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Abstract. This paper presents a novel approach for quantifier instan-
tiation in Satisfiability Modulo Theories (SMT) that leverages syntax-
guided synthesis (SyGuS) to choose instantiation terms. It targets quan-
tified constraints over background theories such as (non)linear integer,
reals and floating-point arithmetic, bit-vectors, and their combinations.
Unlike previous approaches for quantifier instantiation in these domains
which rely on theory-specific strategies, the new approach can be applied
to any (combined) theory, when provided with a grammar for instantia-
tion terms for all sorts in the theory. We implement syntax-guided instan-
tiation in the SMT solver CVC4, leveraging its support for enumerative
SyGuS. Our experiments demonstrate the versatility of the approach,
showing that it is competitive with or exceeds the performance of state-
of-the-art solvers on a range of background theories.

1 Introduction

Modern Satisfiability Modulo Theories (SMT) solvers are highly efficient tools,
capable of reasoning about constraints over a wide range of logical theories,
including (non-linear) real and integer arithmetic, fixed-size bit-vectors, and
floating-point arithmetic. Their core algorithms are designed primarily for quan-
tifier-free constraints, but various extensions have been shown to work well also
for quantified constraints in many cases. Quantified reasoning in SMT has many
practical applications, including software verification, automated theorem prov-
ing, and synthesis.

Current SMT solvers handle quantified constraints in a variety of ways, with
a degree of effectiveness that usually depends on the background theory. For
instance heuristic instantiation techniques such as E-matching [15] are used for
quantified formulas with heavy use of uninterpreted functions. These heuristic
instantiation techniques are refutationally incomplete but they can be highly
effective, in particular in the context of verification applications. For quantified
constraints over a particular background theory, such as linear arithmetic or
fixed-size bit-vectors, on the other hand, SMT solvers resort to an entirely dif-
ferent set of techniques. While also based on quantifier instantiation, these other
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techniques tend to be counterexample-guided and can be complete for theories
and fragments of first-order logic that admit quantifier elimination.

Specific previous work in the latter direction includes counterexample-guided
quantifier instantiation techniques for linear arithmetic [25] and fixed-size bit-
vectors [18,20]. The key to developing each of them is to devise an appropriate,
theory-specific selection function, which determines a term selection strategy for
instantiating universal quantifiers. For some logics, e.g., linear arithmetic, se-
lection functions can be based on the notion of elimination set found in classic
algorithms for quantifier elimination [9, 14]. However, since many theories used
in practice do not admit quantifier elimination, the design of a good selection
function is usually non-trivial. These challenges are further magnified when rea-
soning in combinations of multiple theories.

We propose a novel, syntax-guided quantifier instantiation (SyQI) approach,
which is both general-purpose and highly effective for quantified formulas in
background theories such as (non)linear integer, reals and floating-point arith-
metic, and their combinations. The new approach leverages an embedding of a
solver for the syntax-guided synthesis (SyGuS) problem [1] within an SMT solver
in order to choose terms for quantifier instantiation in a counterexample-guided
manner. It is theory-agnostic and only requires the specification, via a grammar,
of the set of terms to consider for each sort in the theory when instantiating quan-
tifiers.3 Since it can be applied to quantified formulas in any background theory,
it is more general in scope than previous work [20]. Our approach is intended
for logics such as quantified floating-point arithmetic, which would benefit from
counterexample-guided quantifier instantiation, but for which appropriate selec-
tion function are not obvious. We show that the use of syntax-guided synthesis
gives us the flexibility to develop variants of our approach that are highly com-
petitive with the state of the art in SMT solving. More specifically, this paper
makes the following contributions :

– We present and prove correct a simple yet novel quantifier instantiation
approach that leverages syntax-guided synthesis for selecting instantiations.

– We explore variants of the approach along several dimensions, including the
choice of symbols to include in grammars for various background theories.

– We implement this technique in the SMT solver CVC4 [5] and show that
it performs remarkably well in a wide variety of SMT logics. In particular,
it improves upon the state of the art for solving quantified formulas over
floating-point arithmetic, and is highly competitive for non-linear integer
arithmetic and certain combined logics that involve fixed-size bit-vectors.

Related Work. Handling quantified formulas in SMT solvers is a long-standing
challenge. Early approaches for quantified formulas were largely based on E-
matching [8, 10, 15]. They have been later supplemented with techniques that
rely on models for establishing satisfiability [11, 26], and on conflict finding to
accelerate the search for unsatisfiability [27]. Pragmatic enumerative approaches

3 Our implementation provides a default grammar for all supported sorts. In general,
grammars can also be provided by the user. We do not explore this option here.
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for quantifier instantiation have also been explored and shown to increase the
precision of SMT solvers on inputs involving uninterpreted functions where E-
matching is incomplete [21]. The approach we describe here is also enumerative in
nature; however, it leverages syntax-guided synthesis for choosing instantiations
and does not target inputs with uninterpreted functions.

For quantified formulas over a single background theory, counterexample-
guided approaches have been considered by Bjørner and Janota [6] and by
Reynolds et al. [25], targeting primarily quantified linear integer/real arithmetic.
For theories of other data types (e.g., bit-vectors), most approaches use value-
based instantiation, where concrete variable assignments for a set of quantifier-
free formulas derived from the negation of the input formula (the counterexam-
ples) provide instantiations for the universal variables. In the SMT solver Z3 [16],
model-based quantifier instantiation (MBQI) [11] is combined with a template-
based model finding procedure [29]. A recent line of work by Niemetz et al. [18]
leverages invertibility conditions in a counterexample-guided loop for quantifier
instantiation of formulas in the theory of fixed-size bit-vectors. Brain et al. [7] lift
the concept of invertibility conditions to the theory of floating-point arithmetic
and presented a preliminary quantifier elimination procedure for a fragment of
the theory based on these conditions. Another approach for lazy quantifier elim-
ination for bit-vector formulas is explored by Vediramana Krishnan et al. [12],
based on iterative approximate quantifier elimination.

Reynolds et al. [24] leverage counterexample-guided quantifier instantiation
(CEGQI) to efficiently solve a restricted but practically useful form of syntax-
guided synthesis problems. In contrast, the work in this paper has the dual goal
of leveraging enumerative syntax-guided synthesis to establish a strategy for
quantifier instantiation of (first-order) quantified formulas.

SyGuS techniques to solve quantified problems were previously explored by
Preiner et al. in [20]. However, instead of focusing on quantifier instantiation
they combined enumerative syntax-guided synthesis with value-based quantifier
instantiation to synthesize Skolem functions for existential variables.

2 Background

We assume the usual notions and terminology of many-sorted first-order logic
with equality (denoted by ≈). Let S be a set of sort symbols. For every σ ∈ S,
let Xσ be an infinite set of variables of sort σ. Let X =

⋃
σ∈S Xσ. Let Σ be a

signature consisting of a set Σs⊆ S of sort symbols and a set Σf of interpreted
(and sorted) function symbols fσ1···σnσ with arity n ≥ 0 and σ1, ..., σn, σ ∈ Σs.
We assume that Σ includes a Boolean sort Bool and the Boolean values > (true)
and ⊥ (false). Let I be a Σ-interpretation that maps: each sort σ ∈ Σs to a non-
empty set σI (the domain of I), with BoolI = {>,⊥}; each variable x ∈ Xσ

to an element xI ∈ σI ; and each function fσ1···σnσ ∈ Σf to a total function
fI: σI1 × ...× σIn → σI if n > 0, and to an element in σI if n = 0.

We assume the usual definition of well-sorted terms, literals, and formulas
as Bool terms with variables in X and symbols in Σ, and refer to them as Σ-
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terms, Σ-atoms, and so on. A ground term/formula is a Σ-term/formula without
variables. We define x = (x1, ..., xn) as a tuple of variables and write Qx.ϕ with
Q ∈ {∀, ∃} for a quantified formula Qx1. · · ·Qxn.ϕ. A formula is universal if
it has the form ∀x. P where P is a quantifier-free formula. For simplicity, we
consider only universal quantifiers since existential quantifiers can be rewritten
in terms of universal ones. We use Lit(ϕ) to denote the set of Σ-literals of Σ-
formula ϕ. For a Σ-term or Σ-formula e, we use e[x] to indicate that the free
variables of e are in x. For a tuple of Σ-terms t = (t1, ..., tn), we write e[t] for the
term or formula obtained from e by simultaneously replacing each occurrence
of xi in e by ti. If t is a Σ-term/formula and I a Σ-interpretation, we write
tI to denote the meaning of t in I. We use the usual inductive definition of a
satisfiability relation |= between Σ-interpretations and Σ-formulas.

A theory T is a pair (Σ, I), where Σ is a signature and I is a non-empty class
of Σ-interpretations (the models of T ) that is closed under variable reassignment,
i.e., every Σ-interpretation that only differs from an I ∈ I in how it interprets
variables is also in I. A Σ-formula ϕ is T -satisfiable (resp. T -unsatisfiable) if it
is satisfied by some (resp. no) interpretation in I; it is T -valid if it is satisfied
by all interpretations in I.

Enumerative SyGuS using an Embedding into Datatypes. A syntax-guided syn-
thesis problem for an n-ary function f in a background theory T consists of
a set of semantic restrictions (a specification) for f , given as a (second-order)
T -formula of the form ∃f. ϕ[f ], and a set of syntactic restrictions on the solu-
tions for f , typically expressed as a context-free grammar. A solution to such
a problem is a term t[x1, . . . , xn] that satisfies the syntactic restrictions and is
such that the formula ϕ[λx1, . . . , xn.t] is T -valid.

As shown in previous work [24], syntactic restrictions for the bodies of func-
tions to synthesize can be conveniently represented as a set of (algebraic) data-
types. The setting in this paper is simpler. Instead of synthesizing terms cor-
responding to function bodies, we use context-free-grammars for defining a set
of (first-order) terms in a given theory, possibly containing free function sym-
bols. For instance, let a and b be free constants of sort Int. The context-free
grammar R below specifies a set of integer (Z) and Boolean (B) terms:

Z ::= 0 | 1 | a | b | Z + Z | Z − Z | ite(B,Z,Z) (1)

B ::= B ≥ B | Z ≈ Z | ¬B | B ∧B (2)

Given such a grammar, our SyGuS solver generates the following mutually re-
cursive datatypes:

Z = zero | one | a | b | plus(Z,Z) | minus(Z,Z) | ite(B,Z,Z) (3)

B = geq(Z,Z) | eq(Z,Z) | not(B) | and(B,B) (4)

Each datatype constructor, listed on the right-hand side of each equation, corre-
sponds to a production rule of R, e.g., plus corresponds to the rule Z ::= Z +Z.
Given a datatype value v, we write to term(v) to denote the term that v rep-
resents, e.g., to term(plus(a, b)) is the term a+ b.



Syntax-Guided Quantifier Instantiation 149

In previous work [22, 24], a smart enumerative approach for syntax-guided
synthesis was presented and implemented in CVC4. In that work, the generation
of terms is based on finding solutions for an evolving set of constraints in an
extension of the quantifier-free fragment of algebraic datatypes, for which some
SMT solvers have dedicated decision procedures [3, 23]. In the remainder of
this paper, we write TD to denote the theory of datatypes over a signature ΣD

of constructor and selector symbols. The signature ΣD includes (parametric)
datatype sorts that are interpreted as the universe of a term algebra over the
constructors. Selectors are interpreted as functions that extract the immediate
subterms of a constructor term.

In our setting, datatype constraints are used to express syntactic restrictions
on the terms in the original theory. For instance, in case of the example theory
and corresponding datatypes Z and B defined above, we can write a datatype
constraint that is falsified by all terms of the form plus(zero, t) where t is a
constructor term of sort Z. This corresponds to ruling out terms of the form
(0 + . . .) in the original theory where s is a term of sort Int. In more detail, for a
datatype term d, we write isC(d) to denote the discriminator predicate, which is
satisfied exactly when d is interpreted as a datatype value whose top constructor
is C. We write selσ,n(d) to denote a shared selector [28] applied to d, interpreted
as the nth child of d with sort σ if one exists, and as an arbitrary element of
σ otherwise. These symbols are used for constructing blocking constraints. For
example, we can write ¬isplus(d)∨¬iszero(selZ,1(d)) to state the constraint above
that d cannot be interpreted as any datatype value corresponding to an Int term
of the form (0 + . . .). In the context of syntax-guided synthesis, a constraint like
this is added, for instance, to filter out redundant terms (like 0 + . . .) or terms
already known to falsify the synthesis conjecture.

Our approach for syntax-guided instantiation relies on a notion of evaluation
variables. A related, more general, notion of evaluation functions was used in
the context of syntax-guided synthesis (see Section 2 of [22] for details). Let d
be a term of a datatype sort encoding a grammar over terms of sort σ. We write
ed to denote a free constant of sort σ, which we call the evaluation variable for
d. We use evaluation variables to determine which terms to use in instantiations
of quantified formulas. The algorithm given in the following section will add
constraints that force the interpretation of ed to be equal to to term(dI) in
interpretations I. A simple example of such a constraint is isa(d) ⇒ ed ≈ a,
stating that the evaluation variable ed for d is equal to the free constant a of
integer type when d is interpreted as the datatype value a.

3 SyGuS Quantifier Instantiation (SyQI)

Our new SyGuS-based instantiation approach combines counterexample-guided
quantifier instantiation (CEGQI) with smart enumerative SyGuS techniques to
synthesize terms for quantifier instantiation. In essence, it is an algorithm that
tries to synthesize a term t for a variable x in a given formula ∀x. P [x] such that
¬P [t] holds. For synthesis purposes, each quantified variable is associated with
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Algorithm 1 Main algorithms of the SyQI approach.

1: procedure syqi({Q1, . . . , Qn}, G)
2: for Qj ∈ {Q1, . . . , Qn} with Qj = ∀x. P [x] do
3: for x ∈ x do
4: Let dx be a fresh global constant of datatype sort grammarS(x)

5: G := G ∪ {lj ⇒ ¬P [edx ]} with fresh Boolean constant lj and fresh edx
6: repeat
7: if check(G) = unsat then return unsat

8: r, I := check(G ∧ (l1 ∨ . . . ∨ ln))
9: if r = unsat then return sat

10: for lj ∈ {l1, . . . , ln} such that lIj = > do
11: G := G ∪ select lemmasL(Qj , I)

12: procedure select lemmasL(∀x1, . . . , xp. P [x1, . . . , xp], I)
13: L := ∅
14: for xi ∈ {x1, . . . , xp} do
15: ti := to term(dIxi

)
16: L := L ∪ {explain(dxi ≈ dIxi

)⇒ edxi
≈ to term(dIxi

)}
17: return non-empty subset of {P [t1, . . . , tp]} ∪ L based on selection strategy L

a SyGuS grammar based on the sort of the variable. For example, our algorithm
uses a bit-vector-specific grammar to synthesize bit-vector terms as possible in-
stantiations of quantified variables of bit-vector sort. Our SyGuS solver suggests
instantiations based on such grammars and an evolving set of constraints on
the instance term. The main advantage of this instantiation approach is that
it does not require theory-specific quantifier instantiation algorithms. Its only
theory-specific aspects are the construction of the grammar for each theory sort
and the satisfiability checks performed on the generated instances.

Algorithm 1 shows the two main procedures syqi and select lemmasL of
our SyGuS instantiation approach. To simplify the exposition, we describe the
restricted case where the quantified input formula are all universal. Our imple-
mentation in CVC4, however, applies to the general case through a lazy conver-
sion to DNF and resolution of quantifier alternations.

Procedure syqi takes as argument a set {Q1, . . . , Qn} of universal (quanti-
fied) T -formulas and a set G of ground T -formulas. As an initial step, and prior
to solving the problem, we generate a lemma for each quantified formula Qi as
part of our counterexample-guided quantifier instantiation approach (lines 2-5).
We first create a fresh datatype constant dx of sort grammarS(x) for each vari-
able x ∈ x in each input formula ∀x. P [x]. The datatype sort grammarS(x)
is constructed from a SyGuS grammar determined by the sort of variable x.
The language generated by the grammar includes ground terms from Qi and
G of the same sort. These terms are chosen following a selection strategy S,
which we describe in Section 3.1. Apart from running check, used as a black
box, grammarS implements the only theory-specific handling of our procedure.
Finally, we add to G a lemma of the form li ⇒ ¬P [edx ] for each quantified for-
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mula, where li is a fresh Boolean constant (the counterexample literal for Qi).
Thanks to li being fresh, this preserves the satisfiability of G. The notation edx

is a shorthand for (edx1
, . . . , edxm

), the tuple of evaluation variables for each dx
of x ∈ x. The purpose of a counterexample lemma is twofold. First, it indicates
whether a quantified formula Qi is active (li assigned to true) or inactive (li
assigned to false). Second, it focuses on finding counterexamples that falsify the
body of Qi.

The main loop of procedure syqi is provided in lines 6-11. Each iteration
starts with a quantifier-free satisfiability check (performed by procedure check
on line 7) on the current set of ground formulas G in the combined theory
T ∪ TD. If G is unsatisfiable, procedure syqi returns unsat. If G is satisfiable,
the procedure further checks whether it can find a counterexample for any of the
quantified formulas Q1, . . . , Qn, which is done by checking the satisfiability of
G∧(l1∨. . .∨ln). If the check returns unsat then no more counterexamples can be
found; the algorithm concludes that input set is satisfiable and returns sat. The
reason is that, in this case, the set G is satisfiable and entails each input formula,
as proven later in this section. If the second call to check (line 8) returns sat, it
additionally returns (a finite representation of) a model I for the current set of
ground formulas G. Since I satisfies l1 ∨ . . . ∨ ln, it does not satisfy at least one
quantified formula in Q1, . . . , Qn.4 For each active quantified formula in I, we
generate new lemmas via procedure select lemmasL (lines 10-11), and repeat
the main loop of the algorithm. Note that the second satisfiability check can be
avoided by employing a special decision heuristic for counterexample literals li
in the SAT solver. The decision heuristic will always assign a counterexample
literal li to true on a decision. Consequently, li can only be assigned to false in
a candidate interpretation I if ¬li is entailed by the set of ground formulas G.

Procedure select lemmasL takes a formula ∀x. P [x] and a model I as ar-
guments and generates a set of lemmas based on I and selection strategy L.
The procedure maintains the invariant of always returning a set of lemmas L
where L \G is non-empty. This set L includes a single instantiation lemma (of
the form P [t]) and an evaluation unfolding lemmas (see below) for each variable
x ∈ x. The returned lemmas are generated based on one of three lemma selec-
tion strategies : priority-inst, priority-eval, and interleave. Strategy interleave selects
both the instantiation lemma and a set of evaluation unfolding lemmas at the
same time. Strategies priority-inst and priority-eval give priority to instantiation
lemmas and evaluation unfolding lemmas, respectively; i.e., strategy priority-inst
selects the instantiation lemma and only selects evaluation unfolding lemmas if
the instantiation lemma was already in G. Analogously, priority-eval gives priority
to evaluation unfolding lemmas.

The various lemmas are constructed as follows. For each variable x ∈ x we
use the model value dIx of datatype constant dx to construct the corresponding
term to term(dIx) in the theory of variable x (line 15). The constructed term
corresponds to a term synthesized by the SyGuS extension of our datatypes

4 Note that this does not mean the quantified formula is unsatisfiable, only that it is
not satisfied in I.
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solver based on the grammar specified for x. To ensure that dx evaluates to
the same values as term to term(dIx) under model value dIx , we generate the
evaluation unfolding lemma explain(dx ≈ dIx) ⇒ edx ≈ to term(dIx). The
explanation for the model value dIx is expressed in terms of discriminator pred-
icates. For example, if value dIx represents term a + b, the procedure gener-
ates lemma isplus(dx) ∧ isa(selZ,1(dx)) ∧ isb(selZ,2(dx)) ⇒ edx = a + b. As a last
step, select lemmasL selects a non-empty subset of the generated instantiation
lemma P [t1, . . . , tp] (where each ti is to term(dIxi

)) and the evaluation unfolding
lemmas L according to the lemma selection strategy L.

We now discuss the correctness properties of our approach. In the following,
we say a grammar R for sort σ is complete, if for all interpretations I and values
v of sort σ, it generates at least one term t such that tI = v. Note that we only
consider complete grammars in this paper. We say a lemma selection strategy L
is fair wrt a set of formulas G if it returns a set of lemmas that contain at least
one lemma inequivalent to each formula in G whenever such lemma exists.

Theorem 1. Let T be a theory with signature Σ, let F be a set of universal for-
mulas {Q1, . . . , Qn} and G0 is a set of quantifier-free formulas. If all grammars
constructed by the calls to grammarS in syqi are complete and the selection
strategy L used for select lemmasL is fair, then the following statements hold:

1. (Refutation Soundness) If syqi(F,G0) returns unsat, F ∪ G0 is T -unsatis-
fiable.

2. (Model soundness) If syqi(F,G0) returns sat, F ∪G0 is T -satisfiable.

3. (Progress) Let Gi be the current state of the set of ground formulas G after
i iterations of syqi (lines 6-11). Each iteration i + 1 adds at least one new
formula to Gi, so that Gi+1 \Gi 6= ∅.

Conceptually, the proof of refutational soundness relies on the fact that all
lemmas added to G are entailed by the input or maintain equisatisfiability with
respect to the input. The proof of model soundness relies on the fact that when
G collectively entails the negation of (all) quantified formulas, then the current
model I for G must be a model for all quantified formulas. Procedure syqi is
not terminating in general. However, the progress property guarantees that the
algorithm does not get stuck in a single state and keeps making progress towards
refining the set of possible models by ruling out at least one candidate model at
each iteration of the procedure’s main loop.

Proof. For brevity, we show these statements for the case of n = 1 and where Q1

is ∀x. P [x]; the proof can be easily lifted to n > 1. When syqi(F,G0) terminates,
the internal set G is the union of:

– The initial quantifier-free formula G0,

– The counterexample lemma Gcex of the form l⇒ ¬P [edx ] added on line 5,

– A set of instantiations Ginst of the form P [t], and

– A set of evaluation lemmas Gev of the form C[d]⇒ ed ≈ t.
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To show (1), assume that ϕ is satisfied by some Σ-interpretation J , where
without loss of generality assume that lJ is false. Let I be aΣ∪ΣD-interpretation
that extends J such that for each evaluation variable ed, the interpretation of
d in I is such that to term(dI)I = eId . Such a value exists since our grammars
are complete by assumption. We show that I satisfies each formula ψ in G. If
ψ ∈ G0, then this holds since J satisfies ϕ, and hence, by extension I does
as well. If ψ ∈ Gcex, then ψ is satisfied by I since it interprets li as false. If
ψ ∈ Ginst is an instantiation lemma of some Qi, then it is satisfied by I since
J also satisfies Qi. If ψ ∈ Gev is an evaluation lemma, this is satisfied by our
construction of dI . Thus ϕ is T -satisfiable, then G must be (T ∪ TD)-satisfiable.
Thus, since syqi(F,G0) returns unsat when G is (T ∪ TD)-unsatisfiable, this
means that F ∪G0 must be T -unsatisfiable as well.

To show (2), if syqi(F,G0) returns sat, then the set G is satisfied by some
Σ∪ΣD-interpretation and G∪{l1} is unsatisfiable. Let J be the Σ-interpretation
that interprets all symbols in Σ the same as in I. Since G∪{l1} is unsatisfiable,
we have that G0 ∪Ginst ∪Gev ∪ {¬P [edx ]} is T ∪ TD-unsatisfiable. Since all Σ-
interpretations can be lifted to a Σ ∪ ΣD-interpretation satisfying Gev, it must
also be the case that G0∪Ginst∪{¬P [edx ]} is T -unsatisfiable. Hence, all models
of G0 ∪ Ginst must make P [edx ] true. Since edx does not occur in G0 ∪ Ginst,
this implies that all models of G0 ∪Ginst satisfy ∀x. P [x]. Since G0 ∪Ginst ⊆ G
and I satisfies G, we have that J satisfies {∀x.P [x]} ∪G.

To show (3), assume ad absurdum that G is satisfied by a T ∪ TD-interpre-
tation I where to term(dx

I) = t and Q1 is active in I. Also assume that G
contains the evaluation unfolding lemmas for dx

I and the instantiation lemma
P [t]. Due to the former, we have that edx

I = tI . Since Q1 is active in I, I satis-
fies ¬P [edx ]. However, P [t] is also satisfied by I, a contradiction. Thus, at least
one of the lemmas returned by select lemmasL for Q1 must be inequivalent to
the lemmas in G, due to our assumption that L is a fair selection strategy. ut

3.1 Grammar Construction

For quantifier instantiation, we focus on the theories of fixed-size bit-vectors,
floating-point numbers, integers, and reals as defined by the SMT-LIB 2 stan-
dard [4]. The signature of the theory of fixed-size bit-vectors includes a unique
sort for each positive bit-vector width n, denoted here as BV[n]. The signature
of the theory of floating-point numbers includes a rounding-mode sort RM and
a unique floating-point sort for each combination of positive exponent width e
and significand width s, denoted here as FP[e,s]. The theories of Integers and
Reals include the integer sort Int and the real sort Real, respectively. For each
of these sorts we define a SyGuS grammar that includes the following operators
and constants.

RBV : {∼ ,−,&, |,⊕,+, ·,÷,÷s, mod, mods <<,>>,>>a, 0, 1, ones, smin, smax}

RFP : {−, abs, rem,
√
, rti,+, ·,÷, fma,NaN,±∞,±0,±mins,±maxs,±minn,±maxn}

RRM : {RNA,RNE,RTE,RTP,RTZ} RInt : {+,−, 0, 1} RReal : {+,−,÷, 0, 1}
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Theory Symbol SMT-LIB Syntax Sort

BV

∼ , − bvnot, bvneg BV[n]→BV[n]

&, |, ⊕ bvand, bvor, bvxor BV[n]×BV[n]→BV[n]

<<, >>, >>a bvshl, bvlshr, bvashr BV[n]×BV[n]→BV[n]

+, −, · bvadd, bvsub, bvmul BV[n]×BV[n]→BV[n]

÷, ÷s, mod, mods bvudiv, bvsdiv, bvurem, bvsrem BV[n]×BV[n]→BV[n]

FP

−,abs fp.neg, fp.abs FP[e,s]→FP[e,s]

rem fp.rem FP[e,s]×FP[e,s]→FP[e,s]
√

, rti fp.sqrt, fp.roundToIntegral RM×FP[e,s]→FP[e,s]

+, ·, ÷ fp.add, fp.mul, fp.div RM×FP[e,s]×FP[e,s]→FP[e,s]

fma fp.fma RM×FP[e,s]×FP[e,s]×FP[e,s]→FP[e,s]

Ints +, − +, − Int×Int→ Int

Reals +, −, ÷ +, −, / Real×Real→Real

Table 1. Set of operators considered in SyGuS grammars.

The (non-constant) operators and their SMT-LIB names and types are listed in
Table 1. Note that we further restrict the division operator ÷ of sort Real to
division by value, i.e., we do not allow division by an arbitrary term of sort Real.
We also add a set of special values of the corresponding sort to each default
grammar. We represent bit-vector values of sort BV[n] as bit-strings of length n,
where the left-most bit is the most significant bit. For floating-point values of sort
FP[e,s], we use bit strings where the left-most bit indicates the sign, the following
e bits represent the exponent, and the remaining bits the significand. For the
theory of fixed-size bit-vectors, we use smax[n] or smin[n] for the maximum or
minimum signed value of width n, e.g., smax[4] = 0111 and smin[4] = 1000, and
ones[n] for the maximum unsigned value, e.g., ones[4] = 1111. For the theory of
floating-point numbers, we use ±0 for positive and negative zero, ±∞ for positive
and negative infinity, and NaN for not a number, e.g., −0[3,5] = 10000000 and
+∞[3,5] = 01110000. We further use ±mins for the positive and negative smallest
subnormal, ±maxs for the positive and negative largest subnormal, ±minn for the
positive and negative smallest normal, and ±maxn for the positive and negative
largest normal, e.g., −maxs[3,5] = 10001111 and +minn[3,5] = 00010000. In the
definition of grammar RFP above, we use symbol ± to indicate that both the
positive and negative variant of a special value is included in the grammar.

We extend the above set of default grammars (grammarS in Algorithm 1)
with ground terms that occur in an input set {Q1, . . . , Qn}∪G0 based on the sort
of variable x ∈ x in Qi = ∀x. P [x] and a term selection strategy. This strategy
is based on the following two factors. We consider three modes for the scope of
ground terms: (1) ground terms that occur in quantified formula Qi (strategy
in) (2) ground terms that occur in the set of ground formulas G (strategy out),
and (3) the union of (1) and (2) (strategy both). We consider three modes for
the size of ground terms, defined as the number of subterms a term consists of:
(a) terms of minimal size, i.e., constants that occur in a term (strategy min) (b)
terms of maximal size (strategy max), and (c) the union of (a) and (b) (strategy
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both). For example, for a ground term a + b · c, strategy min will select a, b, c,
max will select a+ b · c, and both will select a, b, c, a+ b · c. Each of the scope and
size modes may be combined, giving 3 ∗ 3 = 9 possible term selection strategies.

Example 1. Let Q = ∀x. x ·x 6≈ a ·a+ b · b+2 ·a · b where x, a, b have integer type
and suppose we run syqi({Q}, ∅). The algorithm first constructs the grammar
grammarS(x) for x, where we assume term selection strategy S with scope in
and size min, which considers ground terms that occur in Q and are of minimal
size (2, a, and b). This grammar is encoded as the following datatype Z:

Z = zero | one | plus(Z,Z) | minus(Z,Z) | two | a | b

The algorithm introduces a fresh datatype variable dx of type Z, a fresh integer
variable edx of integer type, and adds l ⇒ edx · edx ≈ a · a + b · b + 2 · a · b to
the internal set G of ground formulas, where l is a fresh Boolean variable. In the
first iteration of the loop, we have that G (and G ∪ {l}) are satisfiable. Hence,
the algorithm calls select lemmasL on Q and a model I for G; assume that
dIx = zero and eIdx = aI = bI = 0. Based on the lemma selection strategy, we
may choose to add the instantiation lemma 0 · 0 6≈ a · a + b · b + 2 · a · b, or the
evaluation lemma iszero(dx) ⇒ edx ≈ 0, or both lemmas to G. Assuming both
lemmas are added to G, the next iteration of the loop will consider a new model
I ′ where dI

′

x 6= zero and eI
′

dx
6= 0. The algorithm will continue finding models

with new values for dx, until it finds a model I ′′ where dI
′′

x = plus(a, b). At this
point the instantiation lemma (a+ b) · (a+ b) 6≈ a ·a+ b · b+ 2 ·a · b will be added
to G, which is equivalent to false, and syqi will terminate with unsat. ut

3.2 Implementation Details

We implemented syntax-guided quantifier instantiation in the CVC4 [5] solver,
which has support for a wide range of background theories, covering all those
in the SMT-LIB standard library [2]. CVC4 is based on the CDCL(T ) (for-
merly DPLL(T )) framework [19]. This framework integrates a propositional SAT
solver, which attempts to find a Boolean assignment that propositionally satis-
fies the input formula, with one or more specialize theory solvers, which monitor
the assignments made by the SAT solver to theory literal and flag a conflict if
the assignments are ever inconsistent in their theory.

Our SyQI technique is implemented as a module of the subsolver of CVC4
that handles quantified formulas. We leverage CVC4’s support for smart enumer-
ative SyGuS as described in Reynolds et al. [22]. Specifically, the check method
in line 7 in Algorithm 1 involves calling the (combination) of quantifier-free the-
ory solvers, which includes an extension of the theory of datatypes described in
the following.

Symmetry Breaking for Smart Enumerative Synthesis. As described in previous
work [22, 24], CVC4 uses advanced techniques for symmetry breaking for the
datatypes over which context-free grammars are embedded. The quantifier-free
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datatype theory solver in CVC4 is extended to issue symmetry blocking clauses
based on reasoning about such datatypes, so that the models we generate for a
datatype variable d are such that to term(d) is unique with respect to rewriting.
For example, the terms a + b and b + a are equivalent, and in CVC4, one will
be rewritten to the other. Thus, we know that we only have to consider one
variant, e.g., a+ b. Hence, the extended datatypes solver may issue the blocking
clause ¬isplus(d) ∨ ¬isb(selZ,1(d)) ∨ ¬isa(selZ,2(d)), effectively stating that the
term associated with d should not be b + a. This technique is highly valuable
for syntax-guided synthesis, since it reduces the set of terms considered in the
search for candidate solutions. In the context of this work, these techniques are
of great importance, since they guarantee that our algorithm does not consider
multiple instantiations over tuples of pairwise equivalent terms.

Quantified Formulas within Boolean Structure and Nested Quantification. As
mentioned earlier, while not shown in Algorithm 1, our approach uses standard
techniques for handling qeneral quantified formulas, in particular with quan-
tifiers that occur below Boolean connectives. In the context of CDCL(T ), for
each quantified formula Qi of the form ∀x. P [x], the propositional model of our
Boolean structure may either assign Qi to true or false, or leave it unassigned.
Quantified formulas that are assigned to false are Skolemized, i.e., a lemma of
the form ¬Qi ⇒ ¬P [k], where k are fresh constants, is returned to the SAT
solver. Quantified formulas that are unassigned are ignored. Quantified formu-
las that are assigned to true are either active or inactive based on the value
assigned to their counterexample literals. Those that are active are processed
via select lemmasL. In practice, instantiation lemmas are guarded so that
Qi ⇒ P [t] is returned to the SAT solver, meaning that the conclusion only
holds when Qi is assigned to true. Furthermore, each Qi may have nested quan-
tification, that is, the formula P the counterexample lemma li ⇒ ¬P [edx ] may
contain quantified subformulas. Those quantified formulas are then processed by
our full algorithm in the same way as quantified formulas from the input.

4 Experiments

We implemented our approach in the SMT solver CVC4 [5]. We provide here
an extensive evaluation of the techniques and strategies described in Section 3.
We first evaluate term and lemma selection strategies for grammar construction,
and then compare the performance of our best configuration against Z3 [16],
the only state-of-the-art SMT solver besides CVC4 that supports all the logics
supported by our implementation.

We performed all experiments on a cluster with Intel Xeon CPU E5-2620
CPUs with 2.1GHz and 128GB memory. We used a time limit of 300 seconds,
and an 8GB memory limit for each solver/benchmark pair and count memory
out as time out. We evaluate here all configurations on all quantified logics
in SMT-LIB [2] that do not contain uninterpreted functions (UF). As an ex-
ception, we include the logic UFBV, since the benchmarks in this logic rely
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Strategy Solved Sat Unsat TO MO Uniq Time[s]

Term Selection Strategies

both-max 12865 825 12040 2871 10 8 886137.3
both-both 12848 823 12025 2887 11 12 892219.8
both-min 12843 819 12024 2893 10 10 893808.7
in-both 12688 831 11857 3052 6 6 939886.7
in-min 12673 828 11845 3065 8 4 944167.2
in-max 12667 832 11835 3067 12 7 944952.3
out-both 12660 785 11875 3081 5 3 948301.4
out-min 12643 788 11855 3098 5 2 954925.1
out-max 12616 774 11842 3127 3 6 961683.9

Lemma Selection Strategies

interleave 12848 823 12025 2887 11 60 892272.2
priority-inst 12838 821 12017 2893 15 49 897454.3
priority-eval 12721 821 11900 3019 6 52 938443.4

Table 2. Selection strategies on considered logics (15,746 benchmarks).

almost entirely on BV reasoning only. We generally exclude logics with UF since
for such logics counterexample-guided techniques, as in our approach, are not
expected to be more effective than heuristic instantiation techniques such as
E-matching, which we confirmed in a preliminary evaluation. Overall, we in-
clude logics BV (bit-vectors), FP (floating-point arithmetic), LIA (linear integer
arithmetic), LRA (linear real arithmetic), NIA (non-linear integer arithmetic),
NRA (non-linear real arithmetic), and their combinations BVFP, BVFPLRA,
FPLRA, and UFBV. In total, our benchmark set consists of 15,746 benchmarks.

Term Selection for Grammar Construction. As a first experiment, we
determine the best combination of scope-based and size-based ground term se-
lection strategies for grammar construction as introduced in Section 3.1. We
combine strategies based on scope with strategies based on term size into nine
selection strategies: in-min, in-max, in-both, out-min, out-max, out-both, both-min,
both-max, both-both. The results for our SyGuS instantiation approach with
these strategies enabled is shown in Table 2. Note that preliminary experiments
identified lemma selection strategy interleave as the best. Hence, we use strategy
interleave as the lemma selection strategy for this experiment.

Overall, using strategy both for the scope performs best. Furthermore, for
this strategy all three size-based strategies perform equally well. For the re-
maining experiments, we use strategy both-both as the term selection strategy
for grammar construction, where both minimal and maximal ground terms are
selected from both the quantified formula Qi (containing the variable we con-
struct a grammar for) and the set of ground formulas G. Note that we choose the
more general strategy both-both over strategy both-max even though both-max
performs slightly better.

Lemma Selection. In our second experiment, we determine the best lemma se-
lection strategy out of the three strategies priority-inst, priority-eval and interleave
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described in Section 3. The results are shown in Table 2. Note that we use the
previously determined best term selection strategy both-both in this experiment.

The best overall strategy is interleave, indicating that it is beneficial to con-
sider instantiation lemmas and evaluation unfolding lemmas in parallel. On the
other hand, prioritizing evaluation lemmas over instantiation lemmas (priority-
eval) performed significantly worse than the other two configurations. Since this
strategy prioritizes evaluation lemmas, it has the advantage over other configu-
rations of delaying instantiations until we obtain an interpretation I where the
interpretation of edx is consistent with respect to dx, i.e., eIdx = to term(dx)I .
As a consequence, prioritizing evaluation lemmas puts more effort into find-
ing terms in instantiation that are guaranteed to refine the current candidate
model I. However, we conclude from these results that it is often effective to con-
sider instantiations in an eager fashion, either in parallel or even before consid-
ering evaluation lemmas. This is likely because instantiation lemmas may often
refine the set of possible models even when G does not yet force our evaluation
variables to have an interpretation that is consistent with their corresponding
datatype values. Nevertheless, we found that evaluation lemmas are often neces-
sary in practice for ensuring our procedure does not get stuck on a single model.
When only instantiation lemmas are used, our procedure often terminates the
loop with no new lemmas. This is to be expected, as such a strategy violates the
requirements for the progress property of Theorem 1.

In the remaining experiment, we use strategy interleave as the lemma selection
strategy since it performs slightly better than priority-inst.

Comparison Against Other Techniques. Finally, we compare our SyGuS
instantiation approach against other techniques implemented in CVC4, the state-
of-the-art SMT solvers Z3 [16] (version 4.8.9) and Boolector [17] (version 3.2.1),
and the superposition-based theorem prover Vampire [13] (version 4.5.1). Note
that Boolector implements counterexample-guided model synthesis [20] but only
supports the SMT-LIB logic BV, whereas Vampire supports LIA, LRA, NIA,
and NRA. We consider the following four configurations of CVC4: ematch:
with E-matching [15] enabled; cegqi: with CEGQI for linear arithmetic [25] and
bit-vectors [18] enabled, falls back to value-based instantiation techniques for
other theories; enum: with enumerative instantiation [21] enabled; syqi: with
our SyGuS instantiation approach enabled. We use strategy both-both for term
selection, and interleave for lemma selection.

The results are summarized in Table 3. First, note that Z3 disagrees on 10
benchmarks in logic FP with the other four CVC4 configurations. This is due to
a known problem in Z3 related to operator rem, where it answers sat instead of
unsat. We do not count these 10 benchmarks as solved and give the number of
disagreements in parenthesis marked with a * in Table 3.

Overall, note that E-matching (ematch) performs very poorly on these
benchmark sets. This is not surprising since it is designed with a focus on prob-
lems with uninterpreted functions. To a lesser extent, enumerative instantiation
(enum) also performs poorly, probably also due to the fact that it is not designed
for inputs without uninterpreted functions. In detail, both this configuration and
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Logic syqi cegqi ematch enum Z3 Boolector Vampire

BV sat 269 411 203 204 566 620 -
(5846) unsat 4752 5039 3846 4699 4934 4889 -

unsolved 825 396 1797 943 346 337 -

BVFP sat 113 110 26 29 174 - -
(224) unsat 14 4 4 14 11 - -

unsolved 97 110 194 181 39 - -

BVFPLRA sat 103 95 67 67 164 - -
(185) unsat 5 5 5 6 5 - -

unsolved 77 85 113 112 16 - -

FP sat 34 28 23 23 47 - -
(2484) unsat 2117 1899 83 1615 1923 - -

unsolved 333 557 2378 846 504 (10)* - -

FPLRA sat 17 17 13 13 18 - -
(27) unsat 0 0 0 0 0 - -

unsolved 10 10 14 14 9 - -

LIA sat 188 199 19 19 189 - 5
(607) unsat 319 357 46 171 295 - 310

unsolved 100 51 542 417 123 - 292

LRA sat 79 593 461 461 740 - 0
(2419) unsat 955 1306 1018 1117 1454 - 871

unsolved 1385 520 940 841 225 - 1548

NIA sat 12 11 6 6 12 - 0
(20) unsat 7 8 1 5 5 - 6

unsolved 1 1 13 9 3 - 14

NRA sat 0 0 0 0 2 - 0
(3813) unsat 3781 3781 3703 3768 3806 - 3803

unsolved 32 32 110 45 5 - 10

UFBV sat 8 8 8 8 26 - -
(121) unsat 74 53 47 66 72 - -

unsolved 39 60 66 47 23 - -

Total sat 823 1472 826 830 1938 - -
(15746) unsat 12024 12452 8753 11461 12505 - -

unsolved 2899 1822 6167 3455 1293 (10)* - -

Table 3. SyQI vs. other techniques, Z3, Boolector, and Vampire (15,746 benchmarks).

syqi are enumerative in nature. The former uses a selection strategy based on
the evolving ground terms in the current context, whereas the latter uses a fixed
grammar built from the initial set of terms. In a sense, syqi leverages the power
of a grammar for discovering new terms, whereas enum adapts to what terms
are generated by instantiations. Overall, syqi solves 556 more benchmarks than
enumerative instantiation, justifying the need for a syntax-guided approach for
instantiation for inputs that are rich in background theories.

Our results show that syqi is remarkably competitive when compared to
cegqi, which uses the best known theory-specific instantiation strategies. The
performance of syntax-guided instantiation matches or exceeds counterexample-
guided instantiation on logics BVFP, BVFPLRA, FP, FPLRA, NIA, NRA, and
UFBV. In particular, for quantified floating-point arithmetic (FP), the perfor-
mance of syqi significantly outperforms cegqi, where it solves 224 more bench-
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marks. We attribute this to the fact that cegqi only performs value-based instan-
tiation, whereas the use of grammars is effective in determining useful symbolic
terms to use in instantiations for this theory. Interestingly, syqi solves the only
satisfiable benchmark in the NIA category that is unsolved by cegqi, mean-
ing that in a portfolio setting with all available configurations, CVC4 solves
all benchmarks in this category. On the other hand, counterexample-guided in-
stantiation outperforms syqi on logics such as LIA, LRA, and BV, where well-
established instantiation strategies exist. Syntax-guided techniques are especially
ineffective for linear real arithmetic, since it is often important to construct spe-
cific real constants based on solving sets of linear (in)equalities [25].

Comparing all configurations of CVC4 with Z3, Boolector, and Vampire, we
see that in some logics like LIA and NIA, counterexample-guided instantiation in
CVC4 outperforms Z3 and Vampire, whereas in other logics like NRA, UFBV,
and many logics that combine BV, FP and LRA, Z3 performs best. For the
logic BV, Boolector outperforms CVC4 and Z3; however, CVC4 solves the most
unsatisfiable instances. The syqi configuration performs best on the floating-
point benchmarks, where it solves 181 more than the closest competitor. When
comparing the four CVC4 configurations in terms of uniquely solved instances,
cegqi uniquely solves 660 instances, syqi 119 instances, enum 117 instances,
and ematch not a single one. Between configurations cegqi and syqi, the former
uniquely solves 1479 instances, and the latter 402 instances.

In summary, theory-specific approaches as implemented in CVC4, Z3, and
Boolector outperform syqi in categories where instantiation strategies are highly
mature, such as linear integer and real arithmetic, and fixed-width bit-vectors.
Nevertheless, our evaluation demonstrates the versatility of the approach, es-
pecially for benchmarks using quantified floating-point arithmetic or combined
theories where no good approach to quantifier instantiation was known.

5 Conclusion

We have presented a syntax-guided approach for quantifier instantiation and im-
plemented it in the SMT solver CVC4. Our experiments show that our approach
is a viable alternative to theory-specific quantifier instantiation techniques and
can be applied to a wide range of logics. In particular, for the theory of floating-
point arithmetic, syntax-guided instantiation in CVC4 significantly outperforms
the state of the art. In future work, we plan to tune our grammar construc-
tion based on an analysis of which terms are more likely to appear in conflicts,
which can potentially be done automatically. Another direction of future work
is to provide an interface that would allow users to supply their own grammars
for use in SyQI, similarly to the user-provided triggers for E-matching. We also
plan to use our approach as a baseline for quantified logics in recent (and future)
new theories. Currently, support in SMT solvers is highly limited, for instance,
for quantified formulas involving the theory of strings and regular expressions.
Syntax-guided instantiation can serve as a baseline for potential user applications
that rely on quantified formulas in these theories.
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