q

Check for
updates

Run-time Complexity Bounds Using Squeezers

Oren Ish-Shalom '], Shachar Itzhaky?, Noam Rinetzky', and Sharon Shoham®

I Tel Aviv University, Tel Aviv, Israel
tuna.is.good.for.you@gmail.com
2 Technion, Haifa, Israel

Abstract. Determining upper bounds on the time complexity of a program is
a fundamental problem with a variety of applications, such as performance de-
bugging, resource certification, and compile-time optimizations. Automated tech-
niques for cost analysis excel at bounding the resource complexity of programs
that use integer values and linear arithmetic. Unfortunately, they fall short when
execution traces become more involved, esp. when data dependencies may affect
the termination conditions of loops. In such cases, state-of-the-art analyzers have
shown to produce loose bounds, or even no bound at all.

We propose a novel technique that generalizes the common notion of recurrence
relations based on ranking functions. Existing methods usually unfold one loop
iteration, and examine the resulting relations between variables. These relations
assist in establishing a recurrence that bounds the number of loop iterations. We
propose a different approach, where we derive recurrences by comparing whole
traces with whole traces of a lower rank, avoiding the need to analyze the com-
plexity of intermediate states. We offer a set of global properties, defined with re-
spect to whole traces, that facilitate such a comparison, and show that these prop-
erties can be checked efficiently using a handful of local conditions. To this end,
we adapt state squeezers, an induction mechanism previously used for verifying
safety properties. We demonstrate that this technique encompasses the reasoning
power of bounded unfolding, and more. We present some seemingly innocuous,
yet intricate, examples where previous tools based on cost relations and control
flow analysis fail to solve, and that our squeezer-powered approach succeeds.

1 Introduction

Cost analysis is the problem of estimating the resource usage of a given program, over
all of its possible executions. It complements functional verification—of safety and
liveness properties—and is an important task in formal software certification. When
used in combination with functional verification, cost analysis ensures that a program
is not only correct, but completes its processing in a reasonable amount of time, uses a
reasonable amount of memory, communication bandwidth, etc. In this work we focus
on run-time complexity analysis. While the area has been studied extensively, e.g., [19],
[28], [3], [14], [6], [16], [21], [12], [9], the general problem of constraining the number
of iterations in programs containing loops with arbitrary termination conditions remains
hard.

A prominent approach to computing upper bounds on the time complexity of a pro-
gram identifies a well-founded numerical measure over program states that decreases in

© The Author(s) 2021
N. Yoshida (Ed.): ESOP 2021, LNCS 12648, pp. 320-347, 2021.
https://doi.org/10.1007/978-3-030-72019-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72019-3_12&domain=pdf

Run-time Complexity Bounds Using Squeezers 321

void binary_counter(unsigned int n) {
unsigned int c[n];
memset(c,0,n*sizeof(unsigned int));

int i=0;
while (i < n) {
if (c[i] == 1) /#scan l-prefixs/{c[i] = 0; i++; }
else /*incrementx/ {c[i] = 1; i=0; print(c);}
1}

Fig. 1. A program that produces all combinations of n bits.

every step of the program, also called a ranking function. In this case, an upper bound on
the measure of the initial states comprises an upper bound on the program’s time com-
plexity. Finding such measures manually is often extremely difficult. The cost relations
approach, dating back to [28], attempts to automate this process by using the control
flow graph of the program to extract recurrence formulas that characterize this measure.
Roughly speaking, the recurrences relate the measures (costs) of adjacent nodes in the
graph, taking into account the cost of the step between them. In this way, the cost rela-
tions track the evolution of the measure between every pair of consecutive states along
the executions of the program.

One limitation of cost relations is the need to capture the number of steps remaining
for execution in every state, that is, all intermediate states along all executions. If the
structure of the state is complex, this may require higher order expressions, e.g., sum-
ming over an unbounded number of elements. As an example, consider the program in
Fig. 1 that implements a binary counter represented by an array of bits.

In this case, a ranking function that decreases between every two consecutive iter-
ations of the loop, or even between two iterations that print the value of the counter,
depends on the entire content of the array. Attempting to express a ranking function
over the scalar variables of this program is analogous to abstracting the loop as a finite-
state system that ignores the content of the array, and as such contains transition cycles
(e.g. the abstract state (n — ng,i — 0), obtained by projecting the state to the scalar
variables only, repeats multiple times in any trace)—meaning that no strictly decreas-
ing function can be defined in this way. Similarly, any attempt to consider a bounded
number of bits will encounter the same difficulty.

In this paper, we propose a novel approach for extracting recurrence relations cap-
turing the time complexity of an imperative program, modeled as a transition system,
by relating whole traces instead of individual states. The key idea is to relate a trace to
(one or more) shorter traces. This allows to formulate a recurrence that resolves to the
length of the trace and recurs over the values at the initial states only. We sidestep the
need to take into account the more complex parts of the state that change along the trace
(e.g., in the case of the binary counter, the array is initialized with zeros).

Our approach relies on the notion of state squeezers [22], previously used exclu-
sively for the verification of safety properties. We present a novel aspect where the
same squeezers can be used to determine complexity bounds, by replacing the safety
property check with trace length judgements.

322 O. Ish-Shalom et al.

Squeezers provide a means to perform induction on the “size” of (initial) states to
prove that all reachable states adhere to a given specification. This is accomplished
by attaching ranks from a well-founded set to states, and defining a squeezer function
that maps states to states of a lower rank. Note that the notion of a rank used in our
work is distinct from that of a ranking function, and the two should not be confused; in
particular, a rank is not required to decrease on execution steps. Previously, squeezers
were utilized for safety verification: the ability to establish safety is achieved by having
the squeezer map states in a way that forms a (relaxed form of) a simulation relation,
ensuring that the traces of the lower-rank states simulate the traces of the higher rank
states. Due to the simulation property, which is verified locally, safety over states with
a base rank, carries over (by induction over the rank) to states of any higher rank.

In this work, we use the construction of well-founded ranks and squeezers to de-
fine a recurrence formula representing (an upper bound on) the time complexity of the
procedure being analyzed. We do so by expressing the complexity (length) of traces in
terms of the complexity of lower-rank traces. This new setting raises additional chal-
lenges: it is no longer sufficient to relate traces to lower-rank traces; we also need to
quantify the discrepancy between the lengths of the traces, as well as between their
ranks. This is achieved by a certain form of simulation that is parameterized by stutter-
ing shapes (for the lengths) and by means of a rank bounding function (for the ranks).
Furthermore, while [22] limits each trace to relate to a single lower-rank trace, we have
found that it is sometimes beneficial to employ a decomposition of the original trace into
several consecutive trace segments, so that each segment corresponds to some (possi-
bly different) lower-rank trace.The segmentation simplifies the analysis of the length
of the entire trace, since it creates sub-analyses that are easier to carry out, and the
sum of which gives the desired recurrence formula. This also enables a richer set of
recurrences to be constructed automatically, namely non-single recurrences (meaning
that the recursive reference may appear more than once on the right hand side of the
equation).

The base case of the recurrence is obtained by computing an upper bound on the
time complexity of base-rank states. This is typically a simpler problem that may be
addressed, e.g., by symbolic execution due to the bounded nature of the base. The solu-
tion to the recurrence formula with the respective base case soundly overapproximates
the time complexity of the procedure.

We show that, conceptually, the classical approach for generating recurrences based
on ranking functions can be viewed as a special case of our approach where the squeezer
maps a state to its immediate successor. The real power of our approach is in the free-
dom to define other squeezers, producing simpler recursions, and avoiding the need for
complex ranking functions.

Our use of squeezers for extracting recurrences that bound the complexity of imper-
ative programs is related to the way analyses for functional programs (e.g. [20]) use the
term(s) in recursive function calls to extract recurrences. The functional programming
style coincidentally provides such candidate terms. The novelty of our approach is in
introducing the concept of a squeezer explicitly, leading to a more flexible analysis as it
does not restrict the squeezer to follow specific terms in the program. In particular, this
allows reasoning over space in imperative programs as well.

Run-time Complexity Bounds Using Squeezers 323

The main results of this paper can be summarized as follows:

— We propose a novel technique for run-time complexity analysis of imperative pro-
grams based on state squeezers. Squeezers, together with rank-bounding functions,
are used for extracting recurrence relations whose solutions overapproximate the
length of executions of the input program.

— We formalize the notions of state squeezers, partitioned simulation and rank bound-
ing functions that underlie the approach, and establish conditions that ensure sound-
ness of the recurrence relations.

— We demonstrate that squeezers and rank bounding functions can be efficiently syn-
thesized and verified, due to their compactness, especially relative to explicit rank-
ing functions.

— We implemented our approach and applied it successfully to several small but intri-
cate programs, some of which could not have been handled by existing techniques.

2 Overview

In this section we give a high level description of our technique for complexity analysis
using the binary counter example in Fig. 1.

Example: Binary counter The procedure in Fig. 1 receives as an input a number n of
bits and iterates over all their possible values in the range 0...2" — 1. The “current”
value is maintained in an array ¢ which is initialized to zero and whose length is n. ¢[0]
represents the least significant bit. The loop scans the array from the least significant bit
forward looking for the leftmost 0 and zeroing the prefix of 1s. As soon as it encounters
a 0, it sets it to 1 and starts the scan from the beginning. The program terminates when
it reaches the end of the array (¢ = n), all array entries are zeros, and the last value was
111...; at this point all the values have been enumerated.

Existing analyses All recent methods that we are aware of (such as [16,4,20]) fail to
analyze the complexity of this procedure (in fact, most methods will fail to realize that
the loop terminates at all). One reason for that is the need to model the contents of
the array whose size in unknown at compile time. However, even if data were modeled
somehow and taken into account, finding a ranking function, which underlies existing
approaches, is hard since this function is required to decrease between any two consec-
utive iterations along any execution. Here for instance, to the best of our knowledge,
such a function would depend on an unbounded number of elements of the array; it
would need to extract the current value as an integer, along the lines of Z?;Ol clj] - 27.

The use of a ranking function for complexity analysis is somewhat analogous to
the use of inductive invariants in safety verification. Both are based on induction over
time along an execution. This paper is inspired by previous work [22] showing that
verification can also be done when the induction is performed on the size (rank) of the
state rather than on the number of iterations, where the size of the state may corre-
spond, e.g., to the size of an unbounded data structure. We argue that similar concepts
can be applied in a framework for complexity classification. That is, we try to infer
a recurrence relation that is based on the rank of the state and correlates the lengths

324 O. Ish-Shalom et al.

of complete executions—executions that start from an initial state—of different ranks.
This sidesteps the need to express the length of partial executions, which start from
intermediate states. While the approach applies to bounded-state systems as well, its
benefits become most apparent when the program contains a-priori unbounded stores,
such as arrays.

Our approach. Roughly speaking, our approach for computing recurrence formulas
that provide an upper bound on the complexity of a procedure is based on the following
ingredients:

A rank function r : snit — X that maps initial states to ranks from a well founded

set (X, <) with base B. Intuitively, the rank of the initial state governs the time

complexity of the entire trace, and we also consider it to be the rank of the trace. As
we shall soon see, this rank can be significantly simpler than a ranking function.

— A squeezer Y : Y — X that maintains (some variant of) a simulation relation, thus
ensuring a bona fide correspondence between higher-rank traces and lower-rank
traces through correspondence between states.

— A trace partition pg : X — [l..d] that maps each state to a segment-identifier
i € [1..d], and induces a decomposition of a trace into segments, allowing Y to
map each of them to a separate, lower-rank mini-trace.

— A rank-bounding function ¥ : X x [1..d] — X that provides an upper bound on the

rank of the initial states of the d mini-traces based on the rank of the higher-rank

trace. (The rank is not required to be uniform across mini-traces).

All of these ingredients are synthesized automatically, as we discuss in Section 4. Next,
we elaborate on each of these ingredients, and illustrate them using the binary counter
example. We further demonstrate how we use these ingredients to find recurrence for-
mulas describing (an upper bound on) the complexity of the program.

Some notations We adopt a standard encoding of a program as a transition system over
a state space X, with a set of initial states ¢nit C 3 and transition function tr : ' — X,
where a transition corresponds to a loop iteration. We use reach C X to denote the set
of reachable states, reach = {0 | 30, k. tr¥(00) = o A og € init}.

Defining the rank of a state Ranks are taken from a well founded set (X, <) with a basis
B C X that contains all the minimal elements of X. The rank function, r : it — X,
aims to abstract away irrelevant data from the (initial) state that does nor effect the
execution time, and only uses state “features” that do. When proper ranks are used, the
rank of an initial state is all that is needed to provide a tight bound on its trace length.
Since ranks are taken from a well founded set, they can be recursed over. In the binary
counter example, the chosen rank is n, namely, the rank function maps each state to the
size of the array. (Notice that the rank does not depend on the contents of the array;
in contrast, bounding the trace length from any intermediate state, and not just initial
states, would have required considering the content of the array).

Given the rank function, our analysis extracts a recurrence formula for the complex-
ity function comp,, : X — N U {oo} that provides an upper bound on the number of
iterations of ¢r based on the rank of the initial states. In our exposition, we sometimes

Run-time Complexity Bounds Using Squeezers 325

i : i i i i

Yy ¥ Y ¥ ¥ Y A ¥
[oJoJoJo] [1JoJoJo] [oJoJoJo] [oJ1JoJo] [1]xJoJo] [o]1JoJo] [o1JoJo] [oJoJoJo]
D_O tr o1 tr o2 tr 0_3 tr o4 tr . 0'5 tr 0'6 tr 0_7 .
: . ,)e -
\\ o /// ///,/
Vi Y Vol T
: A Pra
’ /f/ ’ ’
4 90 tr 91 tr o2 tr O3 —
o) =3
0 — : —
Y ({n,i,c)) = (n=1,i=1,c[L:]) Y(n)y=n-1

Fig. 2. Correspondence between two traces of the binary counter program. Squeezer removes the
leftmost array entry, that represents the least significant bit. The rank is the array size, i.e., four
on the upper trace and three on the lower one. The simulation includes only 1-,2- and 3-steps,
so the length of the upper trace is at most three times that of the lower trace, yielding an overall
complexity bound of O(3™).

also refer to a time complexity function over states, comp, : init — N U {oco}, which
is defined directly on the (initial) states, as the number of iterations in an execution that
starts with some og € init.

Defining a squeezer The squeezer Y : 2 — Y is a function that maps states to states
of lower-rank traces (where the rank of a trace is determined by the rank of its initial
state), down to the base ranks B. Its importance is in defining a correspondence be-
tween higher-rank traces and lower-rank ones that can be verified locally, by examining
individual states rather than full traces. The kind of correspondence that the squeezer
is required to ensure affects the flexibility of the approach and the kind of recurrence
formulas that it may yield. To start off, consider a rather naive squeezer that satisfies the
following local properties:

— rank decrease of non-base initial states: oy € init A r(og) ¢ B = r(Y(0g)) <
r(00), and
— simulation
e initial anchor: o € init = Y(0p) € nit,
o k-step: o € reach = Jk. tr(¥ (o)) = Y (trk(0)).

As an example, the squeezer we consider for the binary counter program is rather
intuitive: it removes the least significant bit (¢[0]), and adjusts the index 4 accordingly.
Doing so yields a state with rank (Y (cg)) = r(0p) — 1. Fig. 2 shows the corre-
spondence between a 4-bit binary counter, and a 3-bit one. The figure illustrates the
simulation k-step property for k = 1,2, 3: 0o and o3 are (3, 1)-stuttering, o1 and o4 are
(2, 1)-stuttering, and o9, o5 and o¢ are (1, 1)-stuttering.

The simulation property induces a correlation between a higher rank trace 7 and a
lower rank one 7', such that every step of 7/ is matched by k steps in 7. Whenever a
state o satisfies the k-step property, we will refer to it as being (k, 1)-stuttering. (We
usually only care about the smallest & that satisfies the property for a given o.) Now
suppose that there exists some k € N* such that for every trace 7(0g) and every state

326 O. Ish-Shalom et al.

o € 1(0p), o is (k,1)-stuttering with 1 < k < k. This would yield the following
complexity bound:
comps(og) < k- comps(Y(00)). €))

All your base 3 What should happen if we repeatedly apply Y to some initial state
09, each time obtaining a new, lower-rank trace? Since (Y (cg)) < r(0g), and since
(X, <) is well-founded, we will eventually hit some state of base rank:

Y(Y(...(00))...) =05 suchthat r(o3)€ B

Hence, if we know the complexity of the initial states with a base rank, we can apply
Eq. (1) iteratively to compute an upper bound of the complexity of any initial state.

How many steps will be needed to get from an arbitrary initial state o to og?
Clearly, this depends on the rank, and the way in which Y decreases it.

Consider the binary counter program again, with the rank r(c) = n. (N, <) is
well-founded, with a single minimum 0. If we define, e.g., B = {0, 1}, we know that
the length of any trace with n € B is bounded by a constant, 2. (Bounding the length
of traces starting from an initial state oy where r(0y) € B can be done with known
methods, e.g., symbolic execution). Since the rank decreases by 1 on each “squeeze”,
we get the following exponential bound:

compg(0g) < 23" =0(3"))

The last logical step, going from (1) to (2), is, in fact, highly involved: since Eq. (1)
is a mapping of states, solving such a recurrence for arbitrary Y cannot be carried out
using known automated methods. Instead, we implicitly used the rank of the state, n,
to extract a recurrence over scalar values and obtain a closed-form expression. Let us
make this reasoning explicit by first expressing Eq. (1) in terms of comp, instead of
comp,:

compy(n) < k - comp, (n—-1)

Here, n — 1 denotes the rank obtained when squeezing an initial state of rank n. Unlike
Eq. (1), this is a recurrence formula over (N, <) that may be solved algorithmically,
leading to the solution comp,(n) = O(3™).

Surplus analysis Assuming the worst & for all the states in the trace can be too conser-
vative; in particular, if there are only a few states that satisfy the %—step property, and all
the others satisfy the 1-step property. In the latter case, if we know that at most b states
in any one trace have k£ > 1, we can formulate the tighter bound:

comps(og) < comps(Y(00)) + kb (3)

Incidentally, in the current setting of the binary counter program, the number of k-
steps (3-steps) is not bounded. So we cannot apply the inequality (3) repeatedly on any
trace, as the number of 3-steps depends on the initial state. However, we can improve
the analysis by partitioning the trace to two parts, as we explain next.

*https://knowyourmeme.com/memes/all-your-base-are-belong-to-us

https://knowyourmeme.com/memes/all-your-base-are-belong-to-us

Run-time Complexity Bounds Using Squeezers 327

Segments and mini-traces Note that both (1) and (3) “suffer” from an inherent restric-
tion that the right hand side contains exactly one recursive reference. As such, they are
limited in expressing certain kinds of complexity classes.

In order to get more diverse recurrences, including non-single recurrences, we pro-
pose an extension of the simulation property that allows more than one lower-rank trace:

— partitioned simulation
e initial anchor: og € init = Y (o) € init (same as before),
e k-step: 0 € reach = k. tr(Y (o)) = Y (tr¥(c)) (same as before) or
Y (tr(o)) € init (switch)

This definition allows a new mini-trace to start at any point along a higher-rank trace
7, thus marking the beginning of a new segment of 7. When this occurs, we call tr(o)
a switch state. For the sake of uniformity, we also refer to all initial states g € init as
switch states. Hence, each segment of 7 starts with a switch state, and the mini-traces
are the lower-level traces that correspond to the segments (these are the traces that start
from Y (o), where o is a switch state). The length of 7 can now be expressed as the
sum of lower-level mini-traces.

However, there are two problems remaining. First, we need to extend the “rank
decrease of non-base initial states” requirement to any switch state in order to ensure
that the ranks of all mini-traces are indeed lower. Namely, we need to require that if
0 is any switch state in a trace from o, then r (Y (05)) < 7(00). Second, even if we
extend the rank decrease requirement, this definition does not suggest a way to bound
the number of correlated mini-traces and their respective ranks, and therefore suggests
no effective way to produce an equation for comp, as before.

To sidestep the problem of a potentially unbounded number of mini-traces, we aug-
ment the definition of simulation with a frace partition function; to address the chal-
lenge of the rank decrease we use a rank-bounding function, which is responsible both
for ensuring that the rank of the mini-traces decreases and for bounding their ranks.

Defining a partition We define a function p; : ¥ — {1,...,d}, parameterized by
a constant d, called a partition function, that is weakly monotone along any trace
(pa(o) < pa(tr(o))). This function induces a partition of any trace 7 into (at most)
d segments by grouping states based on the value of p,(c). To ensure the segments and
mini-traces are aligned, we require that switch states only occur at segment boundaries.

— d-partitioned simulation:
e initial anchor: o € init = Y (0g) € init (same as before),
e k-step: o € reach = k. tr(¥ (o)) = Y(tr*(c)) (same as before) or
Y (tr(o)) € init A pa(o) < paltr(c)) (segment switch)

In our running example, let us change Y so that it shrinks the state by removing
the most significant bit instead of the least. This leads to a partition of the execution
trace for r(op) = m into two segments, as shown in Fig. 3. The partition function is
pa= (i >nllecn—1]) 72 : 1 (essentially, c[n — 1] 4+ 1, except that the final state is
slightly different). As can be seen from the figure, each segment simulates a mini-trace

328 O. Ish-Shalom et al.

r(oo) =4
=0 i

vy ¥
‘0[0[01;1'}1‘ [o]o]1]o] [o]o]o]0] [oo]o]1] [oo]1]1] [oo]o]

0 i=2 i=3 i=4

*;
1

| [ofofo]o]
tr tr tr tr tr tr tr tr
U’O-> — 013 J14 015 — *++ —> 028 029 J30
Y B |
E N |
YGD T Y, 2) ,
: M
’ : ’ ’ " " ”"
%0 w0 tr 013 r 014 90 v T 013 tr 14
\“l“li\ \Olﬂlﬁ'\»*_ \21010\ +
P S i=2 = A im0 i=2 =3
r(op) =3 r(oy) =3
Y((n,i,c)) =(n=1,(i <n)?i:i—1,c[n—1]) Y(n,1)=n-=-1

Fig. 3. An execution trace of the binary counter program that corresponds to two mini-traces of
lower rank.

of rank n — 1, with & = 1 for all the steps except for the last step (at o2g) where k& = 2.
In this case, it would be folly to use the recurrence (1) with k& = 2, since all the steps
are 1:1 except one. Instead, we can formulate a tighter bound:

comp, (00) < comp, (}) + comp, (o) +2

Where: comp,(a{,), comp (o)) are the lengths of the mini-traces, and 2 is the sur-
plus from the switch transition 014 — 15 plus the 2-step at o2g. In the case of this pro-
gram, we know that r(oy)) = (o) = r(o¢)—1, for any initial state g, therefore, turn-
ing to comp,,, we can derive and solve the recurrence comp , (n) = 2-comp,(n—1)+2,
which together with the base yields the bound:

comp,,(n) = 2" —2

Clearly, a general condition is required in order to identify the ranks of the corre-
sponding initial states of the (lower-rank) mini-traces (and at the same time, ensure that
they decrease).

Bounding the ranks of squeezed switch states This is not a trivial task, since as pre-
viously noted, the squeezed ranks could be different, and may depend on properties
present in the corresponding switch states. To achieve this goal, once a partition func-
tion pg is defined, we also define a rank-bounding function ¥ : X x {1,...,d} — X,
where for any o € init and switch state o, ¥ provides a bound for the rank of Y (o)
based on that of o:

r(Y(os)) 2 Y (r(00), pa(os)) < r(og) “4)

The rightmost inequality ensures that a mini-trace that starts from Y (o) is of lower-
rank than o, and as such extends the “rank decrease” requirement to all mini-traces.
Based on this restriction, we can formulate a recurrence for comp,, based on the initial
rank p = r(og), as follows:

d
compy(p) <> comp, (Y(p,i)) + (d—1) + kb)
=1

Run-time Complexity Bounds Using Squeezers 329

Where b, as before, is the number of k-steps for which £ > 1, and % is the bound
on k (k < k). The expression (d — 1) represents the transitions between segments, and
k - b represents the surplus of the p-rank trace over the total lengths of the mini-traces.

It should be clear from the definition above, that Y is quite intricate. How would
we compute it effectively? The rank decrease of the initial states and the simulation
properties were local by nature, and thus amenable to validation with an SMT solver.
The Y function is inherently global, defined w.r.t. an entire trace. This makes the prop-
erty (4) challenging for verification methods based on SMT. To render this check more
feasible with first-order reasoning, we introduce two special cases where the problem
of checking (4) becomes easier: rank preservation and a single segment, explained next.

Taming Y with rank preservation To obtain rank preservation, we extend the rank func-
tion to all states (instead of just the initial states), and require that the rank is preserved
along transitions. This is appropriate in some of the scenarios we encountered. For ex-
ample, the binary counter illustration satisfies the property that along any execution
{0:}22,, the rank is preserved: (o) = r(0y+1). Rank preservation means that given a
switch state o of an arbitrary segment ¢, we know that r(os) = (o). Once this is set,
Y only needs to overapproximate the rank of Y (o) in terms of the rank of the same
state 0.

Taming Y with a single segment 1In this case, checking (4) reduces to a single check of
the initial state, which is the only switch state. It turns out that the restriction to a single
segment is still expressive enough to handle many loop types.

Putting it all together Theoretically, , Y, pg, and Y can be manually written by the
user. However, this is a rather tedious task, that is straightforward enough to be auto-
mated. We observed that all the aforementioned functions are simple enough entities,
that can be expressed through a strict syntax using first order logic. Similar to [22], we
apply a generate-and-test synthesis procedure to enumerate a space of possible expres-
sions representing them. This process is explained in Section 4.

3 Complexity Analysis based on Squeezers

In this section we develop the formal foundations of our approach for extracting recur-

rence relations describing the time complexity of an imperative program based on state

squeezers. We present the ingredients that underly the approach, the conditions they

are required to satisfy, and the recurrence relations they induce. In the next section, we

explain how to extract the recurrences automatically. Given the recurrence relation, a

dedicated (external) tool may be applied to end up with a closed formula, similar to [3].
We use transition systems to capture the semantics of a program.

Definition 1 (Transition Systems). A transition system is a tuple (X, init, tr), where
X is a set of states, init C X is a set of initial states and tr : X — X is a transi-
tion function (rather than a transition relation, since only deterministic procedures are

330 O. Ish-Shalom et al.

considered). The set of terminal states ' C X is implicitly defined by tr(c) = 0. An ex-
ecution trace (or a trace in short) is a finite or infinite sequence of states T = 0q, 01, . ..
such that 0,41 = tr(o;) for every 0 < i < |T|. A state 0 € X defines an execu-
tion trace T(c) = {tr'(o)}ien. Whenever there exists an index 0 < k < |7]| s.t.
or € F, we truncate 7(c) into a finite trace {tr'(o)}¥_,, where k is the minimal
such index. The trace is initial if it starts from an initial state, i.e., ¢ € init. Unless
explicitly stated otherwise, all traces we consider are initial. The set of reachable states

is reach = {o € X' | Joy € init . 0 € 7(00)}.

Roughly, to represent a program by a transition system, we translate it into a single
loop program, where init consists of the states encountered when entering the loop, and
transitions correspond to iterations of the loop.

In the sequel, we fix a transition system (X, init, tr) with a set F' of terminal states
and a set reach of reachable states.

Definition 2 (Complexity over states). For a state 0 € X, we denote by comp (o)
the number of transitions from o to a terminal state along 7(o) (the trace that starts
from o). Formally, if 7(c) does not include a terminal state, i.e., the procedure does not
terminate from o, then comp (o) = oo. Otherwise:

comp,(c) = min{k € N | tr*(0) € F}.

The complexity function of the program maps each initial state oy € nit to its time
complexity comp (o) € NU {oo}.

Our complexity analysis derives a recurrence relation for the complexity function by
expressing the length of a trace in terms of the lengths of traces that start from lower
rank states. This is achieved by (i) attaching to each initial state a rank from a well-
founded set that we use as the argument of the complexity function and that we recur
over, and (ii) defining a squeezer that maps each state from the original trace to a state in
a lower-rank trace; the mapping forms a partitioned simulation according to a partition
function that decomposes a trace to segments; each segment is simulated by a (separate)
lower-rank trace, allowing to express the length of the former in terms of the latter, and
finally, (iii) defining a rank bounding function that expresses (an upper bound on) the
ranks of the lower-rank traces in terms of the rank of the higher-rank trace. We elaborate
on these components next.

3.1 Time complexity as a function of rank

We start by defining a rank function that allows us to express the time complexity of an
initial state by means of its rank.

Definition 3 (Rank). Ler X be a set, and < be a well-founded partial order over X.
Let B D min(X) be a base for X, where min(X) is the set of all the minimal elements
of X w.r.t. <. A rank function r : init — X maps each initial state to a rank in X. We
extend the notion of a rank to initial traces as follows. Given an initial trace T = 7(0y),
we define its rank to be the rank of 0. We refer to states o such that r(og) € B as the
base states. Similarly, (initial) traces whose ranks are in B are called base traces.

Run-time Complexity Bounds Using Squeezers 331

In our analysis, ranks range over X = N™ (for some m € NV), with < defined by the
lexicographic order. Ranks let us abstract away data inside the initial execution states
which does not affect the worst-case bound on the trace length. For example, the length
of traces of the binary counter program (Fig. 1) is completely agnostic to the actual
content of the array at the initial state. The only parameter that affects its trace length
is the array size, and not which integers are stored inside it. Hence, a suitable rank
function in this example maps an initial state to its array length. This is despite the fact
that the execution does depend on the content of the array, and, in particular, the number
of remaining iterations from an intermediate state within the execution depends on it.
The partial order < and the base set B will be used to define the recurrence formula as
we explain in the sequel.

We will assume from now on that (X, <, B), as well as the rank function, are fixed,
and can be understood from context. The rank function 7 induces a complexity function
comp, : X — NU {oo} over ranks, defined as follows.

Definition 4 (Complexity over ranks). The complexity function over ranks, comp,, :
X — NU {oo}, is defined by:

comp . (p) = max{comp (o) | r(co) =X pAog € init}

The definition ensures that for every initial state o9 € 4nit, we can compute (an
upper bound on) its time complexity based on its rank, as follows: comp,(og) <
comp,,(r(0p)). The complexity of p takes into account all states with (o) < p and
not only those with rank exactly p, to ensure monotonicity of comp,, in the rank (i.e.,
if p1 =< pa then comp,(p1) < comp,(p2)). Our approach is targeted at extracting a
recurrence relation for comp.,,.

3.2 Complexity decomposition by partitioned simulation

In order to express the length of a trace in terms of the lengths of traces of lower ranks,
we use a squeezer that maps states from the original trace to states of lower-rank traces
and (implicitly) induces a correspondence between the original trace and the lower-rank
trace(s). For now, we do not require the squeezer to decrease the rank of the trace; this
requirement will be added later. The squeezer is accompanied by a partition function
to form a partitioned simulation that allows a single higher-rank trace to be matched to
multiple lower-rank traces such that their lengths may be correlated.

Definition 5 (Squeezer, Y). A squeezer is a function Y : X — 3.

Definition 6. A function pg : ¥ — {1,...,d}, where d € NV is called a d-partition
function if for every trace T = 09, 01,. .. it holds that py(o;+1) > pal(o;) for every
0<i<]|rl

The partition function partitions a trace into a bounded number of segments, where
each segment consists of states with the same value of p;. We refer to the first state of
a segment as a switch state, and to the last state of a finite segment as a last state (note
that if 7 is infinite, its last segment has no last state). In particular, this means that the

332 O. Ish-Shalom et al.

initial state of a trace is a switch state. (Note that a state may be a switch state in one
trace but not in another, while a last state is a last state in any trace, as long as the same
partition function is considered.)

Our complexity analysis requires the squeezer to form a partitioned simulation with
respect to pg. Roughly, this means that the squeezer maps each segment of a trace to
a (lower-rank) trace that “simulates” it. To this end, we require all the states ¢ within
a segment of a trace to be (h, ¢)-“stuttering”, for some h > ¢ > 1. Stuttering lets
h consecutive transitions of o be matched to ¢ consecutive transitions of its squeezed
counterpart. If o = ¢, the state o contributes to the complexity the same number of
steps as the squeezed state. Otherwise, o contributes h — ¢ additional steps, resulting in
a longer trace. Recall that terminal states also have outgoing transitions (to themselves),
however these transitions do not capture actual steps; they do not contribute to the
complexity. Hence, stuttering also requires that “real” transitions of o are matched to
“real” transitions of its squeezed counterpart, namely, if the latter encounter a terminal
state, so must the former. For the last states of segments the requirement is slightly
different as the simulation ends at the last state, and a new simulation begins in the next
segment. In order to account for the transition from the last state of one segment to the
first (switch) state of the next segment, last states are considered (2, 1)-stuttering if they
are squeezed into terminal states, unless they are terminal themselves*. In any other
case, they are considered (1, 1)-stuttering. The formal definitions follow.

Definition 7 (Stuttering States). A non-last state o € X' is called a (h, {)-stuttering
state, for h > £ > 1, if: (i) tr'(Y (o)) = Y (tr"(0)); (ii) for every i < £, tr'(¥ (o)) &
F; (iii) tr*(Y (o)) € F implies that Y (tr"(c)) € F. A last state o € X is (1,1)-
stuttering if ¢ € F or Y (o) & F. Otherwise, it is (2, 1)-stuttering.

To obtain a partitioned simulation, switch states (along any trace), which start new
segments, are further required to be squeezed into initial states (since our complexity
analysis only applies to initial states). We denote by S,,(7) the switch states of trace
T according to partition pg and by S,,, the switch states of all traces according to the
partition pg. Namely, S,,, = init U {tr(0) | o € reach A pa(c) < pa(tr(o))}.

Definition 8 (Partitioned Simulation). We say that a squeezer Y : X — X forms a
{(h4, £;)}"_,-partitioned simulation according to pa, denoted ¥ ~ PS,,({(hi, €;)}i—;)
if for every reachable state o we have that:

- o is (hy, 4;)-stuttering for some 1 < i < n, and
-0 €Sy, = Y(0) € init.

Note that Definition 7 implies that a non-terminal state may only be squeezed into a
terminal state if it is the last state in its segments. When {(h;, ¢;)};, is irrelevant or
clear from the context, we omit it from the notation and simply write Y ~ PS,,,.
* Considering a non-terminal last state that is squeezed into a terminal state as (1, 0)-stuttering
may have been more intuitive than (2, 1)-stuttering, but both properly capture the discrepancy
between the number of transitions in the higher and lower rank traces, and (2, 1) better fits the
rest of the technical development, which assumes that h;, ¢; > 1.

Run-time Complexity Bounds Using Squeezers 333

A trace squeezed by Y ~ PS,, ({(hs,¢;)}?_,) may have an unbounded number of
(hi, £;)-stuttering states, which hinders the ability to define a recurrence relation based
on the simulation. To overcome this, our complexity decomposition may use kE>1
to capture a common multiplicative factor of all the stuttering pairs, with the target of
leaving only a bounded number of states whose stuttering exceeds k and needs to be
added separately. This will become important in Theorem 1.

Observation 1 (Complexity decomposition) Let Y ~ PS,, ({(h, £;)}1,), and k >
L Let B C {1,...,n} be the set of indices such that Z—: > . Then for every og € init
we have that

comp(og) < Z k- comp (Y (o)) + Z Z h; — &76\

0€Sp, (7(00)) 1€E; o€Ki(7(00))
where K;(7(00)) is the multiset of (h;, {;)-stuttering states in T(00).

In the observation, the first addend summarizes the complexity contributed by all the
lower-rank traces, while using k as an upper bound on the “inflation” of the traces.
However, the states that are (h;, ¢;)-stuttering with % that exceeds k contribute addi-

tional h; — (¢; E) steps to the complexity, and as a result, need to be taken into account
separately. This is handled by the second addend, which adds the steps that were not
accounted for by the first addend. While we use the same inflation factor % across the
entire trace, a simple extension of the decomposition property may consider a different
factor k in each segment. Note that the first addend always sums over a finite number
of elements since the number of switch states is at most d — the number of segments. If
7(0p) is finite, the second addend also sums over a finite number of elements.
Observation 1 considers the complexity function over states, and is oblivious to
the rank. In particular, it does not rely on the squeezer decreasing the rank of states.
Next, we use this observation as the basis for extracting a recurrence relation for the
complexity function over ranks, in which case, decreasing the rank becomes important.

3.3 Extraction of recurrence relations over ranks

Based on the complexity decomposition, we define recurrence relations that capture
comp,, — the time complexity of the initial states as a function of their ranks. To go
from the complexity as a function of the actual states (as in Observation 1) to the com-
plexity as a function of their ranks, we need to express the rank of Y (o) for a switch
state o as a function of the rank of o. To this end, we define V:

Definition 9. Givenr, Y and pq such that Y ~ PS,,, afunction ¥ : X x{1,...,d} —
X is a rank bounding function if for every p € X — Band 1 < i < d, if 7(0¢) is an
initial trace such that r(o¢) = p, and o5 € Sy, (7(00)) is a switch state such that
pa(os) = i, the following holds:

(i) upper bound: v(Y(0s)) < Y(p,i) and (i) rank decrease: Y (p,i) < p

334 O. Ish-Shalom et al.

In other words, Definition 9 requires that for every non-base initial state oy € init and
switch state o at segment i of 7(0g), we have that r(Y (05)) < Y(r(09),4) < r(oo).
Recall that r(Y (05)) is well defined since Y (o) is required to be an initial state. The
definition states that Y (p, %) provides an upper bound on the rank of squeezed switch
states in a non-base trace of rank p. comp, (r(Y(c))) < comp, (Y (p,1)) is ensured by
the monotonicity of comp,. This definition also requires the rank of non-base traces to
strictly decrease when they are squeezed, as captured by the “rank decrease” inequality.

Obtaining a rank bounding function, or even verifying that a given Y satisfies this
requirement, is a challenging task. We return to this question later in this section.

These conditions allow to substitute the states for ranks in the first addend of Obser-
vation 1, and hence obtain recurrence relations for comp,, over the (decreasing) ranks.
To handle the seconAd addend, we also need to bound the number of states whose stut-
tering, Z—:, exceeds k. This is summarized by the following theorem:

Theorem 1. Let r : init — X be a rank function, Y : X — X a squeezer and
pa + X — {1,...,d} a partition function such that Y ~ PS,, ({(hi,¢;)}7—,). Let
Y : X x{1,...,d} — X be a rank bounding function w.r.t. r, Y and py. If. for some
k > 1, the number of (h;, {;)-stuttering states that appear along any non-base initial
trace is bounded by a constant b; € N whenever i € Ez, then

d
comp . (p) < Z% comp, (Y (p,1)) + Z bi - (hi — &E) (6)

i=1 i€y

Note that a state may be (h;, ¢;)-stuttering for several ¢’s, in which case, it is sound
to count it towards any of the b;’s; in particular, we choose the one that minimizes
h; — 4;-k.

Corollary 1. Under the premises of Theorem 1, if f : X — N U {oo} satisfies f(p) =
Zgzl k- f(Y(p,i)) + Ez‘eﬂz; bi - (h; — €; - k) for every p € X — B, and comp . (p) <
f(p) for every p € B, then comp,(p) < f(p) for every p € X. We conclude that
comp4(09) < f(r(oo)) for every oy € init.

Base-case complexity In order to apply Cor. 1, we need to accompany Eq. (6) with a
bound on comp,, (p) for the base ranks, p € B. Fortunately, this is usually a significantly
easier task. In particular, the running time of the base cases is often constant, because
intuitively, the following are correlated: (a) the rank, (b) the size of the underlying data
structure, and (c) the number of iterations. In this case, symbolic execution may be
used to obtain bounds for base cases (as we do in our work). In essence, any method
that can yield a closed-form expression for the complexity of the base cases is viable.
In particular, we can apply our technique on the base case as a subproblem.

3.4 Establishing the requirements of the recurrence relations extraction

Theorem 1 defines a recurrence relation from which an upper bound on the complex-
ity function, comp,, can be computed (Cor. 1). However, to ensure correctness, the

Run-time Complexity Bounds Using Squeezers 335

premises of Theorem 1 must be verified. The requirement that Y ~ PS,,, ({(hs, ;) }1—1)
(see Definition 8) may be verified locally by examining individual (reachable) states:
for any (reachable) state o, the check for (h;, ¢;)-stuttering and switch states can, and
should, be done in tandem, and require only observing at most max; h; transition steps
from o and max; ¢; from Y (o). In contrast, the property required of Y is global: it re-
quires Y (p, i) to provide an upper bound on the rank of any squeezed switch state that
may occur in any position along any non-base initial trace whose initial state has rank
p- Similarly, the property required of the bounds b; is also global: that the number of
(hs, £;)-stuttering states along any non-base initial trace is at most b;. It is therefore not
clear how these requirements may be verified in general. We overcome this difficulty
by imposing additional restrictions, as we discuss next.

Establishing bounds on the number of occurrences of stuttering states Bounds on
the number of occurrences per trace that are sound for every trace are difficult to obtain
in general. While clever analysis methods exist that can do this kind of accounting, we
found that a stronger, simpler condition applies in many cases:

— For every o € reach, either: R
e o is (h;,¢;)-stuttering with Z— <k; or
e o is (h;, £;)-stuttering (with 2 > k), and either o is a switch state or tr"i (o)
is a last state.

This restricts these cases to occur only at the beginnings and ends of segments. It
implies a total bound of 2d- max;(h; — ¢;-k) on the “surplus” of any trace, therefore,
we substitute this expression for the rightmost sum in Eq. (6).

Validating a rank bounding function The definition of a rank bounding function
(Definition 9) encapsulates two parts. Part (ii) ensures that the rank decreases: ¥ (p,i) <
p for every p € X — B. Verifying that this requirement holds does not involve any
reasoning about the states, nor traces, of the transition system. Part (i) ensures that Y
provides an upper bound on the rank of squeezed switch states. Formally, it requires
that (Y (05)) = Y(r(00),) for every switch state o in segment i € {1,...,d} along
a trace that starts from a non-base initial state og. Namely, it relates the rank of the
squeezed switch state, Y (o), to the rank of the initial state, o, where no bound on the
length of the trace between the initial state oy and the switch state o is known a priori.
As such, it involves global reasoning about traces. We identify two cases in which such
reasoning may be avoided: (i) The partition p4 consists of a single segment (i.e., d = 1);
or (ii) The rank function extends to any state (and not just the initial states), while being
preserved by ¢r. In both of these cases, we are able to verify the correctness of Y locally.

A single segment. In this case, the only switch state along a trace is the initial state, and
hence the upper-bound requirement of ¥ boils down to the requirement that for every
0o € init such that 7(og) € X — B, we have that (Y (c¢)) < Y(r(00),1).

Lemma 1. Let 7, Y and py : ¥ — {1} such that Y ~ PS,,. Then Y : X x {1} —
X satisfies the upper-bound requirement of a rank bounding function if and only if
r(Y(09)) =X Y(r(oo),1) for every oy € init such that r(cy) € X — B.

336 O. Ish-Shalom et al.

Rank preservation. Another case in which the upper-bound property of ¥ may be ver-
ified locally is when the r can be extended to all states while being preserved by tr:

Definition 10. A function v : X — X extends the rank function r : init — X if
agrees with v on the initial states, i.e., 7(0g) = r(00) for every initial state oy € init.
The extended rank function r is preserved by tr, if for every reachable state o, we have
that #(tr(c)) = (o).

Preservation of 7 by tr ensures that all states along a (reachable) trace share the
same rank. In particular, for a reachable switch state o, that lies along 7(0¢), rank
preservation ensures that #(os) = #(0g) = r(0g) (the last equality is due to the exten-
sion property), allowing us to recover the rank of oy from the rank of o,. Therefore, the
upper-bound requirement of Y simplifies into the local requirement that for every reach-
able switch state o such that 7(0s) € X — B, we have that #(Y (05)) < Y (7(05),1),
forevery i € {1,...,d}.

Lemma2. Let r, Y and pg : X — {1,...,d} such that Y ~ PS,,. Suppose that
7: X — X extends r and is preserved by tr. Then ¥ : X x {1,...,d} — X satisfies
the upper-bound requirement of a rank bounding function if and only if (Y (0s)) =
Y (F(os),1) for every reachable switch state o such that (o) € X — B and for every
ie{l,...,d}.

Remark 1. The notion of a partitioned simulation requires a switch state o to be

squeezed into an initial state. This requirement may be relaxed into the requirement that
o5 is squeezed into a reachable state Y (o), provided that we are able to still ensure
that the rank of (some) initial state o, leading to Y (o) is smaller than the rank of the
trace on which o lies, and that the rank of oy, is properly captured by Y. One case in
which this is possible, is when r is extended to 7 that is preserved by ¢r, as in this case

#(Y(0s)) = #(0g) = r(00)-

This subsection described local properties that ensure that a given program satisfies
the requirements of Theorem 1. The locality of the properties facilitates the use of SMT
solvers to perform these checks automatically. This is a key step for effective application
of the method.

3.5 Trace-length vs. state-size recurrences with squeezers

A plethora of work exists for analyzing the complexity of programs (see Section 6 for a
discussion of related works). Most existing techniques for automatic complexity anal-
ysis aim to find a recurrence relation on the length of the execution trace, relating the
length of a trace from some state to the length of the remaining trace starting at its
successor. These are recurrences on time, if you will, whereas our approach generates
recurrences on the state size (captured by the rank). Is our approach completely orthog-
onal to preceding methods? Not quite. It turns out that from a conceptual point of view,
our approach can formulate a recurrence on time as well, as we demonstrate in this
section.

Run-time Complexity Bounds Using Squeezers 337

Obtaining trace-length recurrences based on state squeezers The key idea is to use
tr itself as a squeezer that squeezes each state into its immediate successor. Putting
aside the initial-anchor requirement momentarily, such a squeezer forms a partitioned
simulation with a single segment (i.e., pg = 1), in which all the states along a trace are
(1, 1)-stuttering, except for the last one (if the trace is finite), which is (2, 1)-stuttering.
Recall that squeezers must also preserve initial states (see Definition 8), a property that
may be violated when Y = tr, as the successor of an initial state is not necessarily an
initial state. We restore the initial-anchor property by setting init = X, i.e., every state
is considered an initial state.

A consequence of this definition is that comp_, will now provide an upper bound
on the time complexity of every state and not only of the initial states, in terms of a
rank that needs to be defined. If we further define a rank-bounding function ¥ we may
extract a recurrence relation of the form

comp,,(p) = comp, (Y (p)) +1

(we use Y (p) as an abbreviation of Y (p, 1), since this is a special case where d = 1).

Defining the rank and the rank bounding function Recall that the rank r : 2 —
X captures the features of the (initial) states that determine the complexity. To allow
maximal precision, especially since all states are now initial, we set X to be the set
of states X, and define r to be the identity function, r(c) = o. With this definition,
comp,, and comp, become one. Next, we need to define < and B, while ensuring that Y
squeezes the (non-base) initial states, which are now all the states, into states of a lower
rank according to <. Since squeezers act like transitions now, having that Y = ¢r, they
have the effect of decreasing the number of transitions remaining to reach a terminal
state (provided that the trace is finite). We use this observation to define < C X' x 3.
Care is needed to ensure that (X, <) is well-founded, i.e., every descending chain is
finite, even though the program may not terminate. Here is the definition that achieves
this goal:

01 < 09 & comp,(o1) < comps(02) @)

Since Y = tr does not decrease comp, for states that belong to infinite (non-
terminating) traces (comp (Y (0)) = comp (o) = 0o, hence Y (o) £ o), they must be
included in B, together with the terminal states, which are minimal w.r.t. <. Namely,
B = FU{o | comp (o) = co}. Technically, this means that the base of the recurrence
needs to define comp,, for these states.

The final piece in the puzzle is setting ¥ = ¢r. Since Y ~ PS,, ({(1,1),(2,1)})
(when init = X)), where the number of (2, 1)-stuttering states that appear along any
non-base initial trace is bounded by 1, we may use Theorem 1, setting k= 1, to derive
the following recurrence relation, which reflects induction over time:

comp, (o) = comp,(tr(c)) + 1.

3 In fact, it suffices to consider init = reach, in which case we may be able to take advantage
of information from static analyses

338 O. Ish-Shalom et al.

The formulation above represents a degenerate, naive, choice of ingredients for the
sake of a theoretical construction, whose purpose is to lay the foundation for a general
framework that takes its strengths from both induction over time and induction over
rank. This construction does not exploit the full flexibility of our framework. In partic-
ular, ranking functions obtained from termination proofs, as used in [5], may be used to
augment the rank in this setting. Further, invariants inferred from static analysis can be
used to refine the recurrences.

4 Synthesis

So far we have assumed that the rank function r, partition function p4, squeezer Y
and a rank bounding function Y are all readily available. Clearly, they are specific to
a given program. It would be too tedious for a programmer to provide these functions
for the analysis of the underlying complexity. In this section we show how to automate
the process of obtaining (7, pg, Y, ¥) for a class of typical looping programs. We take
advantage of the fact that these components are much more compact than other kinds
of auxiliary functions commonly used for resource analysis, such as monotonically de-
creasing measures used as ranking functions. For example, a ranking function for the
binary counter program shown in Fig. 1 is:

n—1

m(n,i,c) = n~22j-c[j] + (28 =1) + (n—1)
j=0

whereas the rank, partition, Y and Y are

C(n,i,c) =n Y(n,i,e)=(n—1,(i =n)?i—1:4,cl:in—1])
Yp)=p—1 pa(n,i,e) =G >nllen—-1])72:1

This enables the use of a relatively naive enumerative approach of multi-phase generate-
and-test, employing some early pruning to discard obviously non-qualifying candidates.

4.1 SyGuS

The generation step of the synthesis loop applies syntax guided synthesis (SyGusS [7]).
Like any other SyGuS method, defining the underlying grammars is more art than sci-
ence. It should be expressive enough to capture the desired terms, but strict enough to
effectively bound the search space.

Ranks are taken from N™ where m € {1,2,3} and < is the usual lexicographic
order. The rank function r comprises of one expression for each coordinate, constructed
by adding / subtracting integer variables and array sizes. Boolean variables are not used
in rank expressions.

Fartition functions pg. Our implementation currently supports a maximum number
of two segments. This means that the partition function only assigns the values 1 and 2,
and we synthesize it by generating a condition over the program’s variables, cond, that
selects between them: py(0) = cond(c) 7 2 : 1. Handling up to two segments is not an

Run-time Complexity Bounds Using Squeezers 339

inherent limitation, but we found that for typically occurring programs, two segments
are sufficient.

Squeezers Y are the only ingredient that requires substantial synthesis effort. We
represent squeezers as small loop-free imperative programs, which are natural for rep-
resenting state transformations. We use a rather standard syntax with ‘if-then-else’ and
assignments, plus a remove-adjust operation that removes array entries and adjusts in-
dices relating to them accordingly. .

Rank bounding functions Y. With a well-chosen squeezer Y, it suffices to consider
quite simple rank bounds for the mini-traces. Hence, the rank-bounds defined by Y are
obtained by adding, subtracting and multiplying variables with small constants (for each
coordinate of the rank). Similar to the choice of ranks, targeting simple expressions for
Y helps reduce the complexity of the final recurrence that is generated from the process.

4.2 Verification

For the sake of verifying the synthesized ingredients, we fix a set {h;, ¢;} of stutter-
ing shapes, and check the requirements of Theorem 1 as discussed in Section 3.4. In
particular, we check that p, is weakly monotone, i.e., that cond cannot change from
true to false in any step of ¢r. Note that some of the properties may be used to discrim-
inate some of the ingredients independent of the others. For example, the simulation
requirement only depends on Y and py.

Unbounded verification Once candidates pass a preliminary screening phase, they are
verified by encoding the program and all the components 7, pg, Y, ¥ as first-order logic
expressions, and using an SMT solver (Z3 [13]) to verify that the requirements are
fulfilled for all traces of the program.

As mentioned in Section 3.4, all the checks are local and require observing a bounded
set of steps starting from a given o. The only facet of the criteria that is difficult to
encode is the fact they are required of the reachable states (and not any state). Of course,
if we are able to ascertain that these are met for all 0 € XY, including unreachable
states, then the result is sound. However, for some programs and squeezers, the required
properties (esp., simulation) do not hold universally, but are violated by unreachable
states. To cope with this situation without having to manually provide invariants that
capture properties of the reachable states, we use a CHC solver, Spacer [23], which
is part of Z3, to check whether all the reachable states in the unbounded-state system
induced by the input program satisfy these properties. This can be seen as a reduction
from the problem of verifying the premises of Theorem 1 to that of verifying a safety

property.

S Empirical Evaluation

We implemented our complexity analyzer as a publicly available tool, SqzComp, that
receives a program in a subset of C and produces recurrence relations. SqzComp is
written in C++, using the Z3 C++ API [13], and using Spacer [23] via its SMTLIB2-
compatible interface. Since our squeezers may remove elements from arrays, we ini-
tially encoded arrays as SMT sequences. However, we found that it is beneficial to

340 O. Ish-Shalom et al.

Description Real Inferred bound SqzComp

complexity CoFloCo SqzComp Time | d
array: max value O(|A]) O(|A]) O(JA]) < lsec| 1
array: min value O(]A]) O(|A]) O(JA]) < lsec| 1
array: find first O(|A]) O(|A]) O(JA]) < lsec| 1
array: find last O(]A]) O(|A]) O(l4]) <1sec| 1
array: is-sorted O(|A]) O(|A]) o(l4]) <1sec| 1
array: longest asc. prefix O(|A]) O(|A]) O(]A]) < 1sec| 1
array: binary search O(log(|A])) O(log(|A])) O(log(|A])) |<1sec| 1
gcd max(z,y) Oz +vy) O(z +y) <lsec| 1
two-phase loop 1 O(2n — 2z +vy) O@2n —2z+vy) O(2n+2y) |[<lsec| 1
two-phase loop 2 On—z+m—y)|On—c+m—y) |On—z+m-—y)|<lsec| 1
two-phase loop 3 O(n) O(n) O(n) < 1sec| 1
two-phase loop 4 O2n—z—2) O@2n —z —2) O(2n) < lsec| 1
multi-path loop 1 O(n) O(3n) O(n) < lsec| 1
multi-path loop 2 O(n) O(n) O(n) <lsec| 1
multi-path loop 3 O(n) O(n) O(n) <lsec| 1
tricky init loop O(z) 0(z) O(z) 4 min | 1
nested loop 1 O(lz —y|) O(|z —yl) O(z+vy) < 1sec| 1
nested loop 2 0O(a?) O(a?) 0(a?) 16 min| 1
context sensitive loop |O(max(n —m,m))|O(max(n —m,m)) O(n) 7min | 1
binary counter o™ 00 02" 34 min| 2
subsets o"y™) 00 o"y™) 50 min| 2
monotone sequences o(}) 00 o) 50 min| 2

Table 1. Experimental results. In array programs, A denotes an array. x, y, z, n, m, k, a are inte-
ger variables.

restrict squeezers to only remove the first or last elements of an array, resulting in a
more efficient encoding with the theory of arrays. For the base case of generated recur-
rences, we use the symbolic execution engine KLEE [11] to bound the total number of
iterations by a constant.

5.1 Experiments

We evaluated our tool, SqzComp, on a variety of benchmark programs taken from [16],
as well as three additional programs: the binary counter example from Section 2, a
subsets example, described in Section 5.2, and an example computing monotone se-
quences. These examples exhibit intricate time complexities. From the benchmark suite
of [16] we filtered out non-deterministic programs, as well as programs that failed syn-
tactic constraints that our frontend cannot currently handle. We compared SqzComp to
CoFloCo [16]—the state of the art tool for complexity analysis of imperative programs.

Table 1 summarizes the results of our experiments. The first column presents the
name of the program, which describes its characteristics (each of the “two-phase loop”
programs consists of a loop with an if statement, where the branch executed changes
starting from some iteration). The second column specifies the real complexity, while
the following two columns present the bounds inferred by SqzComp and by CoFloCo,
respectively. (For SqzComp, the reported bounds are the solutions of the recurrences

Run-time Complexity Bounds Using Squeezers 341

1 | void subsets(uint n, uint k, uint m) {
2 uint I[k]; int j = 0; bool f = true;
3 while (j >= 0) {
4 if (j >= k) /+start left scanx/{f=false; j--;}
5 else if (j==0 && f) /xinits/{f=true;I[0]=m;j++;}
6 else if (f) /xright fills/{f=true;I[j]=I[j-11+1;j++;}
else if (I[jl>=n-k+j)/+left scan*/{f=false; j--;}
8 else /+start right fillx/{f=true; I[j]1=I[j]+1;j++;}
9 | 1}
squeezer(uint I[], uint n, uint k, uint m, int j, bool f) {
if (I[0]==m && j>0) { m++; remove I[O]1; k--; j--; }
else if (I[O]==m) { m++; remove I[0]; k--; }
else { m++; }
}
Fig.4. An example program that produces all subsets of {m,...,n — 1} of size k; below is the

synthesized squeezer.

output by the tool.) The fourth and fifth columns present the analysis running time,
respectively the number of segments used in the analysis, of SqzComp.

CoFloCo’s analysis time is always in the order of magnitude of 0.1 second, whether
it succeeds to find a complexity bound or not. Our analysis is considerably slower,
mostly due to the naive implementation of the synthesizer. When both CoFloCo and
SqzComp succeed, the bounds inferred by CoFloCo are sometimes tighter.

However, SqzComp manages to find tight complexity bounds for the new examples,
which are not solved by CoFloCo, and to the best of our knowledge, are beyond reach
of existing tools. (We also encoded the new examples as OCaml programs and ran the
tool of [20] on them, and it failed to infer bounds.)

5.2 Case study: Subsets example

This subsection presents one challenging example from our benchmarks, the subsets
example, and the details of its complexity analysis. Notably, our method is able to infer
a binomial bound, which is asymptotically tight.

The code, shown in Fig. 4, iterates over all the subsets of {m,...,n-1} of size k.
The “current” subset is maintained in an array I whose length is k, and which is always
sorted, thus avoiding generating the same set more than once. The first k iterations of
the loop fill the array with values {m,m+1,...,m+k-1}, which represent the first subset
generated. This is taken care of by the branches at lines 5, 6 that perform a “right fill”
phase, filling in the array with an ascending sequence starting from m at 1[0]. Once the
first k iterations are done, j reaches the end of the array (j=k) and so the next iteration
will execute line 4, turning off the flag f, signifying that the array should now be scanned
leftwards. In each successive iteration, j is decreased, looking for the rightmost element
that can be incremented. For example, if n = 8,1 = [2, 6, 7], this rightmost element is
I[0] = 2. After that element is incremented, the flag f is turned on again, completing
the “left scan” phase and starting a “right fill” phase.

342 O. Ish-Shalom et al.

n=6, m=2, k=3

j=0 f=t j=1 f=t f=t =2 =1 f=f =0 f=f =1 f=t =0 f=f j=1 f=f

¥ ¥ ¥ ¥ v ¥ \
xx] EIxDx] [2]e0x] [2[45] [elals] [3]4]5] [3]4]5]
[os) 4>” g1 4>t7 g2 l» l» ags 4>W 09 4>” 010 l» l» 015 4>h. 016
|
¥)
|
\4
00— 01 > = 0% 0f — o o> e ol — > 0l
s s A
j=1

j=0 f=t j=1 J=0 Jj=0
n=6, m=3, k=2 f=t =t n=6, m=3, k=3 f=t f=t 1=t

j=0 j=-1

Fig. 5. An illustration of the 2-partitioned simulation for the subsets example. In the univariate
case, the rank of the upper trace is n — m and that of the lower traces is n — m — 1. In the
multivariate case, the upper trace is of rank (n — m, k), lower traces of ranks (n —m — 1,k — 1),
(n—m—1,k).

A univariate recurrence Consider the rank function r(I,n,k,m,j, f) = n — m, de-
fined with respect to (N, <), and the squeezer shown below the program in Fig. 4. The
squeezer observes the first element of the array: if it is equal to m (the lower bound of
the range), it removes it from the array, shrinking its size (k) by one. It then adjusts the
index j to keep pointing to the same element; unless j = 0, in which case that element is
removed. This squeezer forms a 2-partitioned simulation, as illustrated by the traces in
Fig. 5. All states are (1, 1)-stuttering, except for o, which is (2, 1)-stuttering, as caused
by the removal of I[0] when j = 0. The rank bounding function is ¥ (i, p) = p — 1 for
i € {1, 2}. We therefore obtain the following recurrence relation:

comp,,(p) < 1+ comp,,(p— 1) + comp,(p - 1).

The base of the recurrence is comp,(0) = 1, leading to the solution comp,(p) <
2°+1 — 1. This means that for an initial state, comp (I, n, k,m,0, true) < comp,,(n —
m) < 2n—mHl 1,

A multivariate recurrence Consider an alternative rank definition r(I,n, k, m,j, f) =
(n — m, k) defined with respect to (N x N, <), where ‘<’ denotes the lexicographic
order, together with the same squeezer and partition as before. The rank bounding func-

tion is now Y ((p1, p2),i) = {(Pl —Lpe—1)i=1

(p — p) Z — N Ihe COHCSPOIlding ecurrence
1 s P2 = 2
T Glation i S:

comp,(p1,p2) <1+ comp,(p1 —1,p2 — 1) + comp,(p1 — 1, p2)

with base comp,, (0, _) = 1, resulting in the solution comp_ (p1, p2) < (plp;r2). That is,

for an initial state, comp, (I, n, k,m, 0, true) < comp,(n —m, k) < ("77+?).
Interestingly, this example demonstrates that the same squeezer may yield different

recurrences, when different ranks (and rank bounding functions) are considered. It also

demonstrates a case where different segments of a trace are mapped to mini-traces of a
different rank.

Run-time Complexity Bounds Using Squeezers 343

6 Related Work

This section focuses on exploring existing methods for static complexity analysis of
imperative programs. Dynamic profiling and analysis [26] are a separate research area,
more related to testing, and generally do not provide formal guarantees. We further
focus on works that determine asymptotic complexity bounds, and use the number of
iterations executed as their cost model; we refrain from thoroughly covering previous
techniques that analyze complexity at the instruction level.

Static cost analysis The seminal work of [28] defined a two steps meta-framework
where recurrence relations are extracted from the underlying program, and then an-
alyzed to provide closed-form upper bounds. Broadly speaking, cost relations are a
generalized framework that captures the essence of most of the works mentioned in this
section.

[4] and [16] infer cost relations of imperative programs written in Java and C re-
spectively. Cost relations resemble somewhat limited C procedures: They are capable of
recursive calls to other cost relations, and they can handle non-determinism that arises
either as a consequence of direct nondet () in the program, or as a result of inherent
imprecision of static analysis. They define for every basic block of the program its own
cost relation function, and then form chains according to the control flow graph of the
program. They use numerical abstract domains to support a context sensitive analysis
of whether a chain of visits to specific basic blocks is feasible or not. Once all infeasi-
ble chains are removed, disjunctive analysis determines an overall approximation of the
heaviest chain, representing the max number of iterations.

[19] uses multiple counter instrumentation that are automatically inserted in various
points in the code, initialized and incremented. These ghost counters enable to infer an
overall complexity bound by applying appropriate abstract interpretation handling nu-
meric domains. [18] and [17] apply code transformations to represent multi-path loops
and nested loops in a canonical way. Then, paths connecting pairs of “interesting” code
points 71, 72 (loop headers etc.) are identified, in a way that satisfies some proper-
ties. For instance, 7; is reached twice without reaching 5. The path property induces
progress invariants, which are then analyzed to infer the overall complexity bound.

[24] define an abstraction of the program to a size-change-graph, where transition
edges of the control flow graph are annotated to capture sound over-approximation re-
lations between integer variables. The graph is then searched for infinitely decreasing
sequences, represented as words in an w-regular language. This representation concisely
characterizes program termination. [29] then harnesses the size-change abstraction from
[24] to analyze the complexity of imperative programs. First, they apply standard pro-
gram transformations like pathwise analysis to summarize inner nested loops. Then,
they heuristically define a set of scalar rank functions they call norms. These norms
are somewhat similar to our rank function in the sense that they help to abstract away
program parts that do not effect its complexity. The program is then represented as a
size-change graph, and multi-path contextualization [25] prunes subsequent transitions
which are infeasible.

[8] introduces difference constraints in the context of termination, to bound vari-
ables 2’ in current iteration with some ¥ in previous iteration plus some constant c:

344 O. Ish-Shalom et al.

2’ < y + c. [27] extends difference constraints to complexity analysis. Indeed, it is
quite often the case that ideas from the area of program termination are assimilated in
the context of complexity analysis and vice versa. They exploit the observation that
typical operations on loop counters like increment, decrement and resets are essentially
expressible as difference constraints. They design an abstraction based on the domain of
difference constraints, and obtain relevant invariants which are then used in determin-
ing upper bounds. [10] is very similar, only that it represents a program as an integer
transition system and allows nonlinear numerical constraints and ranking functions.

As we mentioned earlier, all of these approaches are based on identifying the progress
of executions over time, characterizing the progress between two given points in the
program. In contrast, our approach allows to reason over state size and compares whole
executions.

Squeezers. The notion of squeezers was introduced by [22] for the sake of safety veri-
fication. As discussed in Section 1, the challenges in complexity analysis are different,
and require additional ingredients beyond squeezers. [15,1,2] introduce well structured
transition systems, where a well-quasi order (wqo) on the set of states induces a simu-
lation relation. This property ensures decidability of safety verification of such systems
(via a backward reachability algorithm). Our use of squeezers that decrease the rank
of a state and induce a sort of a simulation relation may resemble the wqo of a well
structured transition system. However, there are several key differences: we do not re-
quire the order (which is defined on ranks) to be a wqo. Further, we do not require a
simulation relation between any states whose ranks are ordered, only between a state
and its squeezed counterpart. Notably, our work considers complexity analysis rather
than safety verification.

7 Conclusion

This work introduces a novel framework for run-time complexity analysis. The frame-
work supports derivation of recurrence relations based on inductive reasoning, where
the form of induction depends on the choice of a squeezer (and rank bounding func-
tion). The new approach thus offers more flexibility than the classical methods where
induction is coupled with the time dimension. For example, when the rank captures the
“state size”, the approach mimics induction over the space dimension, reasoning about
whole traces, and alleviating the need to describe the intricate development of states
over time. We demonstrate that such squeezers and rank bounding functions, which we
manage to synthesize automatically, facilitate complexity analysis for programs that are
beyond reach for existing methods. Thanks to the simplicity and compactness of these
ingredients, even a rather naive enumeration was able to find them efficiently.

Acknowledgements. The research leading to these results has received funding from
the European Research Council under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No [759102-SVIS]). This research was par-
tially supported by the United States-Israel Binational Science Foundation (BSF) grant
No. 2016260 and 2018675, the Israeli Science Foundation (ISF) grants No. 1996/18,
1810/18, 243/19 and 2740/19, and the Pazy Foundation.

Run-time Complexity Bounds Using Squeezers 345

References

10.

11.

12.

13.

. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems for infinite-

state systems. In: Proceedings, 11th Annual IEEE Symposium on Logic in Computer Sci-
ence, New Brunswick, New Jersey, USA, July 27-30, 1996. pp. 313-321. IEEE Computer
Society (1996)

Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs with well
quasi-ordered domains. Inf. Comput. 160(1-2), 109-127 (2000)

Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper bounds for
recurrence relations in cost analysis. In: Alpuente, M., Vidal, G. (eds.) Static Analysis. pp.
221-237. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: design and implemen-
tation of a cost and termination analyzer for java bytecode. In: Formal Methods for Com-
ponents and Objects, 6th International Symposium, FMCO 2007, Amsterdam, The Nether-
lands, October 24-26, 2007, Revised Lectures. pp. 113-132 (2007)

Albert, E., Bofill, M., Borralleras, C., Martin-Martin, E., Rubio, A.: Resource analy-
sis driven by (conditional) termination proofs. Theory Pract. Log. Program. 19(5-6),
722-739 (2019). https://doi.org/10.1017/S1471068419000152, https://doi.org/10.
1017/51471068419000152

Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost analysis.
In: Miné, A., Schmidt, D. (eds.) Static Analysis. pp. 405-421. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

Alur, R., Bodik, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit, H., Madhusu-
dan, P., Martin, M.M.K., Raghothaman, M., Saha, S., Seshia, S.A., Singh, R., Solar-Lezama,
A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: Irlbeck, M., Peled, D.A., Pretschner,
A. (eds.) Dependable Software Systems Engineering, NATO Science for Peace and Security
Series, D: Information and Communication Security, vol. 40, pp. 1-25. IOS Press (2015)
Ben-Amram, A.M.: Size-change termination with difference constraints. ACM Trans. Pro-
gram. Lang. Syst. 30(3) (May 2008)

Breck, J., Cyphert, J., Kincaid, Z., Reps, T.: Templates and recurrences: Better together. In:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. p. 688—702. PLDI 2020, Association for Computing Machinery, New York,
NY, USA (2020)

Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime and size
complexity analysis of integer programs. In: Abraham, E., Havelund, K. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 20th International Conference,
TACAS 2014, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8413, pp. 140-155. Springer (2014)

Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation. pp. 209-224. OSDI'08, USENIX
Association, Berkeley, CA, USA (2008), http://dl.acm.org/citation.cfm?id=
1855741.1855756

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Proceedings of the 5Sth ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. p. 84-96. POPL 78, Association for Computing Machinery, New
York, NY, USA (1978)

De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Proceedings of the Theory and
Practice of Software, 14th International Conference on Tools and Algorithms for the Con-

https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1017/S1471068419000152
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756

346

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

O. Ish-Shalom et al.

struction and Analysis of Systems. pp. 337-340. TACAS’08/ETAPS’08, Springer-Verlag,
Berlin, Heidelberg (2008)

Debray, S.K., Lin, N.W.: Cost analysis of logic programs. ACM Trans. Program. Lang. Syst.
15(5), 826-875 (Nov 1993)

Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! THEORETI-
CAL COMPUTER SCIENCE 256(1), 2001 (1998)

Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed as cost
relations. vol. 9995, pp. 254-273 (11 2016)

Gulwani, S.: The reachability-bound problem. Tech. Rep. MSR-TR-2009-146 (Octo-
ber 2009), https://www.microsoft.com/en-us/research/publication/
the- reachability-bound-problem/

Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants for
bound analysis. In: Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation. p. 375-385. PLDI 09, Association for Computing
Machinery, New York, NY, USA (2009)

Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: precise and efficient static estimation
of program computational complexity. In: Shao, Z., Pierce, B.C. (eds.) POPL. pp. 127-
139. ACM (2009), http://dblp.uni-trier.de/db/conf/popl/pop12009.
html#GulwaniMC09

Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Madhusudan, P., Seshia,
S.A. (eds.) Computer Aided Verification - 24th International Conference, CAV 2012, Berke-
ley, CA, USA, July 7-13, 2012 Proceedings. Lecture Notes in Computer Science, vol. 7358,
pp. 781-786. Springer (2012)

Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial potential: A static
inference of polynomial bounds for functional programs (extended version) (03 2010)
Ish-Shalom, O., Itzhaky, S., Rinetzky, N., Shoham, S.: Putting the squeeze on array pro-
grams: Loop verification via inductive rank reduction. In: Beyer, D., Zufferey, D. (eds.)
Verification, Model Checking, and Abstract Interpretation - 21st International Conference,
VMCAI 2020, New Orleans, LA, USA, January 16-21, 2020, Proceedings. Lecture Notes in
Computer Science, vol. 11990, pp. 112-135. Springer (2020)

Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive programs.
CoRR abs/1405.4028 (2014), http://arxiv.org/abs/1405.4028

Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termi-
nation. In: Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. p. 81-92. POPL 01, Association for Computing Machinery, New
York, NY, USA (2001)

Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In: Ball, T., Jones,
R.B. (eds.) Computer Aided Verification. pp. 401-414. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

Mera, E., Lopez-Garcia, P., Puebla, G., Carro, M., Hermenegildo, M.V.: Combining static
analysis and profiling for estimating execution times. In: International Symposium on Prac-
tical Aspects of Declarative Languages. pp. 140-154. Springer (2007)

Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imperative pro-
grams using difference constraints. J. Autom. Reasoning 59(1), 3-45 (2017)

Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528-539 (Sep 1975)
Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative programs with
the size-change abstraction. In: Yahav, E. (ed.) Static Analysis. pp. 280-297. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

https://www.microsoft.com/en-us/research/publication/the-reachability-bound-problem/
https://www.microsoft.com/en-us/research/publication/the-reachability-bound-problem/
http://dblp.uni-trier.de/db/conf/popl/popl2009.html#GulwaniMC09
http://dblp.uni-trier.de/db/conf/popl/popl2009.html#GulwaniMC09
http://arxiv.org/abs/1405.4028

Run-time Complexity Bounds Using Squeezers 347

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Run-time Complexity Bounds Using Squeezers
	1 Introduction
	2 Overview
	3 Complexity Analysis based on Squeezers
	3.1 Time complexity as a function of rank
	3.2 Complexity decomposition by partitioned simulation
	3.3 Extraction of recurrence relations over ranks
	3.4 Establishing the requirements of the recurrence relations extraction
	3.5 Trace-length vs. state-size recurrences with squeezers

	4 Synthesis
	4.1 SyGuS
	4.2 Verification

	5 Empirical Evaluation
	5.1 Experiments
	5.2 Case study: Subsets example

	6 Related Work
	7 Conclusion
	Acknowledgements.
	References

