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Abstract. NP-hard combinatorial optimization problems are pivotal in science
and business. There exists a variety of approaches for solving such problems, but
for problems with complex constraints and objective functions, local search algo-
rithms scale the best. Such algorithms usually assume that finding a non-optimal
solution with no other requirements is easy. However, what if it is NP-hard? In
such case, a SAT solver can be used for finding the initial solution, but how can
one continue solving the optimization problem? We offer a generic methodol-
ogy, called Local Search with SAT Oracle (LSSO), to solve such problems. LSSO
facilitates implementation of advanced local search methods, such as variable
neighbourhood search, hill climbing and iterated local search, while using a SAT
solver as an oracle. We have successfully applied our approach to solve a critical
industrial problem of cell placement and productized our solution at Intel.

1 Introduction

Real-life combinatorial optimization problems are pivotal in science, operations re-
search, engineering, economics, and business [11, 13, 20, 21, 23].

Loosely speaking, an instance of a combinatorial optimization problem deals with
the minimization of an objective function over a finite set, subject to feasibility con-
straints (or, simply, constraints). The set of all elements satisfying the constraints is
referred to as the set of feasible solutions (or, simply, solutions). In this paper, we focus
on solving any problem, which can be expressed as a constraint optimization program
(COP) [2]. Arguably, the vast majority of combinatorial problems, encountered in prac-
tice, fall under this category.

Many important combinatorial problems are NP-hard. For such problems, various
algorithmic strategies have been devised, including complete methods, such as branch-
and-bound and dynamic programming, and incomplete methods, such as greedy algo-
rithms and local search. Each such method imposes requirements on the mathematical
properties of the problem with a consequent limit on the scope of applicability.

Local search algorithms stand out from the rest in that they impose relatively mild
constraints on the type of the problem to be addressed, thus providing a wide scope of
applicability. Furthermore, they seem to scale better with input size relative to complete
algorithms [24]. This makes local search algorithms an attractive choice. However, lo-
cal search algorithms may return a low-quality solution or no solution at all, given a
problem for which the mere task of finding a feasible solution is NP-hard. Henceforth,
we shall refer to such problems as NP-Hard-Feasible problems.
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This paper introduces the Local Search with SAT Oracle (LSSO) methodology, that
is, local search algorithms which use a SAT solver (or a SAT-based optimization algo-
rithm; details appear later) as an oracle. A key advantage of our approach is that it can
handle problems with complex constraints and objective functions. In particular, it can
handle NP-Hard-Feasible problems.

To see how SAT solvers might be useful, consider the basic version of a local search
for an optimal solution. At the beginning, the local search generates an initial solution
and sets it as the current solution. Then, it enters a loop. In each iteration, it looks
for a solution with a lower value of the objective function within a neighbourhood of
the current one. If such a solution is found, it is set to be the current solution, and the
execution resumes. Otherwise, the algorithm terminates and returns the current solution.

A key component of local search algorithms is the neighbourhood function, which
assigns to each feasible solution a subset of feasible solutions, called its neighbour-
hood. Ordinarily, a neighbourhood of the current feasible solution comprises a set of
solutions which can be obtained from the current solution by applying a small collec-
tion of feasibility-preserving perturbations to its combinatorial structure. A key con-
cern is ensuring that neighbourhoods: (i) are polynomially searchable, and (ii) con-
tain high-quality solutions. However, meeting both requirements might be challenging,
since polynomial searchability implies that neighbourhoods should be small, and hence
less likely to contain high-quality solutions. In addition, in the case of NP-Hard-Feasible
problems, it is not clear how to achieve polynomial searchability, since a search should,
in particular, be able to find a feasible solution, which is NP-hard.

Our main idea is to let the SAT solver both find an initial solution and conduct the
neighbourhood search. The designer can now define feasibility constraints and neigh-
bourhoods declaratively, that is, by a set of SAT constraints. The designer has more
freedom to choose neighbourhoods, which need neither be small, nor contain only so-
lutions close to the current solution. This is because the search of the now complex and
possibly large neighbourhoods is entrusted to SAT solvers, constructed precisely to ef-
ficiently search large complex subspaces. Our approach lends itself to implementations
of advanced local search variants, such as variable neighbourhood search, hill climbing
and iterated local search [29].

An important feature of our algorithms is that they are anytime. Recall that an any-
time algorithm is expected to return a valid solution even if interrupted. An anytime
algorithm for an optimization problem is expected to find an improving set of solutions.
The anytime property is essential for industrial application, since it allows the user to
get an approximate solution even for very difficult instances [14, 15].

We demonstrate the usefulness of our approach by solving hard industrial instances
of the NP-Hard-Feasible cell placement problem. Cell placement is one of the most
important problems in VLSI automation [28]. Its most basic version concerns placing
without overlap a set of rectangles on a grid, while minimizing the occupied area. In
reality, the problem is more complex. Our approach has been successfully productized
at Intel.

The rest of this paper is organized as follows: Sect. 2 provides the necessary back-
ground. Sect. 3 introduces our LSSO methodology. Sect. 4 shows how to solve place-
ment with LSSO. Sect. 5 presents the experimental results. Sect. 6 concludes our paper.
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2 Background

This section provides some background. Sect. 2.1 is an overview of COP. Sect. 2.2
describes the cell placement problem and shows how to reduce it to COP. Sect. 2.3 dis-
cusses how one can solve a COP using a SAT-based bit-vector solver. Sect. 2.4 reviews
local search.

2.1 Constraint Optimization Program (COP)

This work presents a new methodology for solving a wide class of combinatorial op-
timization problems, which can be expressed as a Constraint Optimization Program,
shown in Def. 1.

Definition 1 (Constraint Optimization Program (COP) [2]). A constraint optimiza-
tion program is a tuple (X ,D, C, Ψ) where:

1. X = {x1 . . . xn} is a finite set of variables often referred to as decision variables.
2. D = {D1 . . .Dn} is a corresponding set of finite domains. Without loss of gener-

ality, each Di is assumed to be a closed bounded interval of non-negative integers.
3. C = {C1 . . . Cm} is a finite set of constraints Ck : D1 × · · · × Dn 7→ {0, 1}.
4. Ψ : D1 × · · · × Dn 7→ Z is an objective function to be minimized.

2.2 The Cell Placement Problem

Cell Placement (Placement) is a major stage in the VLSI design cycle [8,16]. The input
of the cell placement problem comprises the following components:

1. A rectangular grid region of M rows and N columns, on which the cells are to be
placed. Row/column line numbering starts at 0 and ends at M /N , respectively.

2. A finite set C of rectangular cells. The width and the height of each cell c ∈ C
are assumed to be positive integers, denoted by cwidth : 0 < cwidth ≤ N and
cheight : 0 < cheight ≤M , respectively.

3. A set R of forbidden rectangular regions. A forbidden region r ∈ R is specified
by 4 numbers rwest, rsouth, reast and rnorth (where, 0 ≤ rwest, reast < N ; 0 ≤
rsouth, rnorth < M ; reast > rwest; rnorth > rsouth), denoting the leftmost col-
umn line, bottom row line, rightmost column line, and top row line, respectively.

4. A finite set I of nets, each consisting of a non-empty subset of cells. The nets may
(and usually do) intersect.

We are interested in feasible placements, that is, placements in which no cell over-
laps other cells or forbidden regions. Given a feasible placement, we define the size of
a net n ∈ I as the perimeter of the box bounding its placed cells. We define the size
of the placement as the sum of the sizes of the nets. We are required to find a feasible
placement of a minimal size. An example is shown in Fig. 1.

In industrial practice, there may be additional industrial requirements, such as align-
ing some of the cells, enforcing parity constraints (i.e., the user might require the y co-
ordinates of some of the cells to be either even or odd) [19], ensuring a minimal distance
between some of the cells and others. We omit further details due to IP considerations.

Placement is NP-Hard-Feasible, since the NP-complete bin packing problem can be
reduced to the decision version of the placement problem [10].
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2.2.1 Constraint Optimization Program for Cell Placement. We show how to con-
struct a COP for the cell placement problem. For each cell c ∈ C, let cwest and ceast

denote its leftmost and rightmost column respectively, and csouth and cnorth denote its
bottom and top row. Strictly speaking, it suffices to use cwest and csouth as the COP’s
independent variables, but it is convenient to use ceast and cnorth as syntactic sugar for
cwest + cwidth and csouth + cheight, respectively. The COP looks as follows:

1. Variables: {cwest, csouth | c ∈ C}
2. Domains: cwest ∈ [0 . . .N − 1] and csouth ∈ [0 . . .M − 1]
3. Feasibility constraints:

(a) Each cell c is placed wholly within the grid region:

(cwest ≥ 0) ∧ (ceast ≤N) ∧ (csouth ≥ 0) ∧ (cnorth ≤M)

(b) For every pair of cells 〈ci, cj〉, such that i < j, there is no overlap:

(cwesti ≥ ceastj ) ∨ (cwestj ≥ ceasti ) ∨ (csouthi ≥ cnorthj ) ∨ (csouthj ≥ cnorthi )

(c) For every pair 〈r, c〉 of a forbidden region r and a cell c, there is no overlap:

(rwest ≥ ceast) ∨ (cwest ≥ reast) ∨ (rsouth ≥ cnorth) ∨ (csouth ≥ rnorth)

(d) Constraints representing any additional industrial requirements.
4. Objective function Ψ : for every net n ∈ I, let ‖n‖ denote its size. We have:

‖n‖ =
(
max
c∈n

(ceast)−min
c∈n

(cwest)

)
+

(
max
c∈n

(cnorth)−min
c∈n

(csouth)

)
Ψ =

∑
n∈I
‖n‖
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Fig. 1: Placement example [16]. A solution is shown for the problem of placing five cells c1, c2,
c3, c4 and c5 of sizes 4×1, 4×3, 2×2, 2×4 and 1×5 respectively, on a grid with M = N = 8.
There are three nets: n1 = {c1, c3, c5}, n2 = {c2, c3} and n3 = {c2, c4} (without any forbidden
regions). The bounding boxes of the nets are B1, B2 and B3, respectively. The sizes of the nets,
comprising the perimeters of the bounding boxes, are 20, 18 and 20, respectively. The overall
placement size is 20 + 18 + 20 = 58. The solution is an optimal one.
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2.3 Solving COP with SAT

A COP can be solved with various types of solvers [2]. In particular, it is possible
to solve a COP by reduction to a series of SAT solver invocations through bit-vector
reasoning as explained below.

2.3.1 Bit-vector Solving and SAT. We start with reviewing the basic terminology,
related to SAT solving. A literal l is a Boolean variable v or its negation ¬v. A clause
is a disjunction of literals. A formula F is in Conjunctive Normal Form (CNF) if it is a
conjunction (set) of clauses.

A SAT solver [4] receives a CNF formula F and returns a satisfying assignment
(aka, model or solution), if one exists. In incremental SAT solving under assumptions [5,
18], the user may invoke the SAT solver multiple times, each time with a different
set of assumption literals (called, simply, the assumptions) and, possibly, additional
clauses. The solver then checks the satisfiability of all the clauses provided so far, while
enforcing the values of the current assumptions.

A bit-vector variable (bit-vector) of width n = |B|, B = {vn, vn−1, . . . , v1}, is a
sequence of n Boolean variables, called bits. Bit v1 is the Least Significant Bit (LSB)
and vn is the Most Significant Bit (MSB). A Boolean constant is either ⊥ (0) or > (1).
A bit-vector constant is a bit-vector (BV), each one of whose bits is substituted by a
Boolean constant. A bit-vector term is either a bit-vector, a BV constant, or a result
of applying an operator which returns a bit-vector (for example, BV addition, if-then-
else, concatenation) over other terms and atoms. An atom is either a Boolean variable,
a Boolean constant or a result of applying an operator, which returns a Boolean (for
example, = or unsigned-less-than), over BV terms and atoms. A bit-vector formula
(also known as a bit-vector constraint) is recursively defined to be either an atom, a
negation of a bit-vector formula, or the result of applying the Boolean operator ∧ or
the Boolean operator ∨ over two or more bit-vector formulas. See [3,12] for a rigorous
description of the BV language. A BV solver decides the satisfiability of BV formulas.

A BV formula F is satisfiable iff it has a model, that is, an assignment of BV and
Boolean constants to their corresponding BV and Boolean variables, which satisfies F .
In this paper, BV constants are interpreted as unsigned numbers, and BV comparison
operators are interpreted as unsigned. For example, given a bit-vectorB = {v3, v2, v1},
the formula F = B < 2 has two models µ1 : µ1(B) = 0 and µ2 : µ2(B) = 1.

All the algorithms presented in this work are assumed to use the so-called eager BV
solver [6] which, following some preprocessing, translates the input BV formula to an
equisatisfiable formula in CNF and solves it with a SAT solver. Thus, we will use the
notions of BV solving and SAT solving interchangeably. We also assume the BV solver
to have the same incremental API as a SAT solver.

Since the variables in a COP have finite domains, both the variables and the con-
straints of a COP can be easily expressed as BV variables and BV constraints.

In particular, in the COP constructed for the cell placement problem in Sect. 2.2.1,
the variables and the constraints can be expressed as BV variables and constraints as
follows: For each cell c, we define four bit-vectors: cwest and ceast of width dlogNe
as well as csouth and cnorth of width dlogMe. All the constraints in our COP involve
these bit-vectors and can be expressed in terms of operators and relations available in
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the BV language [3]. Specifically, we implement min and max operators using a series
of if-then-else operators. In addition, for every operator, we zero-extend the widths of
the operands and the resulting bit-vector to prevent an overflow, whenever required.

Reducing the constraints of a COP to a BV formula and invoking BV solver suffices
to find one non-optimal solution. However, for solving the optimization problem by
reduction to BV, one needs an extension of BV solving to optimization.1

2.3.2 Extending Bit-vector Solving to Optimization. One can extend bit-vector
solving to the so-called Bit-Vector Optimization (OBV) [19] as follows:

A model µ of a BV formula F is T -minimal, for a given bit-vector T , iff µ(T ) ≤
ν(T ) (where the comparison is unsigned) for every model ν of F . Given a BV formula
F and a term T = {tn, tn−1, . . . , t1} in F , where T is called the optimization target
(or, simply, the target), Bit-Vector Optimization (OBV) is the problem of finding a T -
minimal model of F . The bits of the target T are referred to as the target bits.

Translating our placement COP to OBV is straightforward. We have already shown
how to translate the constraints. The optimization target is constructed in the same way
as the objective function Ψ is constructed in the COP.

How can one solve OBV in practice? First, one can use the following simple any-
time Linear Search algorithm, implemented on top of an incremental BV solver [16,27]:

1: solver.Assert(F ); µ := solver.Sat() . assert F and find the first solution
2: while µ is a solution do . while there is still a solution
3: solver.Assert(T < µ(T )) . block all the solutions with cost ≥ µ(T )
4: µ := solver.Sat() . can we improve our solution?
5: return µ . µ is guaranteed to be T -minimal

Another anytime algorithm to solve OBV is the following binary search-based al-
gorithm, called OBV-BS [9, 19]:

1: solver.Assert(F ); µ := solver.Sat() . assert F and find the first solution
2: i := n . i is the current bit number, initialized to the MSB
3: while i ≥ 1 and µ(ti) = ⊥ do . fix to ⊥ the MSBs, assigned to ⊥ in µ
4: solver.Assert(¬ti)
5: i := i− 1 . after the loop, i will point to the first target bit, assigned >
6: while i ≥ 1 do . Check one-by-one, if we can flip the remaining target bits to ⊥
7: µ := solver.Sat({¬ti}) . run the solver under the assumption ¬ti
8: if satisfiable then
9: while (i ≥ 1 and µ(ti) = ⊥) do solver.Assert(¬ti); i := i− 1 endwhile

10: else
11: solver.Assert(ti); i := i− 1 . ti cannot be flipped to ⊥, so we fix it to >
12: return µ

We have successfully applied OBV-BS for solving the problem of fixing an existing
placement [19], closely related to the generic placement problem, we are exploring

1 One cannot use MaxSAT [26]–the widely used extension of SAT to optimizing a linear Pseudo-
Boolean (PB) function–to solve COP in the generic case, since the objective function is not
guaranteed to be linear PB. In particular, it is not linear PB for placement, if only because the
variables are bit-vectors, rather than Booleans.
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in this work. However, both Linear Search and OBV-BS failed to scale to industrial
instances of our current problem of finding an optimal placement from scratch (with
Linear Search scaling somewhat better than OBV-BS).

Recently, we have introduced the so-called Polosat anytime algorithm [16],
which can be used instead of the standard SAT solver inside Linear Search (and other
SAT-based anytime optimization algorithms) to make it substantially more scalable. The
idea behind Polosat, shown below, is to simulate local search using a SAT solver. We
use the strictly-monotone version of Polosat [16], which assumes the availability of
the so-called Boolean observable variables (observables) Obs, that is, a set of Boolean
variables on which the objective function depends (for placement, the observables might
comprise the bits of the bit-vectors, representing the sizes of the nets, for every net).
Polosat is carried out by getting a model µ and then trying to improve it by repeatedly
flipping observables, which have not been assigned ⊥ in previous models:

1: function SOLVER.POLOSAT(assumptions)
Require: Target bit-vector T is available; Observables Obs are available.

2: µ := solver.Sat(assumptions) . get the first model µ
3: is good epoch := 1 . good epoch: an iteration, which improves µ
4: while is good epoch do . one loop is an epoch
5: B := {v : v ∈ Obs, µ(v) = >} . remove any observables, assigned ⊥
6: is good epoch := 0
7: while B is not empty do
8: bi := B.front();B.dequeue()
9: σ := solver.Sat(assumptions ∪ {¬bi}) . trying to flip bi

10: if satisfiable then
11: if σ(T ) < µ(T ) then µ := σ and is good epoch := 1
12: B := {b : b ∈ B, σ(t) = 1} . remove any observables, assigned ⊥
13: return µ

To combine Polosat into Linear Search, it is sufficient to replace solver.Sat invo-
cations by solver.Polosat invocations in the code. 2 We have shown in [16] that replacing
plain SAT invocations by Polosat invocations in Linear Search makes our placement
tool substantially more scalable. We reaffirm this result in Sect. 5.

Yet, despite the significant progress we had witnessed when applying Polosat,
we found that combining Polosat into Linear Search is still insufficient for solving
a variety of complex real-world instances of our industrial placement problem. This
empirical challenge lead us to develop our LSSO methodology, presented in this paper.
As we shall see, combining LSSO and Polosat makes our tool considerably more
scalable, while the methodology itself is generic and can be applied to solving a wide
range of optimization problems.

2.4 Local Search Algorithms

Local search strategies [1] are a collection of algorithmic templates. An algorithmic
template specifies the main flow of an algorithm, but leaves some details unimple-

2 Polosat also uses polarity fixing strategies, such as TORC [14,17], omitted here; please refer
to [16] for details. Additional non-anytime OBV algorithms are introduced in [19, 22].
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mented. By implementing these details for a specific problem, one obtains an algo-
rithmic solution for that problem.

2.4.1 Basic Local Search Strategy. The basic strategy generates an initial feasible
solution and sets it as the current solution. Then, it enters a loop. In each iteration, it
looks within a neighbourhood of the current solution for a feasible solution with a lower
value of the objective function. If one is found, it is set to be the current solution. Other-
wise, the algorithm is terminated returning the current solution. Note that this version is
guaranteed to stop; it does so, when it reaches a local minimum of the objective function
with respect to the neighbourhood used.

To turn this algorithmic template into a complete algorithm, one has to implement
the following problem-dependent items: (i) A procedure for generating an initial fea-
sible element. (ii) A neighbourhood function assigning to each solution a subset of
solutions. (iii) An algorithm for searching the neighbourhood for a better solution.

2.4.2 Neighbourhood Functions. A key factor, which affects both the complexity
of the search and the quality of the resulting solution, is the selection of a neighbour-
hood function. In theory, the selection ought to depend on a mathematical analysis of
the structure of the feasible set and the profile of the objective function. For complex
problems, such an analysis is usually beyond reach. The classical approach to neigh-
bourhood definition is based on the following problem-independent general principles:

1. Drawing on an analogy to optimization algorithms in the continuous case (such as
gradient descent or line search), a neighbourhood should be so defined as to make
its elements “close” to the current solution. So, typically, the neighbourhood of a
feasible solution is specified by a small class of feasibility-preserving modifica-
tions/perturbations to its combinatorial structure.

2. A neighbourhood should be so defined as to ensure that it is polynomially search-
able. Hence, unless we have a sophisticated non-exhaustive neighbourhood search
algorithm, neighbourhoods should be small.

However, as we have argued in Sect. 1, this approach is not without issues. In par-
ticular, feasibility-preserving perturbations may not be easy to find, especially for NP-
Hard-Feasible problems, while having small neighbourhoods implies a low likelihood
of high-quality solutions.

2.4.3 Advanced Versions of Local Search. A disadvantage of the basic version of lo-
cal search is that it may stop at a local minimum of a poor quality, if too small a region of
the feasible space is explored. To circumvent this outcome, advanced variants enabling
an exploration of larger portions of the feasible space have been devised [7, 29]. Those
described here provide some mechanism to escape from the local minimum to “nearby”
solutions and resume the search from there. They have been designed to accommodate
situations, where local minima are not distributed uniformly in the feasibility space, but
are rather clustered in close proximity [25].

The variable neighbourhood search approach uses multiple neighbourhoods to es-
cape from local minima. It relies on the fact that a local minimum with respect to one
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neighbourhood need not be a local minimum with respect to another (if the latter is
not contained in the former). The algorithm maintains a set of neighbourhood func-
tions. Once a local minimum with respect to the current neighbourhood is reached, the
neighbourhood is switched, and the search is resumed.

The hill climbing method allows the selection of a non-improving solution, once
a local minimum is reached. Since the objective function no longer monotonically de-
creases, there is now a possibility of a cycle: a solution may be visited more than once
forcing the search into an infinite loop. One can deal with this problem in various ways:
ignore it and let the algorithm run until the timeout expires, use randomization, or in-
troduce data structures that keep track of the search history and prohibit solutions that
have already been encountered. The latter approach is referred to as tabu search.

Another idea is to use large neighbourhoods. This approach increases the size of the
explored region and the likelihood of better solutions. However, large neighbourhood
search may become intractable.

The iterated local search approach can be viewed as “a local search within a local
search”. In each iteration of the search, it uses a subsidiary search algorithm to explore
iteratively a feasible sub-space. Once a local minimum is returned, a new search is
initiated in a region, whose elements are obtained by “perturbing” the recent solution.

All the above approaches can be implemented within our LSSO framework. The
key difference between LSSO and previous approaches is using SAT or Polosat as
an oracle for both finding the initial solution and carrying out the neighbourhood search.

3 Local Search with SAT Oracle (LSSO)

This section introduces the main contribution of our paper. We propose using SAT as an
oracle in local search algorithms to address the scalability and quality issues that arise
in the classical local search algorithms, especially, given an NP-Hard-Feasible problem.

Given a combinatorial optimization problem, the first stage in designing an LSSO
solution is expressing the problem as a COP.

In the second stage, the COP decision variables are translated to bit-vectors, and the
feasibility constraints are translated to a BV formula (including any additional industrial
requirements). One might experiment with several alternative formulations and select
the one deemed best.

The third step is defining the so-called neighbourhood generators. A neighbourhood
generator N (µ) accepts as an input a solution µ (that is, a model to the bit-vector
formula, representing the COP), and generates neighbourhood constraints. The set of all
the assignments which satisfy the feasibility and neighbourhood constraints constitutes
the neighbourhood of the solution. Thus, finding such an assignment amounts to finding
an element of the neighbourhood of µ.

A key ingredient of our methodology is the adoption of a neighbourhood concept,
which differs significantly from the classical one, described in Sect. 2.4.2:

1. The neighbourhood need not be small and need not contain (only) elements “close”
to the current solution.
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2. Normally,N (µ) should generate constraints which ensure a cost lower than that of
µ. If such a formulation is possible, then an iteration of the local search algorithm
merely needs to find a model to these constraints in order to progress.

3. If the objective function is too complex to model in its entirety, a neighbourbood
generator might attempt to ensure a better value for the objective function by im-
posing constraints on the objective function’s sub-components. For example, when
the objective function is a very large sum of bit-vector terms, one might impose
constraints on the sum’s terms or small partial sums thereof.

4. Notwithstanding the above, neighbourhood generators may support hill climbing, in
which case, the constraints are so formulated as to admit non-improving solutions.

Note that, in our approach, neighbourhoods direct the search to “higher-quality”
regions with respect to the current solution, regardless of the algorithmic difficulties of
searching such regions. This is another key aspect of our approach: we trust SAT solvers
to search complex sub-spaces efficiently.

Having discussed neighbourhoods, we are now ready to describe the simplest LSSO
implementation:

1. A BV solver instance is created and the COP is provided to the solver. Specifically,
we represent the COP’s decision variables as bit-vectors, where the widths are cho-
sen to accommodate the largest values. We provide the feasibility constraints to the
solver as BV constraints. Then, we implement neighbourhood generators, which,
given a feasible solution, return a set of BV constraints defining its neighbourhood.

2. The local search is carried out as follows:
(a) The algorithm obtains an initial solution by asserting the feasibility constraints

and asking the solver for a model. This model is set as the current solution µ.
(b) The algorithm enters a loop, in which the solver operates in incremental mode.

In each iteration, the algorithm calls the neighbourhood generator with the cur-
rent solution as input, to generate a list of BV constraints. These are provided
to the solver, which is asked for a model. If a model α is found, µ is set to α.
Otherwise, the algorithm terminates returning µ.

The neighbourhood constraints can be given to the solver as either assumptions or
assertions. This leads to two types of search, providing a tradeoff between execution
time and quality:

1. Non-speculative search: the neighbourhood constraints are passed to the solver as
assertions. Once assertions are passed to the solver, they are enforced in all ensuing
iterations. The search proceeds through a monotone sequence of decreasing neigh-
bourhoods until a local minimum is reached. Thus, the search is localized and is
relatively fast at the possible expense of quality.

2. Speculative search: the neighbourhood constraints are passed to the solver as as-
sumptions. The neighbourhood constraints are valid only for one iteration. Thus,
the current neighbourhood is not intersected with previous neighbourhoods and a
larger portion of the feasibility space will be explored. The search is expected to
be slower, since the SAT solver handles assumptions less efficiently than asser-
tions [18], but the quality of resulting solution is expected to be better, since the
search can explore a greater part of the feasibility space, especially so by variable
neighbourhood search and hill climbing.
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Alg. 1 depicts our implementation of LSSO. The algorithm receives four inputs. The
Boolean inputs VNS ,HC, and SPEC specify whether variable neighbourhood search,
hill climbing, and speculative search are to be used. All combinations are possible, ex-
cept that hill climbing requires speculative search. The input Nmax applies to variable
neighbourhood search. It specifies an upper bound on the number of consecutive neigh-
bourhood switches without finding a solution. If that bound is exceeded, the algorithm
terminates with the current solution. To effect variable neighbourhood search, the algo-
rithm uses a predefined list of neighbourhood generatorsN = [N0(µ),N1(µ) . . . ]. The
first generator N0(µ) is considered the default and is used most of the time. The others
are used to escape local minima.

Alg. 1 carries out iterated local search with Polosat as an oracle, where the ob-
servables are recommended to be set to the bits of the inputs of the objective function.
One can also replace the Polosat invocation by an ordinary SAT invocation.

4 LSSO Algorithms for the Cell Placement Problem

This section presents our LSSO-based placement algorithms. All the algorithms are
instantiations of Alg. 1 with different sets of parameters. The BV constraints are gener-
ated by translating the COP constraints, as discussed in Sect. 2.3. Each algorithm uses
some of the neighbourhood generators defined in Sect. 4.1.

The algorithms are presented in Sect. 4.2. None of the algorithms define the target
bit-vector explicitly, since they rely on local search instead of OBV solving. By default,
the algorithms use Polosat as the oracle, where the observables comprise all the bits
of the bit-vectors, representing the sizes of the nets, where the size of net n is given by
the following bit-vector term (for every intermediate term and the resulting term ‖n‖,
its width is set to the minimal possible width which prevents an overflow, where the
operators are zero-extended, whenever required):

‖n‖ =
(
max
c∈n

(ceast)−min
c∈n

(cwest)

)
+

(
max
c∈n

(cnorth)−min
c∈n

(csouth)

)

4.1 Neighbourhood Generators

4.1.1 Neighbourhood Generator N1. Let µ be a placement, that is, a model to the
bit-vector formula representing the feasibility constraints. The neighbourhood N1(µ)
is designed for a highly localized fast search at the possible expense of quality. To this
end, the constraints corresponding to N1(µ) force a decrease of the objective function
in a very constrained manner, so as to help the solver to come back quickly. N1(µ)
consists of all of legal placements, for which all the nets are no bigger and at least one
net is smaller than under µ, thus ensuring a lower cost. The constraints are:

( each net is no bigger︷ ︸︸ ︷∧
n∈I

(‖n‖ ≤ µ(‖n‖))
)∧ at least one net is smaller︷ ︸︸ ︷(∨

n∈I
(‖n‖ < µ(‖n‖)

)
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Algorithm 1 Local Search with SAT Oracle (LSSO)
1: procedure LOCALSEARCH(VNS = >,HC = >, SPEC = >,Nmax = 10)

Require: L . feasibility constraints
Require: N := [N0(µ),N1(µ) . . . ] . neighbourhood constraints generators
Require: J (x) . hill climbing constraints generator

B From now on, confine the search to the feasible space
2: solver.Assert(L)
3: current← solver.Sat() . find the initial solution
4: if ¬current then return None . the problem is unsatisfiable

B Loop initialization
5: best← current
6: stop← ⊥ . stopping condition
7: jump← ⊥ . indicates whether hill climbing should be attempted
8: i← 0 . current neighbourhood index
9: while ¬stop do

B Compute neighbourhood constraints
10: ifHC ∧ jump then . hill climbing is required
11: neighbourhood constraints := J (current)
12: else . hill climbing is not required
13: neighbourhood constraints := N [i](current)

B If the mode is speculative, constraints are assumptions; otherwise they are assertions
14: if SPEC then
15: assertions := []; assumptions := neighbourhood constraints
16: else
17: assertions := neighbourhood constraints; assumptions := []

B Search for the next solution
18: solver.Assert(assertions)
19: next← solver.Polosat(assumptions)
20: if next then . found a solution
21: current← next; i← 0; jump← ⊥
22: if current.cost < best.cost then best← current
23: continue

B B B Solution not found
B If we are in variable neighbourhood mode and the number of consecutive neighbour-

hood switches without a model has not exceeded the bound, move to next neighbourhood
24: if VNS ∧ (i < (Nmax − 1)) then
25: i← i+ 1
26: continue

B If we are in hill climbing mode, and have exhausted the bound on neighbourhood
switches without getting a model, and hill climbing has not already been attempted in this
iteration, attempt it in the next iteration

27: ifHC ∧ ¬jump then
28: jump← >
29: continue

B If we got here, we are stuck and need to terminate
30: stop← >
31: return best
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4.1.2 N2: a Family of Neighbourhood Generators. The N2 family is designed for
variable neighbourhood search. Each of its neighbourhoods strictly contains N1 and
allows the objective function to decrease in more ways. This implies higher quality so-
lutions at the expense of slower convergence. To define the N2 family, let α = ‖I‖ be
the number of the nets and assume α ≥ 3. For each permutation σ of [1 . . . α] and posi-
tive number 2 ≤ d < αwe define a neighbourhood functionN2[σ, d](µ) as follows: Let
nσ(1), . . . nσ(α) be the permuted sequence of the nets. Partition this sequence into dα/de
segments of size d (last segment could be shorter). The neighbourhoodN2[σ, d](µ) con-
sists of all of legal placements, for which the sum of the net sizes of each segment is
no bigger than under µ, and the sum of at least one segment is smaller. Note that this
ensures a cost lower than the placement under µ. By choosing different pairs 〈σ, d〉, one
may obtain different neighbourhoods. The constraints are:

each sum is no bigger︷ ︸︸ ︷
dα/de∧
k=1

(
min(kd,α)∑
i=(k−1)d+1

‖nσ(i)‖ ≤
min(kd,α)∑
i=(k−1)d+1

µ(‖nσ(i)‖)

)
∧


at least one sum is smaller︷ ︸︸ ︷

dα/de∨
k=1

(
min(kd,α)∑
i=(k−1)d+1

‖nσ(i)‖ <

min(kd,α)∑
i=(k−1)d+1

µ(‖nσ(i)‖)

)
4.1.3 Hill-climbing Neighbourhood Generator N3. N3 is designed to implement
hill climbing. We reason as follows: If the current placement is not a global minimum,
there exists a placement with at least one smaller net. Hence, to tunnel away from the
local minimum, we generate the following neighbourhood constraints:

at least one net is smaller︷ ︸︸ ︷∨
n∈I

∥∥n‖ < µ(‖n‖)

4.2 LSSO-based Algorithms for Placement

All the algorithms below are instantiations of Alg. 1; they use lists of neighbourhood
generators, composed of the ones defined in Sect. 4.1, where hill climbing is carried out
by using the neighbourhood generator N3. Due to project deadline constraints, we did
not explore other combinations.

1. single nbr nonspec
(a) parameters: VNS = ⊥,HC = ⊥, SPEC = ⊥, Nmax = 1.
(b) list of neighbourhood generators: [N1]
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2. many nbr nonspec
(a) parameters: VNS = >,HC = ⊥, SPEC = ⊥, Nmax = 10.
(b) list of neighbourhood generators: N2[σ, d](µ), enumerated by drawing σ and d

by a pseudo-random generator.
3. many env spec

(a) parameters: VNS = >,HC = ⊥, SPEC = >, Nmax = 10.
(b) list of neighbourhood generators: the first generator is N1 and the rest are

N2[σ, d](µ), enumerated by drawing σ and d by a pseudo-random generator.
4. many env spec hill clmb

(a) parameters: VNS = ⊥,HC = >, SPEC = >, Nmax = 1.
(b) list of neighbourhood generators: [N1]
(c) neighbourhood generator N3 is used for hill climbing.

5 Experimental Results

We study the performance of the following algorithms within our placement tool:

1. Algorithms which use Polosat as the satisfiability oracle:
(a) ls (Linear Search, described in Sect. 2.3.2, with Polosat as the oracle)
(b) single nbr nonspec (see Sect. 4.2)
(c) many nbr nonspec (see Sect. 4.2)
(d) many env spec (see Sect. 4.2)
(e) many env spec hill clmb (see Sect. 4.2)

2. Algorithms which use standard SAT solving as the satisfiability oracle:
(a) bs no polosat [19]: OBV-BS (see Sect. 2.3.2).
(b) ls no polosat: Linear Search with SAT as the oracle
(c) many env spec hill clmb no polosat:

many env spec hill clmb with SAT instead of Polosat (to study the
impact of disabling Polosat on LSSO, we chose
many env spec hill clmb, since, as we shall soon see, it outperforms
the other LSSO algorithms in a pairwise comparison).

3. virtual-best: represents the best result of the above algorithms per timeout.

We used an extensive set of 1200 proprietary industrial designs of various sizes and
complexities. The sizes of the grids (where a grid size is the width N multiplied by
the height M ) can be characterized as follows: a) Minimum size = 70; b) Maximum =
364000; c) Average ≈ 4643; d) Standard deviation ≈ 18829. We used machines with
32Gb of memory running Intelr Xeonr processors with 3Ghz CPU frequency.

We ran the algorithms for 600 seconds and measured the quality of the placement
at different time intervals. Fig. 2 shows our main results. For each algorithm and time
interval, Fig. 2 displays a score which represents the quality. The score is a real num-
ber between 0 and 1 inclusive, where the closer the score is to 1 the better. For each
algorithm and time interval, the score is computed as follows: we compute the average
value of the following score-per-instance: (the result of virtual-best in 600 sec.) / (the
result of the current algorithm within the current time interval). Our conclusions:
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First, when using SAT as the oracle, Linear Search (ls no polosat) outperforms
OBV-BS (bs no polosat), demonstrating that OBV-BS is not useful when the opti-
mization target is a complex arithmetic expression (rather than a vector of lexicograph-
ically ordered bits, where each bit is a result of a separate calculation as in [19]). Based
on this result, we preferred Linear Search over OBV-BS as the baseline algorithm.

Second, confirming the conclusion of [16], Polosat makes Linear Search sub-
stantially more efficient (compare ls to ls no polosat).

Third, and more importantly in the context of this work, our best novel LSSO algo-
rithm even without Polosat (many env spec hill clmb no polosat) is al-
most as efficient as Linear Search with Polosat (ls), the latter being the state-of-
the-art in solving placement [16]. Moreover, the best Polosat-based LSSO algorithm
(many env spec hill clmb) is significantly more efficient than both aforemen-
tioned algorithms. This result justifies the usage of both major components of our so-
lution: LSSO–the high-level local search on top a satisfiability oracle, presented in this
paper, and Polosat [16]–the low-level local search simulation with SAT.

Finally, the virtual best algorithm yields the absolutely best result, providing evi-
dence that development of different LSSO algorithms pays off.

Additionally, Table 1 shows a pairwise comparison between our four Polosat-
based LSSO algorithms. many env spec hill clmb outperforms the others.

Table 2 offers a fine-grained comparison between our best novel LSSO algorithm
many env spec hill clmb and the Polosat-based Local Search ls, the latter
being the state-of-the-art in solving placement [16]. The comparison is provided per
grid size category and for two different timeouts. LSSO improves the performance sig-
nificantly for every input size category for both timeouts. Comparing the results for the
two timeouts on the biggest instances shows that increasing the timeout makes the gap
between LSSO and ls more significant, given large grids.

Finally, Table 3 shows the unique contribution of each algorithm to the virtual best
in 600 sec. (we dismissed all the instances on which there was more than one best-
performing solver). Notably, each of the LSSO algorithms is a contributor. Surpris-
ingly, many nbr nonspec contributes more than many env spec hill clmb,
despite the latter algorithm outperforming the former in a pairwise comparison. A
possible explanation is that we ran many nbr nonspec with Polosat only, while
many env spec hill clmb was run twice with Polosat and SAT. Another sur-
prising result is the significant contribution of
many env spec hill clmb no polosat, second only to many nbr nonspec,
implying that a SAT-based LSSO algorithm should be part of any parallel portfolio.

many nbr nonspec single nbr nonspec many env spec
many env spec hill clmb (730 141 329) (813 253 134) (227 893 80)

many nbr nonspec (815 147 238) (344 170 686)
single nbr nonspec (130 280 790)

Table 1: Pairwise comparison between LSSO algorithms for the timeout of 600 sec. Each non-
empty cell (r, c) contains a comparison between Algorithm R in row r and Algorithm C in
column c. The value (w d l) in each non-empty cell is interpreted as follows: R outscored C on
w instances; there was a draw on d instances; C outscored R on l instances.
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Fig. 2: Comparing Algorithms Over Time

Grid size Timeout of 600 seconds Timeout of 300 seconds
ls is better Draw LSSO is better ls is better Draw LSSO is better

≤ 500 27 62 337 21 56 349
> 500 & ≤ 10000 57 74 551 57 91 534
> 10000 17 28 47 18 40 34

Table 2: Comparing the best Polosat-based LSSO algorithm
(many env spec hill clmb) to the Polosat-based Linear Search (ls), the latter
comprising the previous state-of-the-art.

6 Conclusion

We have presented a new methodology for solving NP-hard combinatorial optimization
problems, called Local Search with SAT Oracle (LSSO). Our approach can handle prob-
lems for which finding even one feasible solution is already NP-hard. LSSO applies lo-
cal search which uses a SAT solver or the SAT-based optimization algorithm Polosat
as an oracle. We have introduced a generic algorithm which integrates different local
search schemes within the LSSO framework. Furthermore, we have implemented our
approach in an industrial tool for solving the cell placement problem in VLSI and have
shown that our new LSSO approach makes the tool substantially more efficient. Our
tool has been successfully productized at Intel.

Algorithm Contribution Algorithm Contribution
many nbr nonspec 240 ls 33
many env spec hill clmb no polosat 181 many env spec 21
many env spec hill clmb 79 ls no polosat 12
single nbr nonspec 54 bs no polosat 8

Table 3: Unique contribution to the virtual best per algorithm (sorted by the contribution).
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23. R. Poler, J. Mula, and M. Dı̀az-Madroñero. Operations Research Problems: Statements and
Solutions. Springer, London, 2014.

24. S. Prestwich. Combining the scalability of local search with the pruning techniques of sys-
tematic search. Annals of Operations Research, 115:51–72, September 2002.

25. F. Rothlauf. Design of Modern Heuristics. Natural Computing Series. Springer, 2011.
26. O. Roussel and V. M. Manquinho. Pseudo-boolean and cardinality constraints. In A. Biere,

M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pages 695–733. IOS Press, 2009.

27. R. Sebastiani and S. Tomasi. Optimization in SMT with LA(Q) cost functions. In B. Gram-
lich, D. Miller, and U. Sattler, editors, Automated Reasoning - 6th International Joint Confer-
ence, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture
Notes in Computer Science, pages 484–498. Springer, 2012.

28. N. A. Sherwani. Algorithms for VLSI physical design automation. Kluwer, 3 edition, Novem-
ber 1998.

29. E.-G. Talbi. Metaheuristics: From Design to Implementation. Wiley Publishing, 2009.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

	Local Search with a SAT Oracle for Combinatorial Optimization
	1 Introduction
	2 Background
	2.1 Constraint Optimization Program (COP)
	2.2 The Cell Placement Problem
	2.2.1 Constraint Optimization Program for Cell Placement

	2.3 Solving COP with SAT
	2.3.1 Bit-vector Solving and SAT.
	2.3.2 Extending Bit-vector Solving to Optimization.

	2.4 Local Search Algorithms
	2.4.1 Basic Local Search Strategy.
	2.4.2 Neighbourhood Functions.
	2.4.3 Advanced Versions of Local Search


	3 Local Search with SAT Oracle (LSSO)
	4 LSSO Algorithms for the Cell Placement Problem
	4.1 Neighbourhood Generators
	4.1.1 Neighbourhood Generator
	4.1.2 N₂: a Family of Neighbourhood Generators
	4.1.3 Hill-climbing Neighbourhood Generator N₃.

	4.2 LSSO-based Algorithms for Placement

	5 Experimental Results
	6 Conclusion
	References


