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Abstract. We consider a hierarchy of four typed call-by-value languages
with either higher-order or ground-type references and with either call/cc
or no control operator.

Our first result is a fully abstract trace model for the most expressive
setting, featuring both higher-order references and call/cc, constructed
in the spirit of operational game semantics. Next we examine the impact
of suppressing higher-order references and callcc in contexts and provide
an operational explanation for the game-semantic conditions known as
visibility and bracketing respectively. This allows us to refine the original
model to provide fully abstract trace models of interaction with contexts
that need not use higher-order references or call/cc. Along the way, we
discuss the relationship between error- and termination-based contextual
testing in each case, and relate the two to trace and complete trace
equivalence respectively.

Overall, the paper provides a systematic development of operational
game semantics for all four cases, which represent the state-based face
of the so-called semantic cube.

Keywords: contextual equivalence, operational game semantics, higher-
order references, control operators

1 Introduction

Research into contextual equivalence has a long tradition in programming lan-
guage theory, due to its fundamental nature and applicability to numerous veri-
fication tasks, such as the correctness of compiler optimisations. Capturing con-
textual equivalence mathematically, i.e. the full abstraction problem [26], has
been an important driving force in denotational semantics, which led, among
others, to the development of game semantics [2,12]. Game semantics models
computation through sequences of question- and answer-moves by two players,
traditionally called O and P, who play the role of the context and the program
respectively. Because of its interactive nature, it has often been referred to as a
middle ground between denotational and operational semantics.
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Over the last three decades the game-semantic approach has led to numerous
fully abstract models for a whole spectrum of programming paradigms. Most pa-
pers in this strand follow a rather abstract pattern when presenting the models,
emphasing structure and compositionality, often developing a correspondence
with a categorical framework along the way to facilitate proofs. The operational
intuitions behind the games are somewhat obscured in this presentation, and
left to be discovered through a deeper exploration of proofs.

In contrast, operational game semantics aims to define models in which the
interaction between the term and the environment is described through a care-
fully instrumented labelled transition system (LTS), built using the syntax and
operational semantics of the relevant language. Here, the derived trace seman-
tics can be shown to be fully abstract. In this line of work, the dynamics is
described more directly and provides operational intuitions about the meaning
of moves, while not immediately giving structural insights about the structure
of the traces.

In this paper, we follow the operational approach and present a whole hier-
archy of trace models for higher-order languages with varying access to higher-
order state and control. As a vehicle for our study, we use HOSC, a call-by-value
higher-order language equipped with general references and continuations. We
also consider its sublanguages GOSC, HOS and GOS, obtained respectively by
restricting storage to ground values, by removing continuations, and by imposing
both restrictions. We study contextual testing of a class of HOSC terms using
contexts from each of the languages x ∈ {HOSC,GOSC,HOS,GOS}; we write x
to refer to each case. Our working notion of convergence will be error reachabil-
ity, where an error is represented by a free variable. Accordingly, at the technical
level, we will study a family of equivalence relations ∼=x

err , each corresponding to
contextual testing with contexts from x, where contexts have the extra power
to abort the computation.

Our main results are trace models Trx(Γ � M) for each x ∈ {HOSC,GOSC,
HOS,GOS}, which capture ∼=x

err through trace equivalence:

Γ � M1
∼=x

err M2 if and only if Trx(Γ � M1) = Trx(Γ � M2).

It turns out that, for contexts with control (i.e. x ∈ {HOSC,GOSC}), ∼=x
err coin-

cides with the standard notion of contextual equivalence based on termination,
written ∼=x

ter . However, in the other two cases, the former is strictly more dis-
criminating than the latter. We explain how to account for this difference in the
trace-based setting, using complete traces.

A common theme that has emerged in game semantics is the comparative
study of the power of contexts, as it turned out possible to identify combina-
torial conditions, namely visibility [3] and bracketing [22], that correspond to
contextual testing in the absence of general references and control constructs
respectively. In brief, visibility states that not all moves can be played, but only
those that are enabled by a “visible part” of the interaction, which could be
thought of as functions currently in scope. Bracketing in turn imposes a disci-
pline on answers, requiring that the topmost question be answered first. In the
paper, we provide an operational reconstruction of both conditions.
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σ, τ � Unit | Int | Bool | refτ | τ × σ | τ → σ | cont τ
U, V � () | tt | ff | n̂ | x | � | 〈U, V 〉 | λxτ .M | rec y(xτ ).M | contτ K
M,N� V | 〈M,N〉 | πiM | MN | refτ M | !M | M := N | if M1 M2 M3 | M ⊕N

| M 
N | M = N | call/ccτ (x.M) | throwτ M to N

K � • | 〈V,K〉 | 〈K,M〉 | πiK | V K | KM | refτ K | !K | V := K | K := M
| if K M N | K ⊕M | V ⊕K | K 
M | V 
K | K = M | V = K
| throwτ V to K | throwτ K to M

C � • | 〈M,C〉 | 〈C,M〉 | πiC | λxτ .C | rec y(xτ ).C | MC | CM | refτ C | !C
| C := M | M := C | if C M N | if M C N | if M N C | C ⊕M | M ⊕ C
| C 
M | M 
 C | C = M | M = C | call/ccτ (x.C) | throwτ C to M
| throwτ M to C

Notational conventions: x, y ∈ Var, � ∈ Loc, n ∈ Z, i ∈ {1, 2}, ⊕ ∈ {+,−, ∗},

 ∈ {=, <}
Syntactic sugar: let x = M inN stands for (λx.N)M (if x does not occur in N we also
write M ;N)

Fig. 1. HOSC syntax

Overall, we propose a unifying framework for studying higher-order languages
with state and control, which we hope will make the techniques of (operational)
game semantics clearer to the wider community. The construction of the fully
abstract LTSs is by no means automatic, as there is no general methodology for
extracting trace semantics from game models. Some attempts in that direction
have been reported in [25], but the type discipline discussed there is far too weak
to be applied to the languages we study. As the most immediate precursor to our
work, we see the trace model of contextual interactions between HOS contexts
and HOS terms from [23]. In comparison, the models developed in this paper
are more general, as they consider the interaction between HOSC terms and
contexts drawn from any of the four languages ranged over by x.

In the 1990s, Abramsky proposed a research programme, originally called
the semantic cube [1], which concerned investigating extensions of the purely
functional programming language PCF along various axes. From this angle, the
present paper is an operational study of a semantic diamond of languages with
state, with GOS at the bottom, extending towards HOSC at the top, either via
GOSC or HOS.

2 HOSC

The main objects of our study will be the language HOSC along with its frag-
ments GOSC, HOS and GOS. HOSC is a higher-order programming language
equipped with general references and continuations.

Syntax HOSC syntax is given in Figure 1. Assuming countably infinite sets
Loc (locations) and Var (variables), HOSC typing judgments take the form



Complete trace models of state and control 351

(K[(λxσ.M)V ], h) →(K[M{V/x}], h)
(K[πi〈V1, V2〉], h) →(K[Vi], h)
(K[if tt M1 M2], h)→(K[M1], h)
(K[if ff M1 M2], h) →(K[M2], h)

(K[n̂⊕ m̂], h) →(K[n̂⊕m], h)
(K[n̂
 m̂], h) →(K[b], h)
with b = tt if n
m, otherwise b = ff
(K[call/cc(x.M)], h)→(K[M{contK/x}], h)

(K[!�], h) →(K[h(�)], h)
(K[ref V ], h) →(K[�], h · [� �→ V ])
(K[� := V ], h)→(K[()], h[� �→ V ])
(K[� = �′], h) →(K[b], h)
with b = tt if � = �′, otherwise b = ff
(K[(rec y(xσ).M︸ ︷︷ ︸

U

)V ], h)
→ (K[M{V/x, U/y}], h)

(K[throw V to contK ′], h) → (K′[V ], h)

Fig. 2. Operational reduction for HOSC

Σ;Γ � M : τ , where Σ and Γ are finite partial functions that assign types to
locations and variables respectively. In typing judgements, we often write Σ as
shorthand for Σ; ∅ (closed) and Γ as shorthand for ∅;Γ (location-free). Similarly,
� M : τ means ∅; ∅ � M : τ .

Operational semantics A heap h is a finite type-respecting map from Loc to
values. We write h : (Σ;Γ ), if dom(Σ) ⊆ dom(h) and Σ;Γ � h(�) : σ for
(�, σ) ∈ Σ, The operational semantics of HOSC reduces pairs (M,h), where
Σ;Γ � M : τ and h : (Σ;Γ ). The rules are given in Figure 2, where {·} denotes
(capture-avoiding) substitution. We write (M,h) ⇓ter if there exist V, h′ such
that (M,h) →∗ (V, h′) and V is a value.

We distinguish the following fragments of HOSC.

Definition 1. – GOSC types are HOSC types except that reference types are
restricted to refι, where ι is given by the grammar ι � Unit | Int | Bool | refι.
GOSC terms are HOSC terms whose typing derivations (i.e. not only the
final typing judgments) rely on GOSC types only. GOSC is a superset of
FOSC [8] (GOSC also includes references to references - the refι case above).

– HOS types are HOSC types that do not feature the cont constructor. HOS
terms are HOSC terms whose typing derivations rely on HOS types only.
Consequently, HOS terms never have subterms of the form call/ccτ (x.M),
throwτ M to N or contτ K.

– GOS is the intersection of HOS and GOSC, both for types and terms, i.e.
there are no continuations and storage is restricted to values of type ι, defined
above.

Definition 2. Given a HOSC term Γ � M : τ , we refer to types in Γ and τ as
boundary types. Let x ∈ {HOSC,GOSC,HOS, GOS}. We say that a HOSC
term Γ � M : τ has an x boundary if all of its boundary types are from x.

Remark 1. Note that typing derivations of HOSC terms with an x boundary may
contain arbitrary HOSC types as long as the final typing judgment uses types
from x only. Consequently, if x �= HOSC, HOSC terms with an x boundary form
a strict superset of x.

Next we introduce several notions of contextual testing for HOSC-terms, us-
ing various kinds of contexts. For a start, we introduce the classic notion of
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contextual approximation based on observing termination. The notions are pa-
rameterized by x, indicating which language is used to build the testing contexts.
We write Γ � C : τ → τ ′ if Γ, x : τ � C[x] : τ ′, and Γ � C ÷ τ if Γ � C : τ → τ ′

for some τ ′.

Definition 3 (Contextual Approximation). Let x ∈ {HOSC,GOSC,HOS,
GOS}. Given HOSC terms Γ � M1,M2 : τ with an x boundary, we define
Γ � M1 �x

ter M2 to hold, when for all contexts � C ÷ τ built from the syntax of
x, if (C[M1], ε) ⇓ter then (C[M2], ε) ⇓ter .

We also consider another way of testing, based on observing whether a pro-
gram can reach a breakpoint (error point) inside a context. Technically, the
breakpoints are represented as occurrences of a special free error variable err :
Unit → Unit. Reaching a breakpoint then corresponds to convergence to a stuck
configuration of the form (K[err()], h): we write (M,h) ⇓err if there exist K,h′

such that (M,h) →∗ (K[err()], h′).

Definition 4 (Contextual Approximation through Error). Suppose x ∈
{HOSC, FOSC, HOS, GOS}. Given HOSC terms Γ � M1,M2 : τ with an x
boundary and err �∈ dom(Γ ), we define Γ � M1 �x

err M2 to hold, when for all
contexts err : Unit → Unit � C ÷ τ built from x-syntax, if (C[M1], ε) ⇓err then
(C[M2], ε) ⇓err .

For the languages in question, it will turn out that �x
err is at least as discriminat-

ing as �x
ter for each x ∈ {HOSC,GOSC,HOS,GOS}, and that they coincide for

x ∈ {HOSC,GOSC}. We will write ∼=x
err and ∼=x

ter for the associated equivalence
relations.

For higher-order languages with state and control, it is well known that
contextual testing can be restricted to evaluation contexts after instantiating
the free variables of terms to closed values (the so-called closed instances of
use, CIU). Let us write Σ,Γ ′ � γ : Γ for substitutions γ such that, for any
(x, σx) ∈ Γ , the term γ(x) is a value satisfying Σ;Γ ′ � γ(x) : σx. Then M{γ}
stands for the outcome of applying γ to M .

Definition 5 (CIU Approximation). Let x ∈ {HOSC,GOSC,HOS,GOS}
and let Γ � M1,M2 : τ be HOSC terms with an x boundary.

– Γ � M1 �x(ciu)
ter M2 : τ , when for all Σ, h,K, γ, all built from x syntax, such

that h : Σ, Σ � K ÷ τ , and Σ � γ : Γ , we have (K[M1{γ}], h) ⇓ter implies
(K[M2{γ}], h) ⇓ter .

– We write Γ � M1 �x(ciu)
err M2 : τ , when for all Σ, h,K, γ, all built from x

syntax, such that h : Σ; ˆerr, Σ; ˆerr � K ÷ τ , and Σ; ˆerr � γ : Γ , we have
(K[M1{γ}], h) ⇓err implies (K[M2{γ}], h) ⇓err , where err �∈ dom(Γ ) and
ˆerr stands for err : Unit → Unit.

Results stating that “CIU tests suffice” are referred to as CIU lemmas. A general
framework for obtaining such results for higher-order languages with effects was
developed in [10,33]. The results stated therein are for termination-based testing,
i.e. ⇓ter , but adapting them to ⇓err is not problematic.
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Lemma 1 (CIU Lemma). Let x ∈ {HOSC,GOSC,HOS,GOS} and y ∈ {ter ,
err}. Then we have Γ � M1 �x

y M2 iff Γ � M1 �x(ciu)
y M2.

The preorders �x
err will be the central object of study in the paper. Among

others, we shall provide their alternative characterizations using trace seman-
tics.The characterizations will apply to a class of terms that we call cr-free.

Definition 6. A HOSC term Γ � M : τ is cr-free if it does not contain occur-
rences of contσ K and locations, and its boundary types are cont- and ref-free.

We stress that the boundary restriction applies to Γ and τ only, and subterms
of M may well contain arbitrary HOSC types and occurrences of refσ, call/ccσ,
throwσ for any σ. The majority of HOSC/GOSC/HOS/GOS examples stud-
ied in the literature, e.g. [28,4,8], are actually cr-free. We will revisit some of
them as Examples 6, 7, 10. The fact that cr-free terms may not contain sub-
terms contτ K or � is not really a restriction, as contτ K and � being more of a
run-time construct than a feature meant to be used directly by programmers.
Finally, we note that the boundary of a cr-free term is an x boundary for any
x ∈ {HOSC,GOSC,HOS,GOS}. Thus, we can consider approximation between
cr-terms for any x from the range, i.e. the notions �x

err , �
x
ter are all applicable.

Consequently, cr-free terms provide a common setting in which the discrimi-
nating power of HOSC,GOSC,HOS and GOS contexts can be compared. We
discuss the scope for extending our results outside of the cr-free fragment, and
for richer type systems, in Section 7.

3 HOSC[HOSC]

Recall that �HOSC
err concerns testing HOSC terms with HOSC contexts. Accord-

ingly, we call this case HOSC[HOSC]. For cont σ(K)-free terms, we show that
�HOSC

err and �HOSC
ter coincide, which follows from the lemma below.

Lemma 2. Let Γ � M1,M2 be HOSC terms not containing any occurrences of
cont τ (K).

1. Γ � M1 �x
err M2 implies Γ � M1 �x

ter M2, for x ∈ {HOSC, GOSC, HOS,
GOS}.

2. Γ � M1 �x
ter M2 implies Γ � M1 �x

err M2, for x ∈ {HOSC,GOSC}.
In what follows, after introducing several preliminary notions, we shall design a
labelled transition system (LTS) whose traces will turn out to capture contex-
tual interactions involved in testing cr-free terms according to �HOSC

err . This will
enable us to capture �HOSC

err via trace inclusion. Actions of the LTS will refer to
functions and continuations in a symbolic way, using typed names.

3.1 Names and abstract values

Definition 7. Let FNames =
⊎

σ,σ′ FNamesσ→σ′ be the set of function names,
partitioned into mutually disjoint countably infinite sets FNamesσ→σ′ . We will
use f, g to range over FNames and write f : σ → σ′ for f ∈ FNamesσ→σ′ .
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Analogously, let CNames =
⊎

σ CNamesσ be the set of continuation names.
We will use c, d to range over CNames, and write c : σ for c ∈ CNamesσ. Note
that the constants represent continuations, so the “real” type of c is cont σ, but
we write c : σ for the sake of brevity. We assume that CNames,FNames are
disjoint and let Names = FNames4CNames. Elements of Names will be weaved
into various constructions in the paper, e.g. terms, heaps, etc. We will then write
ν(X) to refer to the set of names used in some entity X.

Because of the shape of boundary types in cr-free terms and, in particular, the
presence of product types, the values that will be exchanged between the context
and the program take the form of tuples consisting of (), integers, booleans
and functions. To describe such scenarios, we introduce the notion of abstract
values, which are patterns that match such values. Abstract values are generated
by the grammar

A,B � () | tt | ff | n̂ | f | 〈A,B〉

with the proviso that, in any abstract value, a name may occur at most once. As
function names are intrinsically typed, we can assign types to abstract values in
the obvious way, writing A : τ .

3.2 Actions and traces

Our LTS will be based on four kinds of actions, listed below. Each action will be
equipped with a polarity, which is either Player (P) or Opponent (O). P-actions
describing interaction steps made by a tested term, while O-actions involve the
context.

– Player Answer (PA) c̄(A), where c : σ and A : σ. This action corresponds
to the term sending an abstract value A through a continuation name c.

– Player Question (PQ) f̄(A, c), where f : σ → σ′, A : σ and c : σ′. Here,
an abstract value A and a continuation name c are sent by the term through
a function name f .

– Opponent Answer (OA) c(A), c : σ then A : σ. In this case, an abstract
value A is received from the environment via the continuation name c.

– Opponent Question (OQ) f(A, c), where f : σ → σ′, A : σ and c : σ′.
Finally, this action corresponds to receiving an abstract value A and a con-
tinuation name c from the environment through a function name f .

In what follows, a is used to range over actions. We will say that a name is
introduced by an action a if it is sent or received in a. If a is an O-action (resp.
P-action), we say that the name was introduced by O (resp. P). An action a is
justified by another action a′ if the name that a uses to communicate, i.e. f in
questions (f̄(A, c), f(A, c)) and c in answers (c̄(A), c(A)), has been introduced
by a′.

We will work with sequences of actions of a very special shape, specified
below. The definition assumes two given sets of names, NP and NO, which
represent names that have already been introduced by P and O respectively.
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Definition 8. Let NO, NP ⊆ Names. An (NO, NP )-trace is a sequence t of
actions such that:

– the actions alternate between Player and Opponent actions;
– no name is introduced twice;
– names from NO, NP need no introduction;
– if an action a uses a name to communicate then

• a = f̄(A, c) (f ∈ NO) or a = c̄(A) (c ∈ NO) or a = f(A, c) (f ∈ NP ) or
a = c(A) (c ∈ NP ) or

• the name has been introduced by an earlier action a′ of opposite polarity.

Note that, due to the shape of actions, a continuation name can only be intro-
duced/justified by a question. Moreover, because names are never introduced
twice, if a′ justifies a then a′ is uniquely determined in a given trace. Read-
ers familiar with game semantics will recognize that traces are very similar to
alternating justified sequences except that traces need not be started by O.

Example 1. Let (NO, NP ) = ({c}, ∅) where c : τ = ((Unit → Unit) → Unit) ×
(Unit → Int). Then the following sequence is an (NO, NP )-trace:

t1 = c̄(〈g1, g2〉) g1(f1, c1) f̄1((), c2) c2(()) c̄1(()) c2(()) c̄1(()) g2((), c3) c̄3(2)

where g1 : (Unit → Unit) → Unit, g2 : Unit → Int, f1 : Unit → Unit, c1, c2 :
Unit, c3 : Int.

3.3 Extended syntax and reduction

We extend the definition of HOSC presented in Figure 2 to take into account
these names. We refine the operational reduction using continuation names to
keep track of the toplevel continuation. We list all the changes below.

– Function names are added to the syntax as constants. Since they are meant
to represent values, they are also considered to be syntactic values in the
extended language.

f ∈ FNamesσ→σ′

Σ;Γ � f : σ → σ′

– Continuation names are not terms on their own. Instead, they are built into
the syntax via a new construct contσ (K, c), subject to the following typing
rule.

Σ;Γ � K : σ → σ′ c ∈ CNamesσ′

Σ;Γ � contσ (K, c) : cont σ

contσ (K, c) is a staged continuation that first evaluates terms inside K and,
if this produces a value, the value is passed to c. This operational meaning
will be implemented through a suitable reduction rule, to be discussed next.
contσ (K, c) is also regarded as a value. Note that we remove the old construct
contσ K from the extended syntax.
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– The operational semantics → underpinning the LTS is based on triples
(M, c, h) such that Σ;Γ � M : σ, c ∈ CNamesσ and h : Σ. The continuation
name c is used to represent the surrounding context, which is left abstract.
The previous operational rules → are embedded into the new reduction →
using the rule below.

(M,h) → (M ′, h′)

(M, c, h) → (M ′, c, h′)

The two reduction rules related to continuations, previously used to define
→, are not included. Instead we use the following rules, which take advantage
of the extended syntax.

(K[call/ccτ (x.M)], c, h) → (K[M{contτ (K, c)/x}], c, h)
(K[throwτ V to contτ (K

′, c′)], c, h) → (K ′[V ], c′, h)

3.4 Configurations

We write Vals for the extended set of syntactic values, i.e. FNames ⊆ Vals.
Let ECtxs stand for the set of extended evaluation contexts, defined as K in
Figure 1 taking the extended definition of values into account. Before defining the
transition relation of our LTS, we discuss the shape of configurations, providing
intuitions behind each component.

Passive configurations take the form 〈γ, ξ, φ, h〉 and are meant to repre-
sent stages at which the environment is to make a move.

– γ : (FNames ⇀ Vals) 4 (CNames ⇀ ECtxs) is a finite map. It will play the
role of an environment that relates function names communicated to the en-
vironment (i.e. those introduced by P) to syntactic values, and continuation
names introduced by P to evaluation contexts.

– ξ : (CNames ⇀ CNames) is a finite map. It complements the role of γ for
continuation names and indicates the continuation to which the outcome of
applying γ(c) should be passed.

– φ ⊆ Names. The set φ will be used to collect all the names used in the
interaction, regardless of which participant introduced them. Following our
description above, those introduced by O will correspond to φ \ dom(γ).

The components satisfy healthiness conditions, implied by their role in the sys-
tem. Let Σ = dom(h).

– If f : dom(γ)∩FNamesσ→σ′ then γ(f) is a value such that Σ � γ(f) : σ → σ′.
– dom(ξ) = dom(γ) ∩ CNames.
– If c : dom(γ) ∩ CNamesσ and Σ � γ(c) : σ → σ′ then ξ(c) ∈ CNamesσ′ .
– Finally, names introduced by the environment and communicated to the pro-

gram may end up in the environments and the heap: ν(img(γ)), ν(img(ξ)),
ν(img(h)) ⊆ φ \ dom(γ).

Active configurations take the form 〈M, c, γ, ξ, φ, h〉 and represent interaction
steps of the term. The γ, ξ, φ, h components have already been described above.
For M and c, given Σ = dom(h), we will have Σ; ∅ � M : σ, c ∈ CNamesσ and
ν(M) ∪ {c} ⊆ φ \ dom(γ).
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3.5 Transitions

Observe that any closed value V of a cont- and ref-free type σ can be decom-
posed into an abstract value A (pattern) and the corresponding substitution γ
(matching). The set of all such decompositions, written AValσ(V ), is defined
below. Given a value V of a (cr-free) type σ, AValσ(V ) contains all pairs (A, γ)
such that A is an abstract value and γ : ν(A) → Vals is a substitution such that
A{γ} = V . More concretely,

AValσ(V ) � {(V, ∅)} for σ ∈ {Unit,Bool, Int}
AValσ→σ′(V ) � {(f, [f �→ V ]) | f ∈ FNamesσ→σ′}
AValσ×σ′(〈U, V 〉) � {(〈A1, A2〉, γ1 · γ2) |

(A1, γ1) ∈ AValσ(U), (A2, γ2) ∈ AValσ′(V )}

Note that, by writing ·, we mean to implicitly require that the function domains
be disjoint. Similarly, when writing 4, we stipulate that the argument sets be
disjoint.

Example 2. Let σ = (Int → Bool)× (Int× (Unit → Int)) and V ≡ 〈λxInt.x �=
1, 〈2, λxUnit.3〉〉. Then AValσ(V ) equals

{(〈f, 〈2, g〉〉, [f �→ (λxInt.x �= 1)] · [g �→ (λxUnit.3)]) |
f ∈ FNamesInt→Unit, g ∈ FNamesUnit→Int}.

Finally, we present the transitions of what we call the HOSC[HOSC] LTS in
Figure 3.

Example 3. Below we analyse the (PQ) rule in more detail.

〈K[fV ], c, γ, ξ, φ, h〉 f̄(A,c′)−−−−→ 〈γ · γ′ · [c′ �→ K], ξ · [c′ �→ c], φ 4 ν(A) 4 {c′}, h〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V ) and c′ : σ′

The use of 4 in φ 4 ν(A) 4 {c′} is meant to highlight the requirement that the
names introduced in f̄(A, c′), i.e. ν(A)∪{c′}, should be fresh and disjoint from φ.
Moreover, note how γ and ξ are updated. In general, γ, ξ, h are updated during
P-actions.

Definition 9. Given two configurations C,C′, we write C
a
=⇒ C′ if C

τ−→
∗
C′′ a−→

C′, with
τ−→

∗
representing multiple (possibly none) τ -actions. This notation is

extended to sequences of actions: given t = a1 . . . an, we write C
t
=⇒ C′, if

there exist C1, . . . ,Cn−1 such that C
a1==⇒ C1 · · ·Cn−1

an==⇒ C′. We define

TrHOSC(C) = {t | there exists C′ such that C
t
=⇒ C′}.

Lemma 3. Suppose C = 〈γ, ξ, φ, h〉 or C = 〈M, c, γ, ξ, φ, h〉 are configurations.
Then elements of TrHOSC(C) are (φ \ dom(γ), dom(γ))-traces.
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(Pτ) 〈M, c, γ, ξ, φ, h〉 τ−−→ 〈N, c′, γ, ξ, φ, h′〉
when (M, c, h) → (N, c′, h′)

(PA) 〈V, c, γ, ξ, φ, h〉 c̄(A)−−−→ 〈γ · γ′, ξ, φ ' ν(A), h〉
when c : σ, (A, γ′) ∈ AValσ(V )

(PQ) 〈K[fV ], c, γ, ξ, φ, h〉 f̄(A,c′)−−−−−→ 〈γ · γ′ · [c′ �→ K], ξ · [c′ �→ c], φ ' ν(A) ' {c′}, h〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V ), c′ : σ′

(OA) 〈γ, ξ, φ, h〉 c(A)−−−→ 〈K[A], c′, γ, ξ, φ ' ν(A), h〉
when c : σ, A : σ, γ(c) = K, ξ(c) = c′

(OQ) 〈γ, ξ, φ, h〉 f(A,c)−−−−→ 〈V A, c, γ, ξ, φ ' ν(A) ' {c}, h〉
when f : σ → σ′, A : σ, c : σ′, γ(f) = V

NB c : σ stands for c ∈ CNamesσ.

Fig. 3. HOSC[HOSC] LTS

M cwl
1 : let x = ref 0 in

let b = ref ff in
〈λf. if ¬(!b) then

b := tt; f(); x :=!x + 1;
b := ff ;
else (), λ : Unit.!x〉

M cwl
2 : let x = ref 0 in

let b = ref ff in
〈λf. if ¬(!b) then

b := tt; let n =!x in f(); x := n + 1;
b := ff ;
else () , λ : Unit.!x〉

Fig. 4. Callback-with-lock Example [4]

Example 4. In Figure 5, we show that the trace from Example 1 is generated
by the configuration C � 〈Mcwl

1 , c, ∅, ∅, {c}, ∅〉, where Mcwl
1 is given in Figure 4.

We write inc � λf.if ¬(!�b) (�b := tt; f(); �x :=!�x + 1; �b := ff) (), get � λ .!�x
and c : ((Unit → Unit) → Unit) × (Unit → Int). It is interesting to notice that
in this interaction, Opponent uses the continuation N twice, incrementing the
counter x by two. The second time, it does it without having to call inc again,
but rather by using the continuation name c2.

Remark 2. Due to the freedom of name choice, note that TrHOSC(C) is closed
under type-preserving renamings that preserve names from C.

3.6 Correctness and full abstraction

We define two kinds of special configurations that will play an important role
in spelling out correctness results for the HOSC[HOSC] LTS. Let Γ = {x1 :
σ1, · · · , xk : σk}. A map ρ from {x1, · · · , xk} to the set of abstract values will
be called a Γ -assignment provided, for all 1 ≤ i �= j ≤ k, we have ρ(xi) : σi

and ν(ρ(xi)) ∩ ν(ρ(xj)) = ∅.
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C = 〈M cwl
1 , c, ∅, ∅, {c}, ∅〉

τ∗
−→ 〈〈inc, get〉, c, ∅, ∅, {c}, [�b �→ ff , �x �→ 0]〉

c̄(〈g1,g2〉)−−−−−−→ 〈γ1, ∅, {c, g1, g2}, [�b �→ ff , �x �→ 0]〉 with γ1 = [g1 �→ inc, g2 �→ get],
g1(f1,c1)−−−−−−→ 〈incf1, c1, γ1, ∅, φ2, [�b �→ ff , �x �→ 0]〉 with φ2 = {c, g1, g2, f1, c1}

τ∗
−→ 〈f1();N, c1, γ1, ∅, φ2, [�b �→ tt, �x �→ 0]〉 with N = �x :=!�x + 1; �b := ff

f̄1((),c2)−−−−−→ 〈γ2, ξ, φ3, [�b �→ tt, �x �→ 0]〉 with γ2 = γ1 · [c2 �→ •;N ],
c2(())−−−−→ 〈();N, c1, γ2, ξ, φ3, [�b �→ tt, �x �→ 0]〉 ξ = [c2 �→ c1] and φ3 = φ2 ' {c2}

τ∗
−→ 〈(), c1, γ2, ξ, φ3, [�b �→ ff , �x �→ 1]〉

c̄1(())−−−−→ 〈γ2, ξ, φ3, [�b �→ ff , �x �→ 1]〉
c2(())−−−−→ 〈();N, c1, γ2, ξ, φ3, [�b �→ ff , �x �→ 1]〉

τ∗
−→ 〈(), c1, γ2, ξ, φ3, [�b �→ ff , �x �→ 2]〉

c̄1(())−−−−→ 〈γ2, ξ, φ3, [�b �→ ff , �x �→ 2]〉
g2((),c3)−−−−−→ 〈get(), c3, γ2, ξ, φ4, [�b �→ ff , �x �→ 2]〉 with φ4 = φ3 ' {c3}

τ∗
−→ 〈2, c3, γ2, ξ, φ4, [�b �→ ff , �x �→ 2]〉

c̄3(2)−−−→ 〈γ2, ξ, φ4, [�b �→ ff , �x �→ 2]〉

Fig. 5. Trace derivation in the HOSC[HOSC] LTS

Definition 10 (Program configuration). Given a Γ -assignment ρ, a cr-free
HOSC term Γ � M : τ and c : τ , we define the active configuration Cρ,c

M by
Cρ,c
M = 〈M{ρ}, c, ∅, ∅, ν(ρ) ∪ {c}, ∅〉.

Note that traces from TrHOSC(C
ρ,c
M ) will be (ν(ρ) ∪ {c}, ∅)-traces.

Definition 11. The HOSC[HOSC] trace semantics of a cr-free HOSC term
Γ � M : τ is defined to be

TrHOSC(Γ � M : τ) = {((ρ, c), t) | ρ is a Γ -assignment, c : τ, t ∈ TrHOSC(C
ρ,c
M )}.

Example 5. Recall the term � Mcwl
1 : τ from Example 4, the trace t1 and the

configuration C such that t1 ∈ TrHOSC(C). Because Mcwl
1 is closed (Γ = ∅),

the only Γ -assignment is the empty map ∅. Thus, C = C∅,c
Mcwl

1
, so ((∅, c), t1) ∈

TrHOSC(� Mcwl
1 : τ).

Having defined active configurations associated with terms, we now define
passive configurations associated with contexts. Let us fix / ∈ FNamesUnit→Unit

and, for each σ, a continuation name ◦σ ∈ CNamesσ. Let ◦ =
⋃

σ{◦σ}. Intu-
itively, the names / will correspond to ⇓err and ◦σ to ⇓ter .

Recall that ˆerr stands for err : Unit → Unit. Given a heap h : Σ; ˆerr , an
evaluation context Σ; ˆerr � K : τ → τ ′ and a substitution Σ; ˆerr � γ : Γ (as in

the definition of �HOSC(ciu)
err ), let us replace every occurrence of contσ K

′ inside
h,K, γ with contσ (K

′, ◦σ′), if K ′ has type σ → σ′. Moreover, let us replace
every occurrence of the variable err with the function name /. This is done to
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adjust h,K, γ to the extended syntax of the LTS: the upgraded versions are
called h◦, γ◦,K◦.

Next we define the set AValΓ (γ) of all disjoint decompositions of values from
γ◦ into abstract values and the corresponding matchings. Recall that Γ = {x1 :

σ1, · · · , xk : σk}. Below �Ai stands for (A1, · · · , Ak), and �γi for (γ1, · · · , γk).

AValΓ (γ) = { ( �Ai, �γi) | (Ai, γi) ∈ AValσi(γ◦(xi)), i = 1, · · · , k;
ν(A1), · · · , ν(Ak) mutually disjoint and without / }

Definition 12 (Context configuration). Given Σ, h : Σ; ˆerr, Σ; ˆerr � K :

τ → τ ′, Σ; ˆerr � γ : Γ , ( �Ai, �γi) ∈ AValΓ (γ) and c : τ (c �∈ ◦), the corresponding

configuration C�γi,c
h,K,γ is defined by

C�γi,c
h,K,γ = 〈

k⊎
i=1

γi 4 {c �→ K◦}, {c �→ ◦τ ′},
k⊎

i=1

ν(Ai) 4 {c} 4 ◦ 4 {/}, h◦〉.

Intuitively, the names ν(Ai) correspond to calling function values extracted from

γ, whereas c corresponds to K. Note that traces in TrHOSC(C
�γi,c
h,K,γ) will be

(◦ 4 {/},
⊎k

i=1 ν(Ai) 4 {c})-traces.
In preparation for the next result, we introduce the following shorthands.

– Given a (NO, NP )-trace t, we write t⊥ for the (NP , NO)-trace obtained by
changing the polarity of each name: f(A, c′) becomes f̄(A, c′) (and vice versa)
and c(A) becomes c̄(A) (and vice versa).

– Given ( �Ai, �γi) ∈ AValΓ (γ), we define a Γ -assignment ρ �Ai
by ρ �Ai

(xi) = Ai.

Note that ν(ρ �Ai
) =

⊎k
i=1 dom(γi).

Lemma 4 (Correctness). Let Γ � M : τ be a cr-free HOSC term, let Σ, h,K, γ

be as above, ( �Ai, �γi) ∈ AValΓ (γ), and c : τ (c �∈ ◦). Then

– (K[M{γ}], h) ⇓err iff there exist t, c′ such that t ∈ TrHOSC(C
ρ �Ai

,c

M ) and

t⊥ /̄((), c′) ∈ TrHOSC(C
�γi,c
h,K,γ).

– (K[M{γ}], h) ⇓ter iff there exist t, A, σ such that t ∈ TrHOSC(C
ρ �Ai

,c

M ) and

t⊥ ◦̄σ(A) ∈ TrHOSC(C
�γi,c
h,K,γ).

Moreover, t satisfies ν(t) ∩ (◦ ∪ {/}) = ∅.

Intuitively, the lemma above confirms that the potential of a term to converge
is determined by its traces. Accordingly, we have:

Theorem 1 (Soundness). For any cr-free HOSC terms Γ � M1,M2, if

TrHOSC(Γ � M1) ⊆ TrHOSC(Γ � M2) then Γ � M1 �HOSC(ciu)
err M2.

To prove the converse, we need to know that every odd-length trace generated
by a term actually participates in a contextual interaction. This will follow from
the lemma below. Note that ⇓err relies on even-length traces from the context
(Lemma 4).
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Lemma 5 (Definability). Suppose φ4 {/} ⊆ FNames and t is an even-length
(◦4{/}, φ4{c})-trace starting with an O-action. There exists a passive configu-
ration C such that the even-length traces TrHOSC(C) are exactly the even-length
prefixes of t (along with all renamings that preserve types and φ4 {c} 4 ◦ 4 {/},
cf. Remark 2). Moreover, C = 〈γ◦ · [c �→ K◦], {c �→ ◦τ ′}, φ 4 {c} 4 ◦ 4 {/}, h◦〉,
where h,K, γ are built from HOSC syntax.

Proof (Sketch). The basic idea is to use references in order to record all continu-
ation and function names introduced by the environment. For continuations, the
use of call/ccτ is essential. Once stored in the heap, the names can be accessed
by terms when needed in P-actions. The availability of throw and references to
all O-continuations means that arbitrary answer actions can be scheduled when
needed.

Theorem 2 (Completeness). For any cr-free HOSC terms Γ � M1,M2, Γ �
M1 �HOSC(ciu)

err M2 implies TrHOSC(Γ � M1) ⊆ TrHOSC(Γ � M2).

Theorems 1, 2 (along with Lemmas 1, 2) imply the following full abstraction
results.

Corollary 1 (HOSC Full Abstraction). Suppose Γ � M1,M2 are cr-free
HOSC terms. Then TrHOSC(Γ � M1) ⊆ TrHOSC(Γ � M2) iff Γ � M1 �HOSC

err

M2 iff Γ � M1 �HOSC
ter M2.

Example 6 (Callback with lock [4]). Recall the term � Mcwl
1 : ((Unit → Unit) →

Unit)× (Unit → Int) from Example 4, given in Figure 4. We had t1 = c̄(〈g1, g2〉)
g1(f1, c1) f̄1((), c2) c2(()) c̄1(()) c2(()) c̄1(()) g2((), c3) c̄3(2) ∈ TrHOSC(C

∅,c
Mcwl

1
).

Define t2 to be t1 except that its last action c̄3(2) is replaced with c̄3(1).

Observe that t1 ∈ TrHOSC(C
∅,c
Mcwl

1
) \TrHOSC(C

∅,c
Mcwl

2
) and t2 ∈ TrHOSC(C

∅,c
Mcwl

2
) \

TrHOSC(C
∅,c
Mcwl

1
), i.e. by the Corollary above the terms are incomparable wrt

�HOSC
err . However, they are equivalent wrt �x

err for x ∈ {GOSC,HOS,GOS} [8].

The above Corollary also provides a handle to reason about equivalence via trace
equivalence. Sometimes this can be done directly on the LTS, especially when γ
can be kept bounded.

Example 7 (Counter [28]). For i ∈ {1, 2}, consider the terms � Mi : (Unit →
Unit) × (Unit → Int) given by Mi ≡ letx = ref 0 in 〈inci, geti〉, where inc1 ≡
(λy.x :=!x+1), inc2 ≡ (λy.x :=!x−1), get1 ≡ λz.!x, get2 ≡ λz.−!x. In this case,

TrHOSC(C
∅,c
Mi

) contains (prefixes of) traces of the form c̄(〈g, h〉) t, where t is built
from segments of two kinds: either g((), ci) c̄i(()) or h((), c′i) c̄′i(n), where the
cis and c′is are pairwise different. Moreover, in the latter case, n must be equal
to the number of preceding actions of the form g((), ci). For this example, trace
equality could be established by induction on the length of trace. Consequently,
M1

∼=HOSC
err M2.
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4 GOSC[HOSC]

Recall that GOSC is the fragment of HOSC in which general storage is restricted
to values of ground type, i.e. arithmetic/boolean constants, the associated ref-
erence names, references to those names and so on. In what follows, we are
going to provide characterizations of �GOSC

err via trace inclusion. Recall that, by
Lemma 2, �GOSC

err =�GOSC
ter . Note that we work in an asymmetric setting with

terms belonging to HOSC being more powerful than contexts.
We start off by identifying several technical consequences of the restriction to

GOSC syntax. First we observe that GOSC internal reductions never contribute
extra names.

Lemma 6. Suppose (M, c, h) → (M ′, c′, h′), where M is a GOSC term and h
is a GOSC heap. Then ν(M) ∪ {c} ⊇ ν(M ′) ∪ {c′}.

Proof. By case analysis. All defining rules for →, with the exception of the
(K[!�], h) → (K[h(�)], h) rule, are easily seen to satisfy the Lemma (no function
or continuation names are added). However, if the heap is restricted to storing
elements of type ι (as in GOSC) then h(�) will never contain a name, so the
Lemma follows.

The lemma has interesting consequences for the shape of traces generated by
the context configurations C�γi,c

h,K,γ if they are built from GOSC syntax. Recall

that P-actions have the form f̄(A, c′) or c̄(A), where f, c are names introduced
by O. It turns out that when h,K, γ are restricted to GOSC, more can be said
about the origin of the names in traces generated by C�γi,c

h,K,γ : they will turn out to
come from a restricted set of names introduced by O, which we identify below.
The definition below is based on following the justification structure of a trace –
recall that one action is said to justify another if the former introduces a name
that is used for communication in the latter.

Definition 13. Suppose φ 4 {/} ⊆ FNames and c ∈ CNames. Let t be an odd-
length (◦ 4 {/}, φ 4 {c})-trace starting with an O-action. The set VisP (t) of P-
visible names of t is defined as follows.

VisP (t c′(A′)) = {/} ∪ ◦ ∪ ν(A′) c′ = c
VisP (t f̄ ′′(A′′, c′) t′ c′(A′)) = VisP (t) ∪ ν(A′) c′ �= c

VisP (t f ′(A′, c′)) = {/} ∪ ◦ ∪ ν(A′) ∪ {c′} f ′ ∈ φ
VisP (t f̄ ′′(A′′, c′′) t′ f ′(A′, c′)) = VisP (t) ∪ ν(A′) ∪ {c′} f ′ ∈ ν(A′′)

VisP (t c̄′′(A′′) t′ f ′(A′, c′)) = VisP (t) ∪ ν(A′) ∪ {c′} f ′ ∈ ν(A′′)

Note that, in the inductive cases, the definition follows links between names
introduced by P and the point of their introduction, names introduced in-
between are ignored. Here readers familiar with game semantics will notice sim-
ilarity to the notion of P-view [12].

Next we specify a property of traces that will turn out to be satisfied by
configurations corresponding to GOSC contexts.
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Definition 14. Suppose φ 4 {/} ⊆ FNames and c ∈ CNames. Let t be a (◦ 4
{/}, φ 4 {c})-trace starting with an O-action. t is called P-visible if

– for any even-length prefix t′ f̄(A, c) of t, we have f ∈ VisP (t
′),

– for any even-length prefix t′ c̄(A) of t, we have c ∈ VisP (t
′).

Lemma 7. Consider C = C�γi,c
h,K,γ , where h,K, γ are from GOSC and ( �Ai, �γi) ∈

AValΓ (γ). Then all traces in TrHOSC(C) are P-visible.

The Lemma above shows that contextual interactions with GOSC contexts rely
on restricted traces. We shall now modify the HOSC[HOSC] LTS to capture the
restriction. Note that, from the perspective of the term, the above constraint
is a constraint on the use of names by O (context), so we need to talk about
O-available names instead. This dual notion is defined below.

Definition 15. Suppose φ ⊆ FNames and c ∈ CNames. Let t be a (φ 4 {c}, ∅)-
trace of odd length. The set VisO(t) of O-visible names of t is defined as
follows.

VisO(t c̄′(A′)) = ν(A′) c′ = c
VisO(t f ′′(A′′, c′) t′ c̄′(A′)) = VisO(t) ∪ ν(A′) c′ �= c

VisO(t f̄ ′(A′, c′)) = ν(A′) ∪ {c′} f ′ ∈ φ
VisO(t f ′′(A′′, c′′) t′ f̄ ′(A′, c′)) = VisO(t) ∪ ν(A′) ∪ {c′} f ′ ∈ ν(A′′)

VisO(t c′′(A′′) t′ f̄ ′(A′, c′)) = VisO(t) ∪ ν(A′) ∪ {c′} f ′ ∈ ν(A′′)

Analogously, a (φ 4 {c}, ∅)-trace t is O-visible if, for any even-length prefix
t′ f(A, c) of t, we have f ∈ VisO(t

′) and, for any even-length prefix t′ c(A) of t,
we have c ∈ VisO(t

′).

Example 8. Recall the trace

t1 = c̄(〈g1, g2〉) g1(f1, c1) f̄1((), c2) c2(()) c̄1(()) c2(()) c̄1(()) g2((), c3) c̄3(2)

from previous examples. Observe that

VisO(c̄(〈g1, g2〉) g1(f1, c1) f̄1((), c2)) = {g1, g2, c2}
VisO(c̄(〈g1, g2〉) g1(f1, c1) f̄1((), c2) c2(()) c̄1(())) = {g1, g2}

Consequently, the first use of c2(()) in t1 does not violate O-visibility, but the
second one does.

In Figure 6, we present a new LTS, called the GOSC[HOSC] LTS, which will
turn out to capture �GOSC

err through trace inclusion. It is obtained from the
HOSC[HOSC] LTS by restricting O-actions to those that rely on O-visible names.
Technically, this is done by enriching configurations with an additional compo-
nent F , which maintains historical information about O-available names imme-
diately before each O-action. After each P-action, F is accessed to calculate the
current set V of O-available names according to the definition of O-availability
and only O-actions compatible with O-availability are allowed to proceed (due
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(Pτ) 〈M, c, γ, ξ, φ, h,F〉 τ−−→ 〈N, c′, γ, ξ, φ, h′,F〉
when (M, c, h) → (N, c′, h′)

(PA) 〈V, c, γ, ξ, φ, h,F〉 c̄(A)−−−→ 〈γ · γ′, ξ, φ ' ν(A), h,F ,F(c) ' ν(A)〉
when c : σ and (A, γ′) ∈ AValσ(V )

(PQ) 〈K[fV ], c, γ, ξ, φ, h,F〉 f̄(A,c′)−−−−−→
〈γ · γ′ · [c′ �→ K], ξ · [c′ �→ c], φ ' φ′, h,F ,F(f) ' φ′〉

when f : σ → σ′, (A, γ′) ∈ AValσ(V ), c′ : σ′ and φ′ = ν(A) ' {c′}
(OA) 〈γ, ξ, φ, h,F ,V〉 c(A)−−−→ 〈K[A], c′, γ, ξ, φ ' ν(A), h,F · [ν(A) �→ V]〉

when c ∈ V, c : σ, A : σ, γ(c) = K, ξ(c) = c′

(OQ) 〈γ, ξ, φ, h,F ,V〉 f(A,c)−−−−→ 〈V A, c, γ, ξ, φ ' φ′, h,F · [φ′ �→ V]〉
when f ∈ V, f : σ → σ′, A : σ, c : σ′, γ(f) = V and φ′ = ν(A) ' {c}

Given N ⊆ Names, [N �→ V] stands for the map [n �→ V |n ∈ N ].

Fig. 6. GOSC[HOSC] LTS

to the f ∈ V , c ∈ V side conditions). We write TrGOSC(C) for the set of traces
generated from C in the GOSC[HOSC] LTS.

Recall that, given a Γ -assignment ρ, term Γ � M : τ and c ∈ CNamesτ , the
active configuration Cρ,c

M was defined by Cρ,c
M = 〈M{ρ}, c, ∅, ∅, ν(ρ) ∪ {c}, ∅〉. We

need to upgrade it to the LTS by initializing the new component to the empty
map: Cρ,c

M,vis = 〈M{ρ}, c, ∅, ∅, ν(ρ) ∪ {c}, ∅, ∅〉.
Definition 16. The GOSC[HOSC] trace semantics of a cr-free HOSC term
Γ � M : τ is defined by TrGOSC(Γ � M : τ) = {((ρ, c), t) | ρ is a Γ -assignment,
c : τ, t ∈ TrGOSC(C

ρ,c
M,vis)}.

By construction, it follows that

Lemma 8. t ∈ TrGOSC(C
ρ,c
M,vis) iff t ∈ TrHOSC(C

ρ,c
M ) and t is O-visible.

Noting that the witness trace t from Lemma 4 is O-visible iff t⊥ /̄((), c′) is P-
visible, we can conclude that, for GOSC, the traces relevant to ⇓err are O-visible,
which yields:

Theorem 3 (Soundness). For any cr-free HOSC terms Γ � M1, M2, if

TrGOSC(Γ � M1) ⊆ TrGOSC(Γ � M2) then Γ � M1 �GOSC(ciu)
err M2.

To prove the converse, we need a new definability result. This time we are
only allowed to use GOSC syntax, but the target is also more modest: we are
only aiming to capture P-visible traces.

Lemma 9 (Definability). Suppose φ4 {/} ⊆ FNames and t is an even-length
P-visible (◦4{/}, φ4{c})-trace starting with an O-action. There exists a passive
configuration C such that the even-length traces in TrHOSC(C) are exactly the
even-length prefixes of t (along with all renamings that preserve types and φ 4
{c} 4 ◦ 4 {/}). Moreover, C = 〈γ◦ · [c �→ K◦], {c �→ ◦τ ′}, φ 4 {c} 4 ◦ 4 {/}, h◦〉,
where h,K, γ are built from GOSC syntax.
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Proof (Sketch). This time we cannot rely on references to recall on demand all
continuation and function names introduced by the environment. However, be-
cause t is P-visible, it turns the uses of the names can be captured through vari-
able bindings (λx. · · · for function and call/ccτ (x. . . . ) for continuation names).
Using throw, we can then force an arbitrary answer action, as long as it uses a
P-available name. To select the right action at each step, we branch on the value
of a single global reference of type ref Int that keeps track of the number of steps
simulated so far.

Completeness now follows because, for a potential O-visible witness t from
Lemma 4, one can create a corresponding context by invoking the Definabil-
ity result for t⊥ /̄((), c′). It is crucial that the addition of /̄((), c′) does not break
P-visibility (/ is P-visible).

Theorem 4 (Completeness). For any cr-free HOSC terms Γ � M1,M2, if

Γ � M1 �GOSC(ciu)
err M2 then TrGOSC(Γ � M1) ⊆ TrGOSC(Γ � M2).

Altogether, Theorems 3, 4 (along with Lemma 1) imply the following result.

Corollary 2 (GOSC Full Abstraction). Suppose Γ � M1,M2 are cr-free

HOSC terms. TrGOSC(Γ � M1) ⊆ TrGOSC(Γ � M2) iff Γ � M1 �GOSC(ciu)
err M2

iff Γ � M1 �GOSC
err M2.

Example 9. In the Callback with lock example (Example 6), we exhibited traces
t1, t2 that separated Mcwl

1 and Mcwl
2 with respect to �HOSC

err . Example 8 shows
that neither trace is O-visible, i.e. they do not belong to TrGOSC(Γ � M1) or
TrGOSC(Γ � M2). Thus, the two traces cannot be used to separate Mcwl

1 ,Mcwl
2

with respect to �GOSC
err . As already mentioned, this is in fact impossible: we have

� Mcwl
1

∼=GOSC
err Mcwl

2 .

Example 10 (Well-bracketed state change [4]). Consider the following two terms

Mwbsc
1 � letx = ref 0 inλf.(x := 0; f();x := 1; f(); !x)

Mwbsc
2 � λf.(f(); f(); 1).

of type τ = (Unit → Unit) → Int, let

t3 = c̄(g) g(f1, c1) f̄1((), c2) c2(()) f̄1((), c3) g(f2, c4) f̄2((), c5) c3(()) c̄1(0)

and let t4 be obtained from t3 by changing 0 in the last action to 1. One can
check that both traces are O-visible: in particular, the action c3(()) is not a
violation because

VisO(c̄(g) g(f1, c1) f̄1((), c2) c2(()) f̄1((), c3) g(f2, c4) f̄2((), c5)) = {g, c3, c5}.

Moreover, t3 ∈ TrGOSC(C
∅,c
Mwbsc

1
) \ TrGOSC(C

∅,c
Mwbsc

2
) and t4 ∈ TrGOSC(C

∅,c
Mwbsc

2
) \

TrGOSC(C
∅,c
Mwbsc

1
). By the Corollary above, we can conclude that Mwbsc

1 ,Mwbsc
2

are incomparable wrt �GOSC
err . However, they turn out to be ∼=HOS

err - and ∼=GOS
err -

equivalent.
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5 HOS[HOSC]

Recall that HOS is the fragment of HOSC that does not feature continuation
types and the associated syntax. In what follows we are going to provide al-
ternative characterisations of �HOS

err and �HOS
ter in terms of trace inclusion and

complete trace inclusion respectively.
We start off by identifying several technical consequences of the restriction

to HOS syntax. First we observe that HOS internal reductions never change the
associated continuation name.

Lemma 10. If (M, c, h) → (M ′, c′, h′), M is a HOS term and h is a HOS heap
then c = c′.

Proof. The only rule that could change c is the rule for throw, but it is not part
of HOS.

The lemma has a bearing on the shape of traces generated by the (passive)

configurations C�γi,c
h,K,γ corresponding to HOS contexts. In the presence of throw

and storage for continuations, it was possible for P to play answers involving
arbitrary continuation names introduced by O. By Lemma 10, in HOS this will
be restricted to the continuation name of the current configuration, which will
restrict the shape of possible traces. Below we identify the continuation name
topP (t) that becomes the relevant name after trace t. If the last move was an
O-question then the continuation name introduced by that move will become
that name. Otherwise, we track a chain of answers and questions, similarly to
the definition of P-visibility.

Observe that, because h,K, γ are from HOS, C�γi,c
h,K,γ will generate ({◦τ ′ , /}, φ4

{c})-traces, where τ ′ is the result type of K, because h◦ = h,K◦ = K, γ◦ = γ.

Definition 17. Suppose φ 4 {/} ⊆ FNames and c ∈ CNames. Let t be a
({◦τ ′ , /}, φ 4 {c})-trace of odd length starting with an O-action. The continu-
ation name topP (t) is defined as follows.

topP (t c(A)) = ◦τ ′

topP (t1 f̄(A′′, c′) t2 c′(A′)) = topP (t1)
topP (t f(A

′, c′)) = c′

We say that a ({◦τ ′ ∪ {/}, φ 4 {c})-trace t starting with an O-action is P-
bracketed if, for any prefix t′ c̄′(A) of t (i.e. any prefix ending with a P-answer),
we have c′ = topP (t

′).

Lemma 11. Consider C = C�γi,c
h,K,γ , where h,K, γ are from HOS and ( �Ai, �γi) ∈

AValΓ (γ). Then all traces in TrHOSC(C) are P-bracketed.

The Lemma above characterizes the restrictive nature of contextual inter-
actions with HOS contexts. Next we shall constrain the HOSC[HOSC] LTS ac-
cordingly to capture the restriction. Note that, from the point of view of the
term, the above-mentioned constraint concerns the use of continuation names
by O (the context), so we need to talk about O-bracketing instead. This dual
notion of “a top name for O” is specified below.
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(Pτ) 〈M, c, γ, ξ, φ, h〉 τ−−→ 〈N, c′, γ, ξ, φ, h′〉
when (M, c, h) → (N, c′, h′)

(PA) 〈V, c, γ, ξ, φ, h〉 c̄(A)−−−→ 〈γ · γ′, ξ, φ ' ν(A), h, c′〉
when c : σ, (A, γ′) ∈ AValσ(V ), ξ(c) = c′

(PQ) 〈K[fV ], c, γ, ξ, φ, h〉 f̄(A,c′)−−−−−→ 〈γ · γ′ · [c′ �→ K], ξ · [c′ �→ c], φ ' ν(A) ' {c′}, h, c′〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V ), c′ : σ′

(OA) 〈γ, ξ, φ, h, c′′〉 c(A)−−−→ 〈K[A], c′, γ, ξ, φ ' ν(A), h〉
when c = c′′, c : σ, A : σ, γ(c) = K, ξ(c) = c′

(OQ) 〈γ, ξ, φ, h, c′′〉 f(A,c)−−−−→ 〈V A, c, γ, ξ · [c �→ c′′], φ ' ν(A) ' {c}, h〉
when f : σ → σ′, A : σ, c : σ′, γ(f) = V

Fig. 7. HOS[HOSC] LTS

Definition 18. Suppose φ ⊆ FNames and c ∈ CNames. Let t be a (φ 4 {c}, ∅)-
trace of odd length. The continuation name topO(t) is defined as follows. In the
first case, the value is ⊥ (representing “none”), because c is the top continuation
passed by the environment to the term (if it gets answered there is nothing left
to answer).

topO(t c̄(A)) = ⊥
topO(t1 f(A′′, c′) t2 c̄′(A′)) = topO(t1)

topO(t f̄(A
′, c′)) = c′

We say that a (φ 4 {c}, ∅)-trace t is O-bracketed if, for any prefix t′ c′(A) of
t (i.e. any prefix ending with an O-answer), we have c′ = topO(t

′).

In Figure 7, we present a new LTS, called the HOS[HOSC] LTS, which will
turn out to capture �HOS

err . It is obtained from the HOSC[HOSC] LTS by re-
stricting O-actions to those that satisfy O-bracketing. Technically, this is done
by enriching passive configurations with a component for storing the current
value of topO(t). In order to maintain this information, we need to know which
continuation will become the top one if P plays an answer. This can be done with
a map that maps continuations introduced by O to other continuations. Because
its flavour is similar to ξ (which is a map from continuations introduced by P)
we integrate this information into ξ. The c = c′′ side condition then enforces
O-bracketing. We shall write TrHOS(C) for the set of traces generated from C
in the HOS[HOSC] LTS.

Recall that, given a Γ -assignment ρ, term Γ � M : τ and c : τ , the active
configuration Cρ,c

M was defined by Cρ,c
M = 〈M{ρ}, c, ∅, ∅, ν(ρ)∪{c}, ∅〉. We upgrade

it to the new LTS by setting Cρ,c
M,bra = 〈M{ρ}, c, ∅, [c �→ ⊥], ν(ρ)∪{c}, ∅, ∅〉. This

initializes ξ in such a way that, after c̄(A) is played, the extra component will
be set to ⊥, where ⊥ is a special element not in CNames.
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Definition 19. The HOS[HOSC] trace semantics of a cr-free HOSC term
Γ � M : τ is defined to be TrHOS(Γ � M : τ) = {((ρ, c), t) | ρ is a Γ -assignment,
c : τ, t ∈ TrHOS(C

ρ,c
M,bra)}.

By construction, it follows that

Lemma 12. t ∈ TrHOS(C
ρ,c
M,bra) iff t ∈ TrHOSC(C

ρ,c
M ) and t is O-bracketed.

Noting that the witness trace t from Lemma 4 is O-bracketed iff t⊥ /̄((), c′) is
P-bracketed, we can conclude that, for HOS, the traces relevant to ⇓err are
O-bracketed, which yields:

Theorem 5 (Soundness). For any cr-free HOSC terms Γ � M1,M2, if

TrHOS(Γ � M1) ⊆ TrHOS(Γ � M2) then Γ � M1 �HOS(ciu)
err M2.

For the converse, we establish another definability result, this time for a P-
bracketed trace.

Lemma 13 (Definability). Suppose φ4{/} ⊆ FNames and t is an even-length
P-bracketed ({◦τ ′ , /}, φ 4 {c})-trace starting with an O-action. There exists a
passive configuration C such that the even-length traces TrHOSC(C) are exactly
the even-length prefixes of t (along with all renamings that preserve types and
φ 4 {c, ◦τ ′ , /}). Moreover, C = 〈γ · [c �→ K], {c �→ ◦τ ′}, φ 4 {c, ◦τ ′ , /}, h〉, where
h,K, γ are built from HOS syntax.

Proof (Sketch). Our argument for HOSC is structured in such a way that, for a
P-bracketed trace, there is no need for continuations (throwing and continuation
capture are not necessary).

Completeness now follows because, for a potential witness trace t from Lemma 4,
one can create a corresponding context by invoking the Definability result for
t⊥ /̄((), c′). It is crucial that the addition of /̄((), c′) does not break P-bracketing
(it does not, because the action is a question).

Theorem 6 (Completeness). For any cr-free HOSC terms Γ � M1,M2, if

Γ � M1 �HOS(ciu)
err M2 then TrHOS(Γ � M1) ⊆ TrHOS(Γ � M2).

Altogether, Theorems 5, 6 (along with Lemma 1) imply the following result.

Corollary 3 (HOS Full Abstraction). Suppose Γ � M1,M2 are cr-free HOSC

terms. Then TrHOS(Γ � M1) ⊆ TrHOS(Γ � M2) iff Γ � M1 �HOS(ciu)
err M2 iff

Γ � M1 �HOS
err M2.

Example 11 (Assignment/callback commutation [27]). For i ∈ {1, 2}, let f :
Unit → Unit � Mi : Unit → Unit be defined by:

M1 � letn = ref (0) inλyUnit.if (!n > 0) () (n := 1; f()),

M2 � letn = ref (0) inλyUnit.if (!n > 0) () (f();n := 1).



Complete trace models of state and control 369

Operationally, one can see that f � M1 ��HOS
err M2 due to the following HOS con-

text: let r = ref (λy.y) in (let f = λy.(!r)() in (r := •; (!r)())); err . In our frame-
work, this is confirmed by the trace

t5 = c̄(g) g((), c1) f̄((), c2) g((), c2) c̄2(()),

which is in TrHOS(C
ρ,c
M1

) \TrHOS(C
ρ,c
M2

). On the other hand,

t6 = c̄(g) g((), c1) f̄((), c2) g((), c2) f̄((), c3)

is in TrHOS(C
ρ,c
M2

) \TrHOS(C
ρ,c
M1

), so the terms are incomparable. Note, however,
that both traces break O-visibility: specifically, we have

VisO(c̄(g) g((), c1) f̄((), c2)) = {c2},

so the g((), c2) action violates the condition. Consequently, the traces do not
preclude f � M1

∼=x
err M2 for x ∈ {GOSC,GOS}.

For x ∈ {HOSC,GOSC}, �x
err and �x

ter coincide. Intuitively, this is because the
presence of continuations in the context makes it possible to make an escape at
any point. In contrast, for HOS, the context must run to completion in order to
terminate.

At the technical level, one can appreciate the difference when trying to trans-

fer our results for �HOS(ciu)
err to �HOS(ciu)

ter . Recall that, according to Lemma 4,
⇓ter relies on a witness trace t such that the context configuration generates
t⊥ ◦̄τ ′(). In HOS, the latter must satisfy P-bracketing, so we need topP (t

⊥) = ◦τ ′ .
Note that this is equivalent to topO(t) = ⊥. Consequently, only such traces are
relevant to observing ⇓ter .

We shall call an odd-length O-bracketed (φ 4 {c}, ∅)-trace t complete if
topO(t) = ⊥. Let us write TrHOS(Γ � M1) ⊆c TrHOS(Γ � M2) if we have
((ρ, c), t) ∈ TrHOS(Γ � M2) whenever ((ρ, c), t) ∈ TrHOS(Γ � M1) and t is com-
plete. Following our methodology, one can then show:

Theorem 7 (HOS Full Abstraction for �HOS
ter ). Suppose Γ � M1,M2 are cr-

free HOSC terms. TrHOS(Γ � M1) ⊆c TrHOS(Γ � M2) iff Γ � M1 �HOS(ciu)
ter M2

iff Γ � M1 �HOS
ter M2.

Example 12. Let M1 ≡ λfUnit→Unit.f();ΩUnit and M2 ≡ λfUnit→Unit.ΩUnit.
We will see that � M1 ��HOS

err M2 but � M1 �HOS
ter M2. To see this, note that

TrHOS(C
ρ,c
M1

) contains prefixes of c̄(g) g(f, c1) f̄((), c2) c2(()), while TrHOS(C
ρ,c
M2

)
only those of c̄(g) g(f, c1). Observe that the only complete trace among them
is c̄(g). The trace t = c̄(g) g(f, c1) f̄((), c2) is not complete, because topO(t) =
c2. Consequently, TrHOS(Γ � M1) �⊆ TrHOS(Γ � M2) but TrHOS(Γ � M1) ⊆c

TrHOS(Γ � M2).

The theorem above generalizes the characterisation of contextual equivalence
between HOS terms with respect to HOS contexts [23], where trace completeness
means both O- and P-bracketing and “all questions must be answered”. Our
definition of completeness is weaker (O-bracketing + “the top question must
be answered”), because it also covers HOSC terms. However, in the presence of
both O- and P-bracketing, i.e. for HOS terms, they will coincide.
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6 GOS[HOSC]

Recall that GOS features ground state only and, technically, is the intersection
of GOSC and HOS. Consequently, it follows from the previous sections that GOS
contexts yield configurations that satisfy both P-visibility and P-bracketing. For
such traces, the definability result for GOSC yields a GOS context. Thus, in
a similar fashion to the previous sections, we can conclude that O-visible and
O-bracketed traces underpin �GOS

err . To define the GOS LTS we simply combine
the restrictions imposed in the previous sections, and define TrGOS(Γ � M)
analogously. The results on �GOS

ter from the previous section also carry over to
GOS.

Theorem 8 (GOS Full Abstraction). Suppose Γ � M1,M2 are cr-free HOSC
terms. Then:

– TrGOS(Γ � M1) ⊆ TrGOS(Γ � M2) iff Γ � M1 �GOS(ciu)
err M2 iff Γ �

M1 �GOS
err M2.

– TrGOS(Γ � M1) ⊆c TrGOS(Γ � M2) iff Γ � M1 �GOS(ciu)
ter M2 iff Γ �

M1 �GOS
ter M2.

7 Concluding remarks

Asymmetry Our framework is able to deal with asymmetric scenarios, where
programs are taken from HOSC, but are tested with contexts from weaker frag-
ments. For example, we can compare the following two HOSC programs, where
f : ((Unit → Unit) → Unit) → Unit is a free identifier.

let b = ref ff in callcc(y. callcc(y.
f(λg.b := tt; g(); throw() to y); f(λg.g(); throw() to y);
if !b then () else div) div)

with div representing divergence. The terms happen to be ∼=HOS
err -equivalent, but

not ∼=HOSC
err -equivalent.

To see this at the intuitive level, we make the following observations.

– Firstly, we observe that, to distinguish the terms, f should use its argument.
Otherwise, the value of b will remain equal to ff , and the only subterm that
distinguishes the terms (‘if !b then () else div’) will play the same role as div
in the second term.

– Secondly, if f does use its argument, then b will be set to tt in the first pro-
gram, raising the possibility of distinguishing the terms. However, if we allow
HOS contexts only then, since the argument to f was used, it will have to
run to completion, before ‘if !b then () else div’ is reached. Consequently, we
will encounter ‘throw () to y’ earlier and never reach ‘if !b then () else div’.
This is represented by the trace

f̄(h, c1) h(g, c2) ḡ((), c3) c3(()) c̄(())
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This trace is O-bracketed, but not P-bracketed since Player uses throw to
answer directly to the initial continuation c rather than c2.

– Finally, if HOSC contexts are allowed, it is possible to reach the subterm
‘if !b then () else div’ with b set to tt. This is represented by the trace

f̄(h, c1) h(g, c2) ḡ((), c3) c1(()) c̄(())

This trace is not O-bracketed, because c1 is answered rather than c3, like
above. Consequently, the trace witnesses termination of the first term, but
the second term would diverge during interaction with the same context.

We plan to explore the opportunities presented by this setting in the future,
especially with respect to fully abstract translations, for example, from HOSC
to GOS.

Richer Types Recall that our full abstraction results are stated for cr-free terms,
terms with cont- and ref-free types at the boundary. Here we first discuss how
to extend them to more complicated types.

To deal with reference type at the boundary, i.e. location exchange, one needs
to generalize the notion of traces, so that they can carry, for each action, a heap
representing the values stored in the disclosed part of the heap, as in [23,27]. The
extension to sum, recursive and empty types seems conceptually straightforward,
by simply extending the definition of abstract values for these types, following
the similar notion of ultimate pattern in [24]. The same idea should apply to
allow continuation types at the boundary. Operational game semantics for an
extension of HOS with polymorphism has been explored in [15].

Innocence On the other hand, all of the languages we considered were stateful.
In the presence of state, all of the actions that are represented by labels (and
their order and frequency) can be observed, because they could generate a side-
effect. A natural question to ask whether the techniques could also be used
to provide analogous theorems for purely functional computation, i.e. contexts
taken from the language PCF. Here, the situation is different. For example, the
terms f : Int → Int � f(0) and f : Int → Int � if f(0) f(0) f(0) should be
equivalent, even though the sets of their traces are incomparable.

It is known [12] that PCF strategies satisfy a uniformity condition called in-
nocence. Unfortunately, restricting our traces to “O-innocent ones” (like we did
with O-visibility and O-bracketing) would not deliver the required characteriza-
tion. Technically, this is due to the fact that, in our arguments, given a single
trace (with suitable properties), we can produce a context that induces the given
trace and no other traces (except those implied by the definition of a trace). For
innocence, this would not be possible due to the uniformity requirement. It will
imply that, although we can find a functional context that generates an inno-
cent trace, it might also generate other traces, which then have to be taken into
account when considering contextual testing. This branching property makes it
difficult to capture equivalence with respect to functional contexts explicitly, e.g.
through traces, which is illustrated by the use of the so-called intrinsic quotient
in game models of PCF [2,12].
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8 Related Work

We have presented four operational game models for HOSC, which capture term
interaction with contexts built from any of the four sublanguages x ∈ {HOSC,
GOSC, HOS, GOS} respectively. The most direct precursor to this work is
Laird’s trace model for HOS[HOS] [23]. Other frameworks in this spirit include
models for objects [18], aspects [16] and system-level code [9]. In [13], Laird’s
model has been related formally to the denotational game model from [27]. How-
ever, in general, it is not yet clear how one can move systematically between the
operational and denotational game-based approaches, despite some promising
steps reported in [25]. Below we mention other operational techniques for rea-
soning about contextual equivalence.

In [31], fully abstract Eager-Normal-Form (enf) Bisimulations are presented
for an untyped λ-calculus with store and control, similar to HOSC (but with
control represented using the λμ-calculus). The bisimulations are parameterised
by worlds to model the evolution of store, and bisimulations on contexts are used
to deal with control. Like our approach, they are based on symbolic evaluation of
open terms. Typed enf-bisimulations, for a language without store and in control-
passing style, have been introduced in [24]. Fully-abstract enf-bisimulations are
presented in [7] for a language with state only, corresponding to an untyped
version of HOS. Earlier works in this strand include [17,29].

Environmental Bisimulations [19,30,32] have also been introduced for lan-
guages with store. They work on closed terms, computing the arguments that
contexts can provide to terms using an environment similar to our component
γ. They have also been extended to languages with call/cc [34] and delimited
control operators [5,6].

Kripke Logical Relations [28,4,8] have been introduced for languages with
state and control. In [8], a characterization of contextual equivalence for each
case x[x] (x ∈ {HOSC,GOSC,HOS,GOS}) is given, using techniques called
backtracking and public transitions, which exploit the absence of higher-order
store and that of control constructs respectively. Importing these techniques in
the setting of Kripke Open Bisimulations [14] should allow one to build a bridge
between the game-semantics characterizations and Kripke Logical Relations.

Parametric bisimulations [11] have been introduced as an operational tech-
nique, merging ideas from Kripke Logical Relations and Environmental Bisim-
ulations. They do not represent functional values coming from the environment
using names, but instead use a notion of global and local knowledge to compute
these values, reminiscent of the work on environmental bisimulations. The no-
tion of global knowledge depends itself on a notion of evolving world. To our
knowledge, no fully abstract Parametric Bisimulations have been presented.

A general theory of applicative [21] and normal-form bisimulations [20] has
been developed, with the goal of being modular with respect to the effects con-
sidered. While the goal is similar to our work, the papers consider monadic and
algebraic presentation of effects, trying particularly to design a general theory
for proving soundness and completeness of such bisimulations. These works com-
plement ours, and we would like to explore possible connections.
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