b, we extend Fig. 2a
by observing the sequence [true, false, true] when flipping the coin. These ob-
servations are encoded using the weight construct, which simply accumulates
a product (as a side-effect) of all real-valued arguments given to it through-
out the execution. First, recall the standard mass function (σfBern

(p, true) =
p; σfBern

(p, false) = (1 − p); σfBern
(p, x) = 0 otherwise) for the Bernoulli dis-

tribution corresponding to fBern ∈ G. The observations [true, false, true] are
encoded using the observe function, which uses the weight construct internally
to assign weights to the current value p according to the Bernoulli mass function.
As an example, assume we have drawn p = 0.4. The weight for this execution
is σfBern

(0.4, true) · σfBern
(0.4, false) · σfBern

(0.4, true) = 0.42 · 0.6. Now consider
p = 0.6 instead. For this value of p the weight is instead 0.62 · 0.4. This explains
the shift in Fig. 2c—a bias closer to 1 is more likely, since we have observed two
true flips, but only one false.

3.2 Semantics

In this section, we define the semantics of our calculus. The definition is split
into two parts: a deterministic semantics and a stochastic semantics. We use
evaluation contexts to assist in defining our semantics. The evaluation contexts
E induce a call-by-value semantics, and are defined as follows.

Definition 2.

E ::= [·] | E t | (λx.t) E | if E then t else t

| g(c1, . . . , cm,E, tm+2, . . . , t|g|)

| sampleD(c1, . . . , cm,E, tm+2, . . . , t|D|) | weight(E)

(2)

We denote the set of all evaluation contexts by E.

With the evaluation contexts in place, we proceed to define the deterministic
semantics through a small-step relation →Det.

Definition 3.

E[(λx.t) v] →Det E[[x �→ v]t]
(App)

c = σg(c1, . . . , c|g|)

E[g(c1, . . . , c|g|)] →Det E[c]
(Prim)

E[if true then t1 else t2] →Det E[t1]
(IfTrue)

E[if false then t1 else t2] →Det E[t2]
(IfFalse)

(3)

The rules are straightforward, and will not be discussed in further detail here.
We use the standard notation for transitive and reflexive closures (e.g. →∗

Det),
and transitive closures (e.g. →+

Det) of relations throughout the paper.
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Following the tradition of Kozen [18] and Park et al. [27], sampling in our
stochastic semantics works by consuming randomness from a tape of real num-
bers. We use inverse transform sampling, and therefore the tape consists of
numbers from the interval [0, 1]. In order to use inverse transform sampling, we
require that for each D ∈ D, there exists a measurable function F−1

D : R|D| ×
[0, 1] → R, such that F−1

D (c1, . . . , c|D|, ·) is the inverse cumulative distribution
function for the probability distribution corresponding to D and (c1, . . . , c|D|).
We call the tape of real numbers a trace, and make the following definition.

Definition 4. Let N0 = N ∪ {0}. The set of all traces is S =
⋃

n∈N0
[0, 1]n.

We use the notation (c1, c2, . . . , cn)S to indicate the trace consisting of the n
numbers c1, c2, . . . , cn. Given a trace s, we denote by |s| the length of the trace.
We also denote the concatenation of two traces s and s′ with s ∗ s′. Lastly, we
let c :: s denote the extension of the trace s with the real number c as head.

With the traces and F−1
D defined, we can proceed to the stochastic6 semantics

→ over T× R+ × S.

Definition 5.

tstop ::= v | E[sampleD(c1, . . . , c|D|)] | E[weight(c)] | E[resample] (4)

t →+
Det tstop

t, w, s → tstop, w, s
(Det)

c ≥ 0

E[weight(c)], w, s → E[()], w · c, s (Weight)

c = F−1
D (c1, . . . , c|D|, p)

E[sampleD(c1, . . . , c|D|)], w, p :: s → E[c], w, s
(Sample)

E[resample], w, s → E[()], w, s
(Resample)

(5)

The rule (Det) encapsulates the →Det relation, and states that terms can move
deterministically only to terms of the form tstop. Note that terms of the form
tstop are found at the left-hand side in the other rules. The (Sample) rule de-
scribes how random values are drawn from the inverse cumulative distribution
functions and the trace when terms of the form sampleD(c1, . . . , c|D|) are en-
countered. Similarly, the Weight rule determines how the weight is updated
when weight(c) terms are encountered. Finally, the resample construct always
evaluates to unit, and is therefore meaningless from the perspective of this se-
mantics. We elaborate on the role of the resample construct in Section 3.3.

With the semantics in place, we define two important functions over S for a
given term. In the below definition, assume that a fixed term t is given.

Definition 6.

rt(s) =

{
v if t, 1, s →∗ v, w, ()S

() otherwise
ft(s) =

{
w if t, 1, s →∗ v, w, ()S

0 otherwise
(6)

6 Note that the semantics models stochastic behavior, but is itself a deterministic
relation.
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Intuitively, rt is the function returning the result value after having repeatedly
applied → on the initial trace s. Analogously, ft gives the density or weight
of a particular s. Note that, if (t, 1, s) gets stuck or diverges, the result value
is (), and the weight is 0. In other words, we disregard such traces entirely,
since we are in practice only interested in probability distributions over values.
Furthermore, note that if the final s �= ()S, the value and weight are again ()
and 0, respectively. The motivation for this is discussed in Section 4.3.

To illustrate rt, ft, and the weight construct, consider the program tobs in
Fig. 2b, and the singleton trace (0.8)S. This program will, in total, evaluate one
call to sample, and three calls to weight. Now, let h(c) = F−1

Beta(2, 2, c) and recall
the function σfBern from Section 3.1. Using the notation φ(c, x) = σfBern(h(c), x),
we have, for some evaluation contexts E1,E2,E3,E4,

tobs , 1, (0.8)S = E1[sampleBeta(2, 2)], 1, (0.8)S → E1[h(0.8)], 1, ()S

→ E2[weight(φ(0.8, true))], 1, ()S → E2[()], φ(0.8, true), ()S

= E2[()], h(0.8), ()S →+ E3[()], φ(0.8, false) · h(0.8), ()S
→+ E4[()], φ(0.8, true) · (1− h(0.8)) · h(0.8), ()S
→+ h(0.8), h(0.8) · (1− h(0.8)) · h(0.8), ()S.

(7)

That is, rtobs ((0.8)S) = h(0.8) and ftobs ((0.8)S) = h(0.8)2(1 − h(0.8)). For arbi-
trary c, we see that rtobs ((c)S) = h(c) and ftobs ((c)S) = h(c)2(1− h(c)). For any
other trace s with |s| �= 1, rtobs (s) = () and ftobs (s) = 0. We will apply this result
when reconsidering this example in Section 4.3.

3.3 Resampling Semantics

In order to connect SMC in PPLs to the classical formalization of SMC presented
in Section 5—and thus enabling the theoretical treatments in Sections 6 and 7—
we need a relation in which terms “stop” after a certain number n of encountered
resample terms. In this section, we define such a relation, denoted by ↪→. Its
definition is given below.

Definition 7.

t �= E[resample] t, w, s → t′, w′, s′

t, w, s, n ↪→ t′, w′, s′, n
(Stoch-Fin)

n > 0 E[resample], w, s → E[()], w, s

E[resample], w, s, n ↪→ E[()], w, s, n− 1
(Resample-Fin)

(8)

This relation is → extended with a natural number n, indicating how many
further resample terms can be evaluated. We implement this limitation by re-
placing the rule (Resample) of → with (Resample-Fin) of ↪→ above which
decrements n each time it is applied, causing terms to get stuck at the n+ 1th
resample encountered.

Now, assume that a fixed term t is given. We define rt,n and ft,n similar to
rt and ft.
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Definition 8. rt,n(s) =

⎧⎪⎨⎪⎩
v if t, 1, s, n ↪→∗ v, w, ()S, n

′

E[resample] if t, 1, s, n ↪→∗ E[resample], w, ()S, 0

() otherwise

Definition 9. ft,n(s) =

⎧⎪⎨⎪⎩
w if t, 1, s, n ↪→∗ v, w, ()S, n

′

w if t, 1, s, n ↪→∗ E[resample], w, ()S, 0

0 otherwise

As for rt and ft, these functions return the result value and weight, respectively,
after having repeatedly applied ↪→ on the initial trace s. There is one difference
compared to →: besides values, we now also allow stopping with non-zero weight
at terms of the form E[resample].

To illustrate ↪→, rt,n(s), and ft,n(s), consider the term tseq defined by

let observe x o = weight(fN (x, 4, o)); resample in

let sim xn−1 on =

let xn = sampleN (xn−1 + 2, 1) in observe xn on; xn in

let x0 = sampleU (0, 100) in

let f = foldl sim in f x0 [c1, c2, . . . , ct−1, ct].

(9)

This term encodes a model in which an object moves along a real-valued axis
in discrete time steps, but where the actual positions (x1, x2, . . . ) can only be
observed through a noisy sensor (c1, c2, . . . ). The inference problem consists
of finding the probability distribution for the very last position, xt, given all
collected observations (c1, c2, . . . , ct). Most importantly, note the position of
resample in (9)—it is evaluated just after evaluating weight in every folding
step. Because of this, for n < t and all traces s such that ftseq ,n(s) > 0, we have
rtseq ,n(s) = En

seq[resample; xn], where En
seq = f [·] [cn+1, cn+2, . . . , ct−1, ct] and

where xn is the value sampled in sim at the nth folding step. That is, we can
now “stop” evaluation at resamples. We will revisit this example in Section 6.

4 The Target Measure of a Program

In this section, we define the target measure induced by any given program in our
calculus. We assume basic familiarity with measure theory, Lebesgue integration,
and Borel spaces. McDonald and Weiss [23] provide a pedagogical introduction
to the subject. In order to define the target measure of a program as a Lebesgue
integral (Section 4.3), we require a measure space on traces (Section 4.1), and
a measurable space on terms (Section 4.2). For illustration, we derive the target
measure for the example program from Section 3 in Section 4.3. The concepts
presented in this section are quite standard, and experienced readers might want
to quickly skim it, or even skip it entirely.
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4.1 A Measure Space over Traces

We use a standard measure space over traces of samples [22]. First, we define
a measurable space over traces. We denote the Borel σ-algebra on Rn with Bn,
and the Borel σ-algebra on [0, 1] with Bn

[0,1].

Definition 10. The σ-algebra S on S is the σ-algebra consisting of sets of the
form S =

⋃
n∈N0

Bn with Bn ∈ Bn
[0,1]. Naturally, [0, 1]0 is the singleton set

containing the empty trace. In other words, ([0, 1]0,B0
[0,1]) = ({()S}, {{()S}, ∅}),

where ()S denotes the empty trace.

Lemma 1. (S,S) is a measurable space.†

The most common measure on Bn is the n-dimensional Lebesgue measure, de-
noted λn. For n = 0, we let λ0 = δ()S , where δ denotes the standard Dirac
measure. By combining the Lebesgue measures for each n, we construct a mea-
sure μS over (S,S).

Definition 11. μS(S) = μS
(⋃

n∈N0
Bn

)
=

∑
n∈N0

λn(Bn)

Lemma 2. (S,S, μS) is a measure space. Furthermore, μS is σ-finite.†

A comment on notation: we denote universal sets by blackboard bold capital
letters (e.g., S), σ-algebras by calligraphic capital letters (e.g., S), members of
σ-algebras by capital letters (e.g., S), and individual elements by lower case
letters (e.g., s).

4.2 A Measurable Space over Terms

In order to show that rt is measurable, we need a measurable space over terms.
We let (T, T ) denote the measurable space that we seek to construct, and follow
the approach in Staton et al. [35] and Vákár et al. [39]. Because our calculus in-
cludes the reals, we would like to at least have B ⊂ T . Furthermore, we would also
like to extend the Borel measurable sets Bn to terms with n reals as subterms.
For instance, we want sets of the form {(λx. (λy. x + y) c2) c1 | (c1, c2) ∈ B2}
to be measurable, where B2 ∈ B2. This leads us to consider terms in a language
in which constants (i.e., reals) are replaced with placeholders [·].

Definition 12. Let vp ::= [·] | λx.t replace the values v from Definition 1. The
set of all terms in the resulting new calculus is denoted with Tp.

Most importantly, it is easy to verify that Tp is countable. Next, we make the
following definitions.

Definition 13. For n ∈ N0, we denote by Tn
p ⊂ Tp the set of all terms with

exactly n placeholders.

Definition 14. We let tnp range over the elements of Tn
p . The t

n
p can be regarded

as functions tnp : Rn → tnp (Rn) which replaces the n placeholders with the n reals
given as arguments.
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Definition 15. Ttnp = {tnp (Bn) | Bn ∈ Bn}.

From the above definitions, we construct the required σ-algebra T .

Definition 16. The σ-algebra T on T is the σ-algebra consisting of sets of the
form T =

⋃
n∈N0

⋃
tnp∈Tn

p
tnp (Bn).

Lemma 3. (T, T ) is a measurable space.†

4.3 The Target Measure

We are now in a position to define the target measure. We will first give the
formal definitions, and then illustrate the definitions with an example. The def-
initions rely on the following result.

Lemma 4. rt : (S,S) → (T, T ) and ft : (S,S) → (R+,B+) are measurable.†

We can now proceed to define the measure 〈〈t〉〉 over S induced by a term t using
Lebesgue integration.

Definition 17. 〈〈t〉〉(S) =
∫
S
ft(s) dμS(s)

Using Definition 17 and the measurability of rt, we can also define a corre-
sponding pushforward measure �t� over T.

Definition 18. �t�(T ) = 〈〈t〉〉(r−1
t (T )) =

∫
r−1
t (T )

ft(s) dμS(s).

The measure �t� is our target measure, i.e., the measure encoded by our program
that we are interested in.

Let us now consider the target measure for the program given by tobs . It is
not too difficult to show that �tobs�(T ) =

∫
T∩R c3(1 − c)2 dλ(c). We recognize

the integrand as the density for the Beta(4, 3) distribution, which, as expected,
is exactly the graph shown in Fig. 2c.

We should in some way ensure the target measure is finite (i.e., can be normal-
ized to a probability measure), since we are in the end most often only interested
in probability measures. Unfortunately, as observed by Staton [34], there is no
known useful syntactic restriction that enforces finite measures in PPLs while
still admitting weights > 1. We will discuss this further in Section 6.2 in relation
to SMC in our calculus.

Lastly, from Section 3.2, recall that we disallow non-empty final traces in
ft and rt. We see here why this is needed: if allowed, for every trace s with
ft(s) > 0, all extensions s∗s′ have the same density ft(s∗s′) = ft(s) > 0. From
this, it is easy to check that if �t� �= 0 (the zero measure), then �t�(T) = ∞ (i.e.,
the measure is not finite). In fact, for any T ∈ T , �t�(T ) > 0 =⇒ �t�(T ) = ∞.
Clearly, this is not a useful target measure.
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5 Formal SMC

In this section, we give a generic formalization of SMC based on Chopin [6]. We
assume a basic understanding of SMC. For a complete introduction to SMC, we
recommend Naesseth et al. [26] and Doucet and Johansen [10].

First, in Section 5.1, we introduce transition kernels, which is a fundamental
concept used in the remaining sections of the paper. Second, in Section 5.2, we
describe Chopin’s generic formalization of SMC as an algorithm for approximat-
ing a sequence of distributions based on a sequence of approximating transition
kernels. Lastly, in Section 5.3, we give standard correctness results for the algo-
rithm.

5.1 Preliminaries: Transition Kernels

Intuitively, transition kernels describe how elements move between measurable
spaces. For a more comprehensive introduction, see Vákár and Ong [40].

Definition 19. Let (A,A) and (A′,A′) be measurable spaces, and let B∗
+ = {B |

B \ {∞} ∈ B+}. A function k : A×A′ → R∗
+ is a (transition) kernel if (1) for

all a ∈ A, k(a, ·) : A′ → R∗
+ is a measure on A′, and (2) for all A′ ∈ A′,

k(·, A′) : (A,A) → (R∗
+,B∗

+) is measurable.

Additionally, we can classify transition kernels according to the below definition.

Definition 20. Let (A,A) and (A′,A′) be measurable spaces. A kernel k : A×
A′ → R∗

+ is a sub-probability kernel if k(a, ·) is a sub-probability measure for
all a ∈ A; a probability kernel if k(a, ·) is a probability measure for all a ∈ A;
and a finite kernel if supa∈A k(a,A′) < ∞.

5.2 Algorithm

The starting point in Chopin’s formulation of SMC is a sequence of probability
measures πn (over respective measurable spaces (An,An), with n ∈ N0) that are
difficult or impossible to directly draw samples from.

The SMC approach is to generate samples from the πn by first sampling
from a sequence of proposal measures qn, and then correcting for the discrep-
ancy between these measures by weighting the proposal samples. The proposal
distributions are generated from an initial measure q0 and a sequence of transi-
tion kernels kn : An−1 ×An → [0, 1], n ∈ N as

qn(An) =

∫
An−1

kn(an−1, An) dπn−1(an−1). (10)

In order to approximate πn by weighting samples from qn, we need some way
of obtaining the appropriate weights. Hence, we require each measurable space
(An,An) to have a default σ-finite measure μAn

, and the measures πn and qn to



418 D. Lundén et al.

Algorithm 1 A generic formulation of sequential Monte Carlo inference based
on Chopin [6]. In each step, we let 1 ≤ j ≤ J , where J is the number of samples.

1. Initialization: Set n = 0. Draw aj
0 ∼ q0 for 1 ≤ j ≤ J .

The empirical distribution given by {aj
0}Jj=1 approximates q0.

2. Correction: Calculate wj
n =

fπ̃n
(aj

n)

fq̃n (a
j
n)

.

The empirical distribution given by {(aj
n, w

j
n)}Jj=1 approximates πn.

3. Selection: Resample the empirical distribution {(aj
n, w

j
n)}Jj=1.

The new empirical distribution is unweighted and is given by {âj
n}Jj=1. This dis-

tribution also approximates πn.
4. Mutation: Increment n.

Draw aj
n ∼ kn(â

j
n−1, ·) for 1 ≤ j ≤ J . The empirical distribution given by {aj

n}Jj=1

approximates qn. Go to (2).

have densities fπn and fqn with respect to this default measure. Furthermore,
we require that the functions fπn

and fqn can be efficiently computed pointwise,
up to an unknown constant factor per function and value of n. More precisely,
we can efficiently compute the densities fπ̃n

= Zπ̃n
· fπn

and fq̃n = Zq̃n · fqn ,
corresponding to the unnormalized measures π̃n = Zπ̃n

· πn and q̃n = Zq̃n · qn.
Here, Zπ̃n

= π̃n(An) ∈ R+ and Zq̃n = q̃n(An) ∈ R+ denote the unknown
normalizing constants for the distributions π̃n and q̃n.

Algorithm 1 presents a generic version of SMC [6] for approximating πn. We
make the notion of approximation used in the algorithm precise in Section 5.3.
Note that in the correction step, the unnormalized pointwise evaluation of fπn

and fqn is used to calculate the weights. In the algorithm description, we also use
some new terminology. First, an empirical distribution is the discrete probability
measure formed by a finite set of possibly weighted samples {(ajn, wj

n)}Jj=1, where

ajn ∈ An and wj
n ∈ R+. Second, when resampling an empirical distribution,

we sample J times from it (with replacement), with each sample having its
normalized weight as probability of being sampled. More specifically, this is
known as multinomial resampling. Other resampling schemes also exist [8], and
are often used in practice to reduce variance. After resampling, the set of samples
forms a new empirical distribution with J unweighted (all wj

n = 1) samples.
An important feature of SMC compared to other inference algorithms is

that SMC produces, as a by-product of inference, unbiased estimates Ẑπ̃n
of

the normalizing constants Zπ̃n
. Stated differently, this means that Algorithm 1

not only approximates the πn, but also the unnormalized versions π̃n. From the
weights wj

n in Algorithm 1, the estimates are given by

Ẑπ̃n
=

n∏
i=0

1

J

J∑
j=1

wj
i ≈ Zπ̃n

(11)

for each π̃n. We give the unbiasedness result of Ẑπ̃n
in Lemma 5 (item 2) below.

The normalizing constant is often used to compare the accuracy of different



Correctness of Sequential Monte Carlo for Probabilistic Programming 419

probabilistic models, and as such, it is also known as the marginal likelihood, or
model evidence. For an example application, see Ronquist et al. [30].

To conclude this section, note that many sequences of probability kernels
kn can be used to approximate the same sequence of measures πn. The only
requirement on the kn is that fπn(an) > 0 =⇒ fqn(an) > 0 must hold for all
n ∈ N0 and an ∈ An (i.e., the proposals must “cover” the πn) [9]. We call such a
sequence of kernels kn valid. Different choices of kn induce different proposals qn,
and hence capture different SMC algorithms. The most common example is the
BPF, which directly uses the kernels from the model as the sequence of kernels
in the SMC algorithm (hence the “bootstrap”). In Section 7.1, we formalize the
bootstrap kernels in the context of our calculus. However, we may want to choose
other probability kernels that satisfy the covering condition, since the choice of
kernels can have major implications for the rate of convergence [28].

5.3 Correctness

We begin by defining the notion of approximation used in Algorithm 1.

Definition 21 (Based on Chopin [6, p. 2387]). Let (A,A) denote a measur-
able space, {{(aj,J , wj,J )}Jj=1}J∈N a triangular array of random variables in A×
R, and π : A → R∗

+ a probability measure. We say that {{(aj,J , wj,J )}Jj=1}J∈N

approximates π if the equality lim
J→∞

∑J
j=1 w

j,Jϕ(aj,J )∑J
j=1 w

j,J
= Eπ(ϕ) holds almost

surely for all measurable functions ϕ : (A,A) → (R,B) such that Eπ(ϕ)—the
expected value of the function ϕ over the distribution π—exists.

First, note that the triangular array can also be viewed as a sequence of ran-
dom empirical distributions (indexed by J). Precisely such sequences are formed
by the random empirical distributions in Algorithm 1 when indexed by the in-
creasing number of samples J . For simplicity, we often let context determine the
sequence, and directly state that a random empirical distribution approximates
some distribution (as in Algorithm 1).

Two classical results in SMC literature are given in the following lemma: a
law of large numbers and the unbiasedness of the normalizing constant estimate.
We take these results as the definition of SMC correctness used in this paper.

Lemma 5. Let πn, n ∈ N0, be a sequence of probability measures over measur-
able spaces (An,An) with default σ-finite measures μAn

, such that the πn have
densities fπn

with respect to these default measures. Furthermore, let q0 be a
probability measure with density fq0 with respect to μA0

, and kn a sequence of
probability kernels inducing a sequence of proposal probability measures qn, given
by (10), over (An,An) with densities fqn with respect to μAn . Also, assume the
kn are valid, i.e., that that fπn

(an) > 0 =⇒ fqn(an) > 0 holds for all n ∈ N0

and an ∈ An. Then

1. the empirical distributions {(ajn, wj
n)}

J

j=1 and {âjn}
J

j=1 produced by Algo-
rithm 1 approximate πn for each n ∈ N0; and
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2. E(Ẑπ̃n
) = Zπ̃n

for each n ∈ N0, where the expectation is taken with respect

to the weights produced when running Algorithm 1, and Ẑπ̃n
is given by (11).

Proof. As referenced in Naesseth et al. [26], see Del Moral [7][Theorem 7.4.3] for
1. For 2, see Naesseth et al. [26][Appendix 4.A].

Chopin [6][Theorem 1] gives another SMC convergence result in the form of a
central limit. This result, however, requires further restrictions on the weights wj

n

in Algorithm 1. It is not clear when these restrictions are fulfilled when applying
SMC on a program in our calculus. This is an interesting topic for future work.

6 Formal SMC for Probabilistic Programming Languages

This section contains our main contribution: how to interpret the operational se-
mantics of our calculus as the unnormalized sequence of measures π̃n in Chopin’s
formalization (Section 6.1), as well as sufficient conditions for this sequence of
approximating measures to converge to 〈〈t〉〉 and for the normalizing constant
estimate to be correct (Section 6.2).

An important insight during this work was that it is more convenient to
find an approximating sequence of measures 〈〈t〉〉n to the trace measure 〈〈t〉〉,
compared to finding a sequence of measures �t�n directly approximating the
target measure �t�. In Section 6.1, we define 〈〈t〉〉n similarly to 〈〈t〉〉, except that
at most n evaluations of resample are allowed. This upper bound on the number
of resamples is formalized through the relation ↪→ from Section 3.3.

In Section 6.2, we obtain two different conditions for the convergence of the
sequence 〈〈t〉〉n to 〈〈t〉〉: Theorem 1 states that for programs with an upper bound
N on the number of resamples they evaluate, 〈〈t〉〉N = 〈〈t〉〉. This precondition
holds in many practical settings, for instance where each resampling is connected
to a datum collected before inference starts. Theorem 2 states another conver-
gence result for programs without such an upper bound but with dominated
weights. Because of these convergence results, we can often approximate 〈〈t〉〉 by
approximating 〈〈t〉〉n with Algorithm 1. When this is the case, Lemma 5 implies
that Algorithm 1, either after a sufficient number of time steps or asymptotically,
correctly approximates 〈〈t〉〉 and the normalizing constant Z〈〈t〉〉. This is the con-
tent of Theorem 3. We conclude Section 6.2 by discussing resample placements
and their relation to Theorem 3, as well as practical implications of Theorem 3.

6.1 The Sequence of Measures Generated by a Program

We now apply the formalization from Section 4.3 again, but with ft,n and rt,n
(from Section 3.3) replacing ft and rt. Intuitively, this yields a sequence of
measures �t�n indexed by n, which are similar to �t�, but only allow for evaluating
at most n resamples. To illustrate this idea, consider again the program tseq in
(9). Here, �tseq�0 is a distribution over terms of the form E1

seq[resample; x1],
�tseq�1 a distribution over terms of the form E2

seq[resample; x2], and so forth.



Correctness of Sequential Monte Carlo for Probabilistic Programming 421

For n ≥ t, �tseq�n = �tseq�, because it is clear that t is an upper bound on the
number of resamples evaluated in tseq .

While the measures �t�n are useful for giving intuition, it is easier from a
technical perspective to define and work with 〈〈t〉〉n, the sequence of measures
over traces where at most n resamples are allowed. First, we need the following
result, analogous to Lemma 4.

Lemma 6. rt,n : (S,S) → (T, T ) and ft,n : (S,S) → (R+,B+) are measurable.†

This allows us to define 〈〈t〉〉n (cf. Definition 17).

Definition 22. 〈〈t〉〉n(S) =
∫
S
ft,n(s) dμS(s)

6.2 Correctness

We begin with a convergence result for when the number of calls to resample

in a program is upper bounded.

Theorem 1. If there is N ∈ N such that ft,n = ft whenever n > N , then
〈〈t〉〉n = 〈〈t〉〉 for all n > N .

This follows directly since ft,n not only converges to ft, but is also equal to ft
for all n > N . However, even if the number of calls to resample in t is upper
bounded, there is still one concern with using 〈〈t〉〉n as π̃n in Algorithm 1: there is
no guarantee that the measures 〈〈t〉〉n can be normalized to probability measures
and have unique densities (i.e., that they are finite). This is a requirement for
the correctness results in Lemma 5. Unfortunately, recall from Section 4.3 that
there is no known useful syntactic restriction that enforces finiteness of the target
measure. This is clearly true for the measures 〈〈t〉〉n as well, and as such, we need
to make the assumption that the 〈〈t〉〉n are finite—otherwise, it is not clear that
Algorithm 1 produces the correct result, since the conditions in Lemma 5 are
not fulfilled. Fortunately, this assumption is valid for most, if not all, models of
practical interest. Nevertheless, investigating whether or not the restriction to
probability measures in Lemma 5 can be lifted to some extent is an interesting
topic for future work.

Although of limited practical interest, programs with an unbounded number
of calls to resample are of interest from a semantic perspective. If we have
limn→∞〈〈t〉〉n = 〈〈t〉〉 pointwise, then any SMC algorithm approximating the
sequence 〈〈t〉〉n also approximates 〈〈t〉〉, at least asymptotically in the number of
steps n. First, consider the program tgeo-res given by

let rec geometric =

resample; if samplebern(0.6) then 1 + geometric () else 1
in geometric ().

(12)

Note that tgeo-res has no upper bound on the number of calls to resample,
and therefore Theorem 1 is not applicable. It is easy, however, to check that
limn→∞〈〈tgeo-res〉〉n = 〈〈tgeo-res〉〉 pointwise. So does limn→∞〈〈t〉〉n = 〈〈t〉〉 point-
wise hold in general? The answer is no, as we demonstrate next.



422 D. Lundén et al.

For limn→∞〈〈t〉〉n = 〈〈t〉〉 to hold pointwise, it must hold that limn→∞ ft,n =
ft pointwise μS-ae. Unfortunately, this does not hold for all programs. Consider
the program tloop defined by let rec loop _ = resample; loop () in loop ().
Here, ftloop = 0 since the program diverges deterministically, but ftloop ,n(()S) = 1
for all n. Because μS({()S}) �= 0, we do not have limn→∞ ftloop ,n = ftloop pointwise
μS-ae.

Even if we have limn→∞ ft,n = ft pointwise μS-ae, we might not have
limn→∞〈〈t〉〉n = 〈〈t〉〉 pointwise. Consider, for instance, the program tunit given
by

let s = sampleU (0, 1) in

let rec foo n =

if s ≤ 1/n then resample; weight 2; foo (2 · n) else weight 0 in

foo 1

(13)

We have ftunit = 0 and ftunit ,n = 2n · 1[0,1/2n] for n > 0. Also, limn→∞ ftunit ,n =
ftunit pointwise. However, limn→∞〈〈tunit 〉〉n(S) = 1 �= 0 = 〈〈tunit 〉〉(S). This shows
that the limit may fail to hold, even for programs that terminate almost surely,
as is the case for the program tunit in (13). In fact, this program is positively
almost surely terminating [4] since the expected number of recursive calls to foo

is 1.
Guided by the previous example, we now state the dominated convergence

theorem—a fundamental result in measure theory—in the context of SMC in-
ference in our calculus.

Theorem 2. Assume that limn→∞ ft,n = ft holds pointwise μS-ae. Further-
more, assume that there exists a measurable function g : (S,S) → (R+,B+) such
that ft,n ≤ g μS-ae for all n, and

∫
S g(s)dμS(s) < ∞. Then limn→∞〈〈t〉〉n = 〈〈t〉〉

pointwise.

For a proof, see McDonald and Weiss [23, Theorem 4.9]. It is easy to check that
for our example in (13), there is no dominating and integrable g as is required
in Theorem 2. We have already seen that the conclusion of the theorem fails
to hold here. As a corollary, if there exists a dominating and integrable g, the
measures 〈〈t〉〉n are always finite.

Corollary 1. If there exists a measurable function g : (S,S) → (R+,B+) such
that ft,n ≤ g μS-ae for all n, and

∫
S g(s)dμS(s) < ∞, then 〈〈t〉〉n is finite for

each n ∈ N0.

This holds because 〈〈t〉〉n(S) =
∫
S ft,n(s)dμS(s) ≤

∫
S g(s)dμS(s) < ∞. Hence, we

do not need to assume the finiteness of 〈〈t〉〉n in order for Algorithm 1 to be
applicable, as was the case for the setting of Theorem 1.

In Theorem 3, we summarize and combine the above results with Lemma 5.

Theorem 3. Let t be a term, and apply Algorithm 1 with 〈〈t〉〉n as π̃n, and with
arbitrary valid kernels kn. If the condition of Theorem 1 holds and 〈〈t〉〉n is finite
for each n ∈ N0, then Algorithm 1 approximates 〈〈t〉〉 and its normalizing con-
stant after a finite number of steps. Alternatively, if the condition of Theorem 2
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holds, then Algorithm 1 approximates 〈〈t〉〉 and its normalizing constant in the
limit n → ∞.

This follows directly from Theorem 1, Theorem 2, and Lemma 5.
We conclude this section by discussing resample placements, and the prac-

tical implications of Theorem 3. First, we define a resample placement for a
term t as the term resulting from replacing arbitrary subterms t′ of t with
resample; t′. Note that such a placement directly corresponds to constructing
the sequence 〈〈t〉〉n. Second, note that the measure 〈〈t〉〉 and the target measure
�t� are clearly unaffected by such a placement—indeed, resample simply eval-
uates to (), and for 〈〈t〉〉 and �t�, there is no bound on how many resamples
we can evaluate. As such, we conclude that all resample placements in t ful-
filling one of the two conditions in Theorem 3 leads to a correct approximation
of 〈〈t〉〉 when applying Algorithm 1. Furthermore, there is always, in practice,
an upper bound on the number of calls to resample, since any concrete run of
SMC has an (explicit or implicit) upper bound on its runtime. This is a power-
ful result, since it implies that when implementing SMC for PPLs, any method
for selecting resampling locations in a program is correct under mild conditions
(Theorem 1 or Theorem 2) that are most often, if not always, fulfilled in practice.
Most importantly, this justifies the basic approach for placing resamples found
in WebPPL, Anglican, and Birch, in which every call to weight is directly fol-
lowed (implicitly) by a call to resample. It also justifies the approach to placing
resamples described in Lundén et al. [21]. This latter approach is essential in,
e.g., Ronquist et al. [30], in order to increase inference efficiency.

Our results also show that the restriction in Anglican requiring all executions
to encounter the same number of resamples, is too conservative. Clearly, this is
not a requirement in either Theorem 1 or Theorem 2. For instance, the number
of calls to resample varies significantly in (12).

7 SMC Algorithms

In this section, we take a look at how the kernels kn in Algorithm 1 can be
instantiated to yield the concrete SMC algorithm known as the bootstrap particle
filter (Section 7.1), and also discuss other SMC algorithms and how they relate
to Algorithm 1 (Section 7.2).

7.1 The Bootstrap Particle Filter

We define for each term t a particular sequence of kernels kt,n, that gives rise
to the SMC algorithm known as the bootstrap particle filter (BPF). Informally,
these kernels correspond to simply continuing to evaluate the program until
either arriving at a value v or a term of the form E[resample]. For the bootstrap
kernel, calculating the weights wj

n from Algorithm 1 is particularly simple.
Similarly to 〈〈t〉〉n, it is more convenient to define and work with sequences

of kernels over traces, rather than terms. We will define kt,n(s, ·) to be the sub-
probability measure over extended traces s ∗ s′ resulting from evaluating the
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term rt,n−1(s) until the next resample or value v, ignoring any call to weight.
First, we immediately have that the set of all traces that do not have s as prefix
must have measure zero. To make this formal, we will use the inverse images of
the functions prepends(s

′) = s ∗ s′, s ∈ S in the definition of the kernel.

Lemma 7. The functions prepends : (S,S) → (S,S) are measurable.†

The next ingredient for defining the kernels kt,n is a function pt,n that indicates
what traces are possible when executing t until the n+1th resample or value.

Definition 23. pt,n(s) =

⎧⎪⎨⎪⎩
1 if t, ·, s, n ↪→∗ v, ·, ()S, ·
1 if t, ·, s, n ↪→∗ E[resample], ·, ()S, 0
0 otherwise

Note the similarities to Definition 9. In particular, ft,n(s) > 0 implies pt,n(s) = 1.
However, note that ft,n(s) = 0 does not imply pt,n(s) = 0, since pt,n ignores
weights. As an example, f(weight 0),n(()S) = 0, while p(weight 0),n(()S) = 1.

Lemma 8. pt,n : (S,S) → (R+,B+) is measurable.

The proof is analogous to that of Lemma 6. We can now formally define the
kernels kt,n.

Definition 24. kt,n(s, S) =
∫
prepend−1

s (S)
prt,n−1(s),1(s

′) dμS(s
′)

By the definition of pt,n, the kt,n are sub-probability kernels rather than proba-
bility kernels. Intuitively, the reason for this is that during evaluation, terms can
get stuck, deterministically diverge, or even stochastically diverge. Such traces
are assigned 0 weight by pt,n.

Lemma 9. The functions kt,n : S× S → R+ are sub-probability kernels.†7

We get a natural starting measure q0 from the sub-probability distribution
resulting from running the initial program t until reaching a value or a call to
resample, ignoring weights.

Definition 25. 〈t〉0(S) =
∫
S
pt,0(s)dμS(s).

Now we have all the ingredients for the general SMC algorithm described
in Section 5.2: a sequence of target measures 〈〈t〉〉n = π̃n (Definition 22), a
starting measure 〈t〉0 ∝ q0 (Definition 25), and a sequence of kernels kt,n ∝ kn
(Definition 24). These then induce a sequence of proposal measures 〈t〉n = q̃n as
in Equation (10), which we instantiate in the following definition.

Definition 26. 〈t〉n(S) =
∫
S kt,n(s, S)ft,n−1(s)dμS(s), n > 0

Intuitively, the measures 〈t〉n are obtained by evaluating the terms in the
support of the measure 〈〈t〉〉n−1 until reaching the next resample or value. For
an efficient implementation, we need to factorize this definition into the history
and the current step, which amounts to splitting the traces. Each feasible trace
can be split in such a way.

7 We only give a partial proof of this lemma.
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Algorithm 2 A concrete instantiation of Algorithm 1 with π̃n = 〈〈t〉〉n, kn ∝
kt,n, q0 ∝ 〈t〉0, and as a consequence q̃n = 〈t〉n (for n > 0). In each step, we let
1 ≤ j ≤ J , where J is the number of samples.

1. Initialization: Set n = 0. Draw sj0 ∼ 〈t〉0 for 1 ≤ j ≤ J .
That is, run the program t, and draw from U(0, 1) whenever required by a sampleD.
Record these draws as the trace sj0. Stop when reaching a term of the form
E[resample] or a value v. The empirical distribution {sj0}Jj=1 approximates 〈t〉0.

2. Correction: Calculate wj
n =

f〈〈t〉〉n (sjn)

f〈t〉n (s
j
n)

for 1 ≤ j ≤ J .

As a consequence of Lemma 13, this is trivial. Simply set wj
n to the weight ac-

cumulated while running t in step (1), or rt,n−1(ŝ
j
n−1) in step (5). The empirical

distribution given by {(sjn, wj
n)}Jj=1 approximates 〈〈t〉〉n/Z〈〈t〉〉n .

3. Termination: If all samples rt(s
j
n) are values, terminate and output

{(sjn, wj
n)}Jj=1. If not, go to the next step.

We cannot evaluate values further, so running the algorithm further if all samples
are values is pointless. When terminating, assuming the conditions in Theorem 1 or
Theorem 2 holds, {(sjn, wj

n)}Jj=1 approximates 〈〈t〉〉/Z〈〈t〉〉n . Also, by the definition
of �t�, {(rt(sjn), wj

n)}Jj=1 approximates �t�/Z�t�n , the normalized version of �t�.
4. Selection: Resample the empirical distribution {(sjn, wj

n)}Jj=1. The new empirical
distribution is unweighted and given by {ŝjn}Jj=1. This distribution also approxi-
mates 〈〈t〉〉n/Z〈〈t〉〉n .

5. Mutation: Increment n. Draw sjn ∼ kt,n(ŝ
j
n−1, ·) for 1 ≤ j ≤ J .

That is, simply run the intermediate program rt,n−1(ŝ
j
n−1), and draw from U(0, 1)

whenever required by a sampleD. Record these draws and append them to ŝjn−1,
resulting in the trace sjn. Stop when reaching a term of the form E[resample] or a
value v. The empirical distribution {sjn}Jj=1 approximates 〈t〉n/Z〈t〉n . Go to (2).

Lemma 10. Let n > 0. If ft,n(s) > 0, then ft,n(s) = ft,n−1(s)frt,n−1(s),1(s) for
exactly one decomposition s∗s = s. If ft,n(s) = 0, then ft,n−1(s)frt,n−1(s),1(s) =
0 for all decompositions s ∗ s = s. As a consequence, if ft,n(s) > 0, then
prt,n−1(s),1(s) = 1.†

This gives a more efficiently computable definition of the density.

Lemma 11. For n ∈ N, 〈t〉n(S) =
∫
S
ft,n−1(s)prt,n−1(s),1(s)dμS(s), where s ∗

s = s is the unique decomposition from Lemma 10.†8

Since the kernels kt,n are sub-probability kernels, the measures 〈t〉n are finite
given that the 〈〈t〉〉n are finite.

Lemma 12. 〈t〉0 is a sub-probability measure. Also, if 〈〈t〉〉n−1 is finite, then
〈t〉n is finite.†

As discussed in Section 6.2, the 〈〈t〉〉n are finite, either by assumption (Theo-
rem 1) or as a consequence of the dominating function of Theorem 2. From this

8 We only give a proof sketch for this lemma.



426 D. Lundén et al.

and Lemma 12, the 〈t〉n are also finite. Furthermore, checking that 〈t〉n are
valid, i.e. that the density f〈t〉n of each 〈t〉n covers the density f〈〈t〉〉n of 〈〈t〉〉n
is trivial. As such, by Lemma 5, we can now correctly approximate 〈〈t〉〉n using
Algorithm 1. The details are given in Algorithm 2, which closely resembles the
standard SMC algorithm in WebPPL. For ease of notation, we assume it possible
to draw samples from 〈t〉0 and kt,n(s, ·), even though these are sub-probability
measures. This essentially corresponds to assuming evaluation never gets stuck
or diverges. Making sure this is the case is not within the scope of this paper.
The weights in Algorithm 2 at time step n can easily be calculated according to
the following lemma.

Lemma 13. wn(s) =
f〈〈t〉〉n(s)

f〈t〉n(s)
=

{
frt,n−1(s),1(s) if n > 0

ft,0(s) if n = 0
when f〈t〉n(s) > 0.

Here, s ∗ s = s is the unique decomposition from Lemma 10.†

7.2 Other SMC Algorithms

In this section, we discuss SMC algorithms other than the BPF.
First, we have the resample-move algorithm by Gilks and Berzuini [11], which

is also implemented in WebPPL [13], and treated by Chopin [6] and Ścibior et
al. [33]. In this algorithm, the SMC kernel is composed with a suitable MCMC
kernel, such that one or more MCMC steps are taken for each sample after
each resampling. This helps with the so-called degeneracy problem in SMC,
which refers to the tendency of SMC samples to share a common ancestry as a
result of resampling. We can directly achieve this algorithm in our context by
simply choosing appropriate transition kernels in Algorithm 1. Let kMCMC,n be
MCMC transition kernels with π̃n−1 = 〈〈t〉〉n−1 as invariant distributions. Using
the bootstrap kernels as the main kernels, we let kn = kt,n ◦ kMCMC,n where ◦
denotes kernel composition. The sequence kn is valid because of the validity of
the main SMC kernels and the invariance of the MCMC kernels.

While Algorithm 1 captures different SMC algorithms by allowing the use of
different kernels, some algorithms require changes to Algorithm 1 itself. The first
such variation of Algorithm 1 is the alive particle filter, recently discussed by
Kudlicka et al. [19], which reduces the tendency to degeneracy by not including
sample traces with zero weight in resampling. This is done by repeating the
selection and mutation steps (for each sample individually) until a trace with
non-zero weight is proposed; the corresponding modifications to Algorithm 1 are
straightforward. The unbiasedness result of Kudlicka et al. [19] can easily be
extended to our PPL context, with another minor modification to Algorithm 1.

Another variation of Algorithm 1 is the auxiliary particle filter [28]. Infor-
mally, this algorithm allows the selection and mutation steps of Algorithm 1 to
be guided by future information regarding the weights wn. For many models,
this is possible since the weighting functions wn from Algorithm 1 are often
parametric in an explicitly available sequence of observation data points, which
can also be used to derive better kernels kn. Clearly, such optimizations are
model-specific, and can not directly be applied in expressive PPL calculi such as
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ours. However, the general idea of using look-ahead in general-purpose PPLs to
guide selection and mutation is interesting, and should be explored.

8 Related Work

The only major previous work related to formal SMC correctness in PPLs is
Ścibior et al. [33] (see Section 1). They validate both the BPF and the resample-
move SMC algorithms in a denotational setting. In a companion paper, Ścibior
et al. [32] also give a Haskell implementation of these inference techniques.

Although formal correctness proofs of SMC in PPLs are sparse, there are
many languages that implement SMC algorithms. Goodman and Stuhlmüller [14]
describe SMC for the probabilistic programming language WebPPL. They im-
plement a basic BPF very similar to Algorithm 2, but do not show correctness
with respect to any language semantics. Also, related to WebPPL, Stuhlmüller
et al. [36] discuss a coarse-to-fine SMC inference technique for probabilistic pro-
grams with independent sample statements.

Wood et al. [43] describe PMCMC, an MCMC inference technique that uses
SMC internally, for the probabilistic programming language Anglican [37]. Sim-
ilarly to WebPPL, Anglican also includes a basic BPF similar to Algorithm 2,
with the exception that every execution needs to encounter the same number of
calls to resample. They use various types of empirical tests to validate correct-
ness, in contrast to the formal proof found in this paper. Related to Anglican,
a brief discussion on resample placement requirements can be found in van de
Meent et al. [41].

Birch [25] is an imperative object-oriented PPL, with a particular focus
on SMC. It supports a number of SMC algorithms, including the BPF [16]
and the auxiliary particle filter [28]. Furthermore, they support dynamic an-
alytical optimizations, for instance using locally-optimal proposals and Rao–
Blackwellization [24]. As with WebPPL and Anglican, the focus is on perfor-
mance and efficiency, and not on formal correctness.

There are quite a few papers studying the correctness of MCMC algorithms
for PPLs. Using the same underlying framework as for their SMC correctness
proof, Ścibior et al. [33] also validates a trace MCMC algorithm. Another proof
of correctness for trace MCMC is given in Borgström et al. [3], which instead
uses an untyped lambda calculus and an operational semantics. Much of the
formalization in this paper is based on constructions used as part of their paper.
For instance, the functions ft and rt are defined similarly, as well as the measure
space (S,S, μS) and the measurable space (T, T ). Our measurability proofs of
ft, rt, ft,n, and rt,n largely follow the same strategies as found in their paper.
Similarly to us, they also relate their proof of correctness to classical results from
the MCMC literature. A difference is that we use inverse transform sampling,
whereas they use probability density functions. As a result of this, our traces
consist of numbers on [0, 1], while their traces consist of numbers on R. Also,
inverse transform sampling naturally allows for built-in discrete distributions.
In contrast, discrete distributions must be encoded in the language itself when
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using probability densities. Another difference is that they restrict the arguments
to weight to [0, 1], in order to ensure the finiteness of the target measure.

Other work related to ours include Jacobs [17], Vákár et al. [39], and Staton et
al. [35]. Jacobs [17] discusses problems with models in which observe (related
to weight) statements occur conditionally. While our results show that SMC
inference for such models is correct, the models themselves may not be useful.
Vákár et al. [39] develops a powerful domain theory for term recursion in PPLs,
but does not cover SMC inference in particular. Staton et al. [35] develops both
operational and denotational semantics for a PPL calculus with higher-order
functions, but without recursion. They also briefly mention SMC as a program
transformation.

Classical work on SMC includes Chopin [6], which we use as a basis for our
formalization. In particular, Chopin [6] provides a general formulation of SMC,
placing few requirements on the underlying model. The book by Del Moral [7]
contains a vast number of classical SMC results, including the law of large num-
bers and unbiasedness result from Lemma 5. A more accessible summary of the
important SMC convergence results from Del Moral [7] can be found in Naesseth
et al. [26].

9 Conclusions

In conclusion, we have formalized SMC inference for an expressive functional
PPL calculus, based on the formalization by Chopin [6]. We showed that in this
context, SMC is correct in that it approximates the target measures encoded
by programs in the calculus under mild conditions. Furthermore, we illustrated
a particular instance of SMC for our calculus, the bootstrap particle filter, and
discussed other variations of SMC and their relation to our calculus.

As indicated in Section 2, the approach used for selecting resampling locations
can have a large impact on SMC accuracy and performance. This leads us to
the following general question: can we select optimal resampling locations in a
given program, according to some formally defined measure of optimality? We
leave this important research direction for future work.
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