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Abstract. AMulet 2.0 is a fully automatic tool for the verification of
integer multipliers using computer algebra. Our tool models multiplier
circuits given as and-inverter graphs as a set of polynomials and applies
preprocessing techniques based on elimination theory of Gröbner bases.
Finally it uses a polynomial reduction algorithm to verify the correctness
of the given circuit. AMulet 2.0 is a re-factorization and improved re-
implementation of our previous multiplier verification tool AMulet 1.0.

1 Introduction

Formal verification of arithmetic circuits is important to prevent issues like the
famous Pentium FDIV bug [28]. Up to now there have been many attempts to
verify these circuits, but even today the problem of fully automatic verification
of arithmetic circuits, and especially multipliers, is still considered to be hard.

Methods based on decision diagrams [6] rely on manual structural decomposi-
tion of the multiplier. Approaches based on satisfiability checking (SAT) are not
scalable [3]. Recently progress has been made using theorem provers [29]. How-
ever, the multipliers have to be given as SVL netlists, which relies on preservation
of hierarchical information.For flattened gate-level multipliers the currently most
successful technique uses algebraic reasoning [7, 15, 17, 25, 26]. In this line of
work the circuit is modeled as a set of polynomials and the specification is then
checked to be implied by the circuit polynomials. For non-experts Chap. 2 of [15]
might serve as introduction to bit-level verification using computer algebra.

In our approach [17] we apply a combination of SAT solving and computer
algebra. Certain parts of the multiplier, i.e., complex final stage adders that
are generate-and-propagate (GP) adders [27], are hard to verify using computer
algebra, but are easy to verify using SAT solvers [21]. Therefore we apply adder
substitution [17] and replace complex final stage adders by simple ripple-carry
(RC) adders. The equivalence of the adders is verified using SAT solvers. The
correctness of the simplified multiplier is shown using computer algebra [17].

This tool paper presents AMulet 2.0, a successor of AMulet 1.0 [17,19].
AMulet 2.0 reads multipliers given as and-inverter graphs (AIG) [22] and
fully automatically applies adder substitution and verifies the (simplified) circuit.
Furthermore, certificates can be generated in the Nullstellensatz proof format [16]
or in the practical algebraic calculus (PAC) [20] to validate the verification results.

? This work is supported by the LIT AI Lab funded by the State of Upper Austria.

c© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 357–364, 2021.
https://doi.org/10.1007/978-3-030-72013-1 19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_19&domain=pdf
http://orcid.org/0000-0002-5645-0292
http://orcid.org/0000-0001-7170-9242
https://doi.org/10.1007/978-3-030-72013-1_19


358 D. Kaufmann and A. Biere

AMulet 2.0 is a modular C++ re-implementation of AMulet 1.0 (while
AMulet 1.0 consists of a single C file). AMulet 2.0 is not only a stan-
dalone tool but also serves as a polynomial reasoning framework, i.e., parts can
easily be integrated into different workflows, cf. Sect. 4. AMulet 2.0 still pro-
vides the same functionality as AMulet 1.0, but with improved algorithms, cf.
Sect 5, based on the same theory [15,17]. In this paper we focus on novelties of
AMulet 2.0 and refer the reader to [19] for an introduction to AMulet 1.0.

2 Circuit Verification using Computer Algebra

AMulet 2.0 takes as input signed or unsigned integer multipliers C, given
as AIGs, with 2n input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and output bits
s0, . . . , s2n−1 ∈ {0, 1}. We denote the internal AIG nodes by l1, . . . , lk ∈ {0, 1}.
Let Z[X] = Z[a0, . . . , an−1, b0, . . . , bn−1, l1, . . . , lk, s0, . . . , s2n−1]. The multiplier
C is correct iff for all possible inputs ai, bi ∈ {0, 1} the specification L = 0 holds:

L = −
2n−1∑
i=0

2isi +

(n−1∑
i=0

2iai

)(n−1∑
i=0

2ibi

)
(1)

For signed multipliers the most significant bits s2n−1, an−1, and bn−1 deter-
mine the sign and the weights have to be negated, i.e., 22n−1 becomes −22n−1.

The semantics of each AIG node implies a polynomial relation, e.g., u = v∧¬w
implies −u + v − vw = 0. Let G(C) ⊆ Z[X] be the set of polynomials that
contains for each AIG node the corresponding polynomial relation. Additionally,
all variables x ∈ X are Boolean and we enforce this property by the set of
Boolean value constraints B(X) = {x(1− x) | x ∈ X} ⊆ Z[X]. The polynomials
in G(C) ∪ B(X) are ordered according to a lexicographic order, such that the
output variable of a gate is always greater than the inputs of the gate [23].

Let J(C) = 〈G(C) ∪B(X)〉 ⊆ Z[X] be the ideal generated by G(C) ∪B(X).
The circuit fulfills its specification if and only if we can derive that L ∈ J(C) [17].
We showed in [17] that G(C) ∪B(X) is a D-Gröbner basis [2] for J(C) ⊆ Z[X].
Thus, the correctness of the circuit can be established by reducing L by the
polynomials G(C) ∪B(X) and checking whether the result is zero.

However, simply reducing the specification by G(C) ∪ B(X) leads to large
intermediate results [24]. Hence, we eliminate variables in G(C) ∪ B(X) prior
to reduction to yield a more compact D-Gröbner basis [17], which boils down to
simple substitutions, but relies on the elimination theorem of Gröbner bases [9].

3 Usage

AMulet 2.0 is available at http://fmv.jku.at/amulet2 and is published as open
source under the MIT license. AMulet 2.0 relies on the AIGER library [5] and
the GMP library [10]. The AIGER library is provided together with the source
code of AMulet 2.0, the GMP library needs to be pre-installed by the user.
AMulet 2.0 is compiled executing “./configure.sh && make”.

http://fmv.jku.at/amulet2


AMulet 2.0 for Verifying Multiplier Circuits 359

In a complete workflow one should first apply adder substitution, using the
substitution mode of AMulet 2.0, to make sure that a potential complex final
stage adder is replaced by a simple RC adder. Afterwards, one of the two
modes, the verification mode or certification mode, can be applied to verify the
(simplified) multiplier, which we will call in the following rewritten multiplier. If
it is known that the final stage adder is not a complex GP adder, the substitution
step can be omitted. We present a complete demonstration for the unsigned 64-bit
multiplier <bpwtcl.aig>, which is included in the complementary material [14].
The output of AMulet 2.0 can be seen in the corresponding log-files that are
also included in the artifact.

Adder Substitution. First we apply adder substitution by running

./amulet -substitute bpwtcl.aig miter.cnf rewritten.aig [options]

If the multiplier computes multiplication of signed integers the option “-signed”
has to be involved, because the signedness is part of the circuit specification.

If adder substitution can be applied successfully, the generated miter is written
to <miter.cnf> and the rewritten multiplier to <rewritten.aig>. Otherwise,
the input multiplier will be written to <rewritten.aig> and a trivially unsat-
isfiable CNF is written to <miter.cnf>. The file <miter.cnf> has to be given
to a SAT solver, e.g. Kissat [4], which is then expected to return unsatisfiable.
The rewritten multiplier can be verified or certified using AMulet 2.0.

Verification. Verification is executed by

./amulet -verify rewritten.aig [options]

As for adder substitution, one has to invoke the option “-signed” for signed mul-
tipliers. Furthermore, the option “-no-counter-examples” is available, which
turns off generation and saving of counter examples in <rewritten.cex>, in the
case when the multiplier in <rewritten.aig> is incorrect.

Certification. Certification is applied using

./amulet -certify rewritten.aig out.pol out.prf out.spc [options]

In this mode, AMulet 2.0 verifies the multiplier and automatically gener-
ates proof certificates, which can be checked by corresponding proof checkers.
AMulet 2.0 supports two proof formats, Nullstellensatz proofs [1,16] and PAC
proofs [20] based on the polynomial calculus [8]. The default proof format is
the Nullstellensatz proof, because it generates smaller proof files and is faster to
check. Proofs in the PAC format can be generated using the option “-pac”. All
options of the verification mode are available too.

The proofs are stored in the provided files <out.pol>, <out.prf>, and
<out.spc>. The file <out.pol> contains the gate constraints, the second file
<out.prf> the core proof in the selected proof format and the third file <out.spc>
the specification of the multiplier. The generated proofs can be given to the
proof checkers Nuss-Checker [16] for Nullstellensatz proofs or to the proof
checkers Pacheck [20], or Pastèque [20] for PAC proofs.
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Fig. 1. Architecture of AMulet 2.0.

4 AMulet 2.0

In this section we present the architecture of AMulet 2.0 and discuss novel
optimizations. The design of AMulet 2.0 is shown in Fig. 1. In contrast to
AMulet 1.0, which consists of one single C file, AMulet 2.0 is split into
components, which also allows to integrate only parts, e.g., the polynomial library
or the polynomial solver, in different workflows, cf. the provided demos in the
artifact [14]. AMulet 2.0 is implemented in C++11 and consists of around
6 000 lines of code. It relies on the AIGER library [5] to process the given AIG
and the GMP library [10] to represent large integers.

The mode of AMulet 2.0 is triggered by the command line input, cf. Sect. 3.
In substitution mode, AMulet 2.0 parses the AIG, allocates the internal
gate structure, and invokes the substitution engine for adder substitution. In
verification mode, AMulet 2.0 reads the AIG and initializes the gate structure.
Afterwards, the circuit is verified in the polynomial solver using polynomial
operations of the polynomial library. In certification mode proofs are generated in
addition. In the following we present the individual components of AMulet 2.0.

Parser Module AMulet 2.0 checks whether the given AIG circuit fulfills
the requirements described in Sect. 2, i.e., the AIG circuit has an even number
of inputs and an equal number of outputs. The AIG module wraps functions of
the external AIGER library that are needed to process the input file.

Gate Library After parsing we allocate a gate for each AIG node, which
includes structural information, such as dependencies, or whether the gate rep-
resents an input/output or an XOR-gate. Furthermore, each gate is linked to
a unique variable. If the given AIG is verified or certified, AMulet 2.0 also
initializes the gate constraints and creates the specification polynomial L ∈ Z[X].

Substitution Engine In substitution mode, AMulet 2.0 applies heuristic
pattern matching to identify GP adders [17]. In AMulet 2.0 we enhanced
the identification heuristics and cover special cases that are not considered in
AMulet 1.0. Thus, AMulet 2.0 is able to detect more GP adders than
AMulet 1.0. After a positive GP pattern match, AMulet 2.0 generates an
equivalent RC adder and replaces the GP adder by the RC adder. A bit-level
miter is generated in CNF to verify the equivalence of the adders. The rewritten
multiplier and the CNF miter are printed to the provided output files.
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Polynomial Solver The polynomial solver is based on the solving engine
of AMulet 1.0 [19] and is used to verify or certify the given multiplier. In a
nutshell, the polynomial solver first applies preprocessing by eliminating selected
variables. Afterwards, the remaining variables are ordered into column-wise
slices, such that we can apply our incremental verification algorithm [18], where
we split the specification L into multiple polynomials and verify the multiplier by
deriving the correctness of each slice using polynomial reduction. The necessary
polynomial operations are implemented in the Polynomial Library.

In AMulet 2.0 we eliminate variables before ordering them, while in
AMulet 1.0 it is the other way around. We eliminate all internal gates of the
XOR-structures and all single-parent nodes in the AIG. Thus, fewer variables
are considered for ordering, which improves computation time of AMulet 2.0.

Furthermore, we include a novel XOR-based slicing approach in AMulet 2.0,
which relies on the fact that many multiplier architectures use XOR-skeletons to
compute the output bits. We identify these skeletons and assign all nodes of a
skeleton to the same slice. Gates occurring between XOR-skeletons are assigned
to the smaller (less significant) slice. Hence, after two iterations all slices are
fixed, which improves slicing compared to AMulet 1.0. All variables that are
not assigned to slices, e.g., gates used to compute the partial products in Booth
encoding [27], are eliminated from the gate structure.

In few cases, where we cannot identify XOR-skeletons, e.g., in multipliers con-
taining a carry-select adder, we fall back on the slicing approach of AMulet 1.0:
We slice based on input cones and eagerly move gates between slices to reduce
the number of carries, by iterating multiple times over the variables.

After assigning gates to slices, AMulet 2.0 reduces the slice-wise specifica-
tions incrementally by the sliced gate constraints and checks whether the final
result is zero, following the implementation of AMulet 1.0. If the final remain-
der is not zero, AMulet 2.0 detects counter examples, i.e., input assignments
for which the multiplier circuit computes an incorrect result.

In certification mode, AMulet 2.0 tracks polynomial operations in the
selected proof format, i.e., Nullstellensatz or PAC, and prints gate constraints,
the generated proof, and the specification L to the provided files.

Polynomial Library The polynomial library implements the arithmetic oper-
ations for addition and multiplication of polynomials (by constants), and division
by terms. Since all variables represent Boolean values, we always reduce expo-
nents greater than one automatically to one, i.e., we assume x · x = x.

Polynomials are represented as linked lists of monomials. Each monomial
consists of a coefficient, represented using the GMP library, and a term. Terms
are linked lists of variables, which are internally shared using a hash table.

In AMulet 1.0 we do not share monomials and make hard copies in the
few occasions when a monomial needs to be copied. This has the benefit that
we can simply modify coefficients of the monomials, e.g., during addition. In
our experiments we observed that allocating new GMP objects is actually quite
time consuming, and therefore we now share monomials in AMulet 2.0, using
reference counting, which decreases verification time by a factor of two.
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Fig. 2. Verification of AOKI multipliers (left) and of large multipliers (right), in seconds.

5 Evaluation

In our experiments we use an Intel Xeon E5-2620 v4 CPU at 2.10 GHz (with turbo-
mode disabled) with a memory limit of 128 GB. The time is listed in seconds
(wall-clock time). We compare AMulet 2.0 to our previous tool AMulet 1.0
and to the most recent related work RevSCA, RevSCA-2.0 [25] and ABC-based
work of [7] on multiplier verification using computer algebra, where circuits are
given as AIGs. The tool of [26] is not yet available. We consider two versions
of AMulet 1.0: (i) AMulet 1.0 as published in [17], (ii) AMulet 1.5 a
slightly improved version [13] with new heuristics for detecting GP adders. The
experimental data is included in the artifact [14].

In our first experiment we consider the comprehensive AOKI benchmark
set [12], which provides 384 signed and unsigned integer multiplier architectures
up to input bit-width 64, also covering Booth encoding. We consider all 384
architectures of bit-width 64. The time limit is set to 300 seconds. The results
are shown on the left side of Fig. 2, where it can be seen that AMulet 2.0
is the only tool that is able to verify the complete benchmark set. RevSCA
only supports verification of unsigned integers. ABC-based work of [7] uses an
optimization, which only works for simple multiplier architectures. Enabling this
optimization on the more involved AOKI benchmarks leads to incompleteness.
Without enabling it [7] either produces a segmentation fault or exceeds the time
limit. Thus there are no results for [7] on the left side of Fig. 2.

In our second experiment we generate benchmarks of simple multipliers up
to input size 2 048, using scripts by Arist Kojevnikov [11]. The time limit is set
to 86 400 seconds (24 h) and the results are shown on the right side of Fig. 2. It
can be seen that AMulet 2.0 outperforms all competitor tools and is an order
of magnitude faster on large multiplier circuits.

6 Conclusion

We presented AMulet 2.0, a fully automatic tool for verifying multiplier circuits
given as AIGs. AMulet 2.0 is a re-factorization and re-implementation of our
previous verification tool AMulet 1.0 [17, 19] and successfully verifies a large
set of multiplier architectures. In the future we want to directly integrate a SAT
solver into AMulet 2.0 and provide language bindings, e.g. for Python.
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