Skip to main content

The Use of Synchrotron-Based X-ray Microtomography for the Pore Network Quantitative and Computational Fluid Dynamics Experiments on Porous Carbonate Rocks

  • Conference paper
  • First Online:
Synchrotron Radiation Science and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 220))

  • 663 Accesses

Abstract

In carbonates rocks, the textural properties of the pore network (e.g., pores size distribution, pores shape, pores connectivity and tortuosity), and therefore the porosity and permeability, are highly variable due to primary depositional conditions, diagenesis processes and deformation. For this reason, the quantitative characterisation of carbonate reservoirs, in terms of porosity and permeability, is challenging. This study presents a methodology for investigating the pore network in carbonate rocks using high-resolution synchrotron X-ray computed microtomography (SR micro-CT). This could be combined with computational fluid dynamics (CFD) simulations for obtaining information about fluid transport and calculated the permeability of the samples. Using key samples from rocks corresponding to porous and tight carbonates exposed in south and central Italy, the methodology has been applied to three different study cases: rapid characterisation of porous carbonate reservoirs (Abruzzo, central Italy), quantitative analysis of deformed porous carbonates (Sicily, south Italy), and pore-scale assessment of fractures hosted in tight carbonates (Murge, south Italy). Some samples may contain deformation structures (i.e. deformation bands, fractures) or may be altered by diagenesis (e.g., cementation, dissolution). The pore space can be filled by a single fluid phase (i.e. air) or multiple (i.e. bitumen and trapped gas). The selected rock samples were scanned by means of phase-contrast synchrotron SR micro-CT at the SYRMEP beamline of the Elettra synchrotron in Trieste (Italy). The tomographic images were acquired using a multi-resolution approach with a pixel size variable in the range of 1.0–2.4 μm depending on the grain size distribution of the rock sample. After reconstruction, images were filtered and segmented for characterising the pore phase. The resulting images were used for both performing a quantitative pore network analysis of the studied rock samples and CFD experiments (multiple relaxation times lattice-Boltzmann method, MRT-LBM) using the open source software PALABOS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A.L Dullien, Porous Media: Fluid Transport and Pore Structure (Academic Press, 2012)

    Google Scholar 

  2. F.J. Lucia, Carbonate Reservoir Characterization: An Integrated Approach (Springer Science & Business Media, 2007)

    Google Scholar 

  3. J Kozeny, Uber Kapillare Leitung des Wassers im Boden (Aufstieg Versikerung hnd Anwendung auf die Bemasserung (Sitzungsber, Akad Wiss, 1927)

    Google Scholar 

  4. R. Nelson, Geologic Analysis of Naturally Fractured Reservoirs (Elsevier, 2001)

    Google Scholar 

  5. E. Panza, F. Agosta, A. Rustichelli et al., Fracture stratigraphy and fluid flow properties of shallow-water, tight carbonates: the case study of the Murge Plateau (southern Italy). Mar. Pet. Geol. 73 (2016). https://doi.org/10.1016/j.marpetgeo.2016.03.022

  6. L. Massaro, A. Corradetti, F. Vinci et al., Multiscale fracture analysis in a reservoir-scale carbonate platform exposure (sorrento peninsula, Italy): implications for fluid flow. Geofluids 2018 (2018)

    Google Scholar 

  7. M. Zambrano, E. Tondi, I. Korneva et al., Fracture properties analysis and discrete fracture network modelling of faulted tight limestones, Murge Plateau, Italy. Ital. J. Geosci. 135, 55–67 (2016)

    Article  Google Scholar 

  8. J.N. Mendez, Q. Jin, M. González et al., Fracture characterization and modeling of karsted carbonate reservoirs: a case study in Tahe oilfield, Tarim Basin (western China). Mar. Pet. Geol. 112, 104104 (2020)

    Article  Google Scholar 

  9. M.Zambrano, A.D. Pitts, A. Salama, et al., Analysis of fracture roughness control on permeability using SFM and fluid flow simulations: implications for carbonate reservoir characterization. Geofluids 2019 (2019). https://doi.org/10.1155/2019/4132386

  10. S.R. Ogilvie, E. Isakov, C.W. Taylor, P.W.J. Glover, Characterization of Rough-Walled Fractures in Crystalline Rocks, vol. 214, Special Publications (Geological Society, London, 2003), pp. 125–141

    Google Scholar 

  11. S.R. Ogilvie, E. Isakov, P.W.J. Glover, Fluid flow through rough fractures in rocks. II: a new matching model for rough rock fractures. Earth Planet. Sci. Lett. 241, 454–465 (2006)

    Article  ADS  Google Scholar 

  12. M.J. Blunt, B. Bijeljic, H. Dong et al., Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  ADS  Google Scholar 

  13. A. Cilona, D.R. Faulkner, E. Tondi et al., The effects of rock heterogeneity on compaction localization in porous carbonates. J. Struct. Geol. 67, 75–93 (2014)

    Article  ADS  Google Scholar 

  14. Y. Ji, S.A. Hall, P. Baud, T. Wong, Characterization of pore structure and strain localization in Majella limestone by X-ray computed tomography and digital image correlation. Geophys. J. Int. 200, 701–719 (2015)

    Article  ADS  Google Scholar 

  15. F. Arzilli, A. Cilona, L. Mancini, E. Tondi, Using synchrotron X-ray microtomography to characterize the pore network of reservoir rocks: a case study on carbonates. Adv. Water Resour. 95, 254–263 (2016)

    Article  ADS  Google Scholar 

  16. M. Zambrano, E. Tondi, L. Mancini et al., 3D Pore-network quantitative analysis in deformed carbonate grainstones. Mar. Pet. Geol. 82 (2017). https://doi.org/10.1016/j.marpetgeo.2017.02.001

  17. P. Baud, U. Exner, M. Lommatzsch et al., Mechanical behavior, failure mode, and transport properties in a porous carbonate. J. Geophys. Res.: Solid Earth 122, 7363–7387 (2017)

    Article  ADS  Google Scholar 

  18. M. Voltolini, D. Zandomeneghi, L. Mancini, M. Polacci, Texture analysis of volcanic rock samples: quantitative study of crystals and vesicles shape preferred orientation from X-ray microtomography data. J. Volcanol. Geoth. Res. 202, 83–95 (2011)

    Article  ADS  Google Scholar 

  19. H. Riegel, M. Zambrano, F. Balsamo et al., Petrophysical properties and microstructural analysis of faulted heterolithic packages: a case study from Miocene turbidite successions, Italy. Geofluids 2019 (2019). https://doi.org/10.1155/2019/9582359

  20. H.L. Ramandi, R.T. Armstrong, P. Mostaghimi, Micro-CT image calibration to improve fracture aperture measurement. Case Stud. Nondestr. Test. Eval. 6, 4–13 (2016). https://doi.org/10.1016/j.csndt.2016.03.001

  21. G. Pratesi, S. Caporali, F. Loglio et al., Quantitative study of porosity and pore features in moldavites by means of X-ray micro-CT. Materials 7, 3319–3336 (2014)

    Article  ADS  Google Scholar 

  22. E. Stavropoulou, E. Andò, A. Tengattini et al., Liquid water uptake in unconfined Callovo Oxfordian clay-rock studied with neutron and X-ray imaging. Acta Geotech. 14, 19–33 (2019)

    Article  Google Scholar 

  23. F.C. de Beer, M.F. Middleton, Neutron radiography imaging, porosity and permeability in porous rocks. S. Afr. J. Geol. 109, 541–550 (2006)

    Article  Google Scholar 

  24. B. Schillinger, E. Calzada, C. Eulenkamp et al., Dehydration of moulding sand in simulated casting process examined with neutron radiography. Nucl. Instrum. Methods Phys. Res., Sect. A 651, 312–314 (2011)

    Article  ADS  Google Scholar 

  25. S.A. Hall, Characterization of fluid flow in a shear band in porous rock using neutron radiography. Geophys. Res. Lett. 40, 2613–2618 (2013)

    Article  ADS  Google Scholar 

  26. M. Zambrano, F. Hameed, K. Anders et al., Implementation of dynamic neutron radiography and integrated X-ray and neutron tomography in porous carbonate reservoir rocks. Front. Earth Sci. 7 (2019). https://doi.org/10.3389/feart.2019.00329

  27. W. Degruyter, A. Burgisser, O. Bachmann, O. Malaspinas, Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices. Geosphere 6, 470–481 (2010)

    Article  ADS  Google Scholar 

  28. M. Zambrano, E. Tondi, L. Mancini et al., Fluid flow simulation and permeability computation in deformed porous carbonate grainstones. Adv. Water Resour. 115 (2018). https://doi.org/10.1016/j.advwatres.2018.02.016

  29. E. Gallucci, K. Scrivener, A. Groso et al., 3D experimental investigation of the microstructure of cement pastes using synchrotron X-ray microtomography (μCT). Cem. Concr. Res. 37, 360–368 (2007)

    Article  Google Scholar 

  30. Í.B. da Silva, X-ray Computed Microtomography technique applied for cementitious materials: a review. Micron 107, 1–8 (2018)

    Article  Google Scholar 

  31. V. Cnudde, J.P. Cnudde, C. Dupuis, P.J.S. Jacobs, X-ray micro-CT used for the localization of water repellents and consolidants inside natural building stones. Mater. Charact. 53, 259–271 (2004)

    Article  Google Scholar 

  32. F. Hameed, B. Schillinger, A. Rohatsch et al., Investigations of stone consolidants by neutron imaging. Nucl. Instrum. Methods Phys. Res., Sect. A 605, 150–153 (2009)

    Article  ADS  Google Scholar 

  33. F. Hameed, A. Rohatsch, J. Weber et al., Investigation of Calcareous Arenites From St. Stephan’s Cathedral (NIST, Vienna Gaithersburg, MD, 2006)

    Google Scholar 

  34. E. Possenti, C. Colombo, C. Conti et al., Consolidation of building materials with a phosphate-based treatment: Effects on the microstructure and on the 3D pore network. Mater. Charact. 154, 315–324 (2019)

    Article  Google Scholar 

  35. A. du Plessis, W.P. Boshoff, A review of X-ray computed tomography of concrete and asphalt construction materials. Constr. Build. Mater. 199, 637–651 (2019)

    Article  Google Scholar 

  36. D.S. Ebel, M.L. Rivers, Meteorite 3-D synchrotron microtomography: methods and applications. Meteorit. Planet. Sci. 42, 1627–1646 (2007)

    Article  ADS  Google Scholar 

  37. H. Liu, T. Xiao, H. Xie et al., Nondestructive material characterization of meteorites with synchrotron-based high energy X-ray phase micro-computed tomography. J. Phys. D Appl. Phys. 50, 055301 (2017)

    Article  ADS  Google Scholar 

  38. N. Sodini, D. Dreossi, A. Giordano et al., Comparison of different experimental approaches in the tomographic analysis of ancient violins. J. Cult. Herit. 27, S88–S92 (2017)

    Article  Google Scholar 

  39. A. Fedrigo, M. Strobl, A.R. Williams et al., Neutron imaging study of ‘pattern-welded’ swords from the Viking Age. Archaeol. Anthropol. Sci. 10, 1249–1263 (2018)

    Article  Google Scholar 

  40. F. Bernardini, C. Tuniz, F. Zanini, X-ray computed microtomography for paleoanthropology, archaeology, and cultural heritage, in Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage (Elsevier, 2019) pp. 25–45

    Google Scholar 

  41. B. Schillinger, A. Beaudet, A. Fedrigo et al., Neutron imaging in cultural heritage research at the FRM II reactor of the Heinz Maier-Leibnitz center. J. Imag. 4, 22 (2018)

    Article  Google Scholar 

  42. M. Polacci, F. Arzilli, G. la Spina et al., Crystallisation in basaltic magmas revealed via in situ 4D synchrotron X-ray microtomography. Sci. Rep. 8, 1–13 (2018)

    Article  Google Scholar 

  43. F. Arzilli, L. Mancini, M. Voltolini et al., Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms. Lithos 216, 93–105 (2015)

    Article  ADS  Google Scholar 

  44. G. Lanzafame, C. Ferlito, S. Donato, Combining chemical and X-ray microtomography investigations on crustal xenoliths at Mount Etna: evidence of volcanic gas fluxing. Ann. Geophys. 61, 672 (2019)

    Google Scholar 

  45. A. Viani, G. Lanzafame, D. Chateigner et al., Microstructural evolution and texture analysis of magnesium phosphate cement. J. Am. Ceram. Soc. 103, 1414–1424 (2020)

    Article  Google Scholar 

  46. G. Lanzafame, G. Iezzi, L. Mancini et al., Solidification and turbulence (non-laminar) during magma ascent: insights from 2D and 3D analyses of bubbles and minerals in an Etnean dyke. J. Petrol. 58, 1511–1533 (2017)

    Article  ADS  Google Scholar 

  47. J. Dewanckele, T. de Kock, M.A. Boone et al., 4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT. Sci. Total Environ. 416, 436–448 (2012)

    Article  ADS  Google Scholar 

  48. J.P. Mathews, Q.P. Campbell, H. Xu, P. Halleck, A review of the application of X-ray computed tomography to the study of coal. Fuel 209, 10–24 (2017)

    Article  Google Scholar 

  49. T. Rougelot, N. Burlion, D. Bernard, F. Skoczylas, About microcracking due to leaching in cementitious composites: X-ray microtomography description and numerical approach. Cem. Concr. Res. 40, 271–283 (2010)

    Article  Google Scholar 

  50. K.Y. Kim, T.S. Yun, K.P. Park, Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography. Cem. Concr. Res. 50, 34–40 (2013)

    Article  Google Scholar 

  51. F. Agosta, M. Alessandroni, E. Tondi, A. Aydin, Oblique normal faulting along the northern edge of the Majella Anticline, central Italy: inferences on hydrocarbon migration and accumulation. J. Struct. Geol. 31, 674–690 (2009)

    Article  ADS  Google Scholar 

  52. A. Rustichelli, E. Tondi, F. Agosta et al., Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates (Bolognano formation, Majella Mountain, Italy). J. Struct. Geol. 37, 181–199 (2012)

    Article  ADS  Google Scholar 

  53. A. Rustichelli, E. Tondi, F. Agosta et al., Sedimentologic and diagenetic controls on pore-network characteristics of Oligocene-Miocene ramp carbonates (Majella Mountain, central Italy). AAPG Bull. 97, 487–524 (2013)

    Article  Google Scholar 

  54. T. Volatili, M. Zambrano, A. Cilona et al., From fracture analysis to flow simulations in fractured carbonates: the case study of the Roman Valley Quarry (Majella Mountain, Italy). Mari. Petrol. Geol. 100 (2019). https://doi.org/10.1016/j.marpetgeo.2018.10.040

  55. E. Panza, E. Sessa, F. Agosta, M. Giorgioni, Discrete fracture network modelling of a hydrocarbon-bearing, oblique-slip fault zone: Inferences on fault-controlled fluid storage and migration properties of carbonate fault damage zones. Mar. Pet. Geol. 89, 263–279 (2018)

    Article  Google Scholar 

  56. V. Romano, S. Bigi, F. Carnevale, et al., Hydraulic characterization of a fault zone from fracture distribution. J. Struct. Geol., p. 104036 (2020)

    Google Scholar 

  57. F. Agosta, M. Alessandroni, M. Antonellini et al., From fractures to flow: a field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics 490, 197–213 (2010)

    Article  ADS  Google Scholar 

  58. M. Antonellini, A. Cilona, E. Tondi et al., Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy). Mar. Pet. Geol. 55 (2014). https://doi.org/10.1016/j.marpetgeo.2013.12.003

  59. E. Tondi, A. Rustichelli, A. Cilona et al., Hydraulic properties of fault zones in porous carbonates, examples from central and southern Italy. Italian J. Geosci. 135, 68–79 (2016)

    Article  Google Scholar 

  60. J. Latt, O. Malaspinas, D. Kontaxakis et al., Palabos: parallel Lattice Boltzmann solver. Comput. Math. Appl (2020). https://doi.org/10.1016/j.camwa.2020.03.022

  61. E. Panza, F. Agosta, A. Rustichelli et al., Meso-to-microscale fracture porosity in tight limestones, results of an integrated field and laboratory study. Mar. Pet. Geol. 103, 581–595 (2019)

    Article  Google Scholar 

  62. I. Korneva, E. Tondi, F. Agosta et al., Structural properties of fractured and faulted Cretaceous platform carbonates, Murge Plateau (southern Italy). Mar. Pet. Geol. 57, 312–326 (2014)

    Article  Google Scholar 

  63. G. Tromba, R. Longo, A. Abrami et al., The SYRMEP beamline of Elettra: clinical mammography and bio‐medical Applicationsm, in AIP Conference Proceedings (American Institute of Physics), pp. 18–23 (2010)

    Google Scholar 

  64. P. Cloetens, R. Barrett, J. Baruchel et al., Phase objects in synchrotron radiation hard x-ray imaging. J. Phys. D Appl. Phys. 29, 133 (1996)

    Article  ADS  Google Scholar 

  65. D.R. Baker, L. Mancini, M. Polacci et al., An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks. Lithos 148, 262–276 (2012)

    Article  ADS  Google Scholar 

  66. F. Brun, S. Pacilè, A. Accardo et al., Enhanced and flexible software tools for X-ray computed tomography at the Italian synchrotron radiation facility Elettra. Fund. Inform. 141, 233–243 (2015)

    MathSciNet  MATH  Google Scholar 

  67. W.J. Palenstijn, K.J. Batenburg, J. Sijbers, Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs). J. Struct. Biol. 176, 250–253 (2011)

    Article  Google Scholar 

  68. D. Gürsoy, F. de Carlo, X. Xiao, C. Jacobsen, TomoPy: a framework for the analysis of synchrotron tomographic data. J. Synchrotron Radiat. 21, 1188–1193 (2014)

    Article  Google Scholar 

  69. D. Paganin, S.C. Mayo, T.E. Gureyev et al., Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002)

    Article  MathSciNet  Google Scholar 

  70. F. Brun, L. Mancini, P. Kasae et al., Pore3D: a software library for quantitative analysis of porous media. Nucl. Instrum. Methods Phys. Res., Sect. A 615, 326–332 (2010)

    Article  ADS  Google Scholar 

  71. C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271). IEEE, pp. 839–846 (1998)

    Google Scholar 

  72. J.A. Hartigan, M.A. Wong, Algorithm AS 136: a k-means clustering algorithm. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 28, 100–108 (1979)

    MATH  Google Scholar 

  73. J.A. Hartigan, Clustering Algorithms (Wiley, New York, NY, 1975)

    Google Scholar 

  74. J. Schindelin, I. Arganda-Carreras, E. Frise et al., Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012)

    Article  Google Scholar 

  75. D. d’Humieres, Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. London, Ser. A 360, 437–451 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. R.P. Sekti, 3-D Stratigraphy and Fracture Characterization in Late Cretaceous Carbonates (Madonna della Mazza Italy, 2010)

    Google Scholar 

  77. P. Marchesini, Visualization and quantification of fluid dynamics in fractured carbonates using 4D ground penetrating radar (4D GPR) (2015)

    Google Scholar 

  78. E. Tondi, Nucleation, development and petrophysical properties of faults in carbonate grainstones: evidence from the San Vito Lo Capo peninsula (Sicily, Italy). J. Struct. Geol. 29, 614–628 (2007)

    Article  ADS  Google Scholar 

  79. V. Vajdova, P. Baud, L. Wu, T. Wong, Micromechanics of inelastic compaction in two allochemical limestones. J. Struct. Geol. 43, 100–117 (2012)

    Article  ADS  Google Scholar 

  80. D.T. Snow, A parallel plate model of fractured permeable media. Ph.D. Thesis, University of California (1965)

    Google Scholar 

  81. M. Zambrano, T. Volatili, L. Mancini, A. Pitts, M. Giorgioni, E. Tondi, Pore-scale dual-porosity and dual-permeability modeling in an exposed multi-facies porous carbonate reservoir. Marine Petrol. Geol. 128, 105004 (2021)

    Google Scholar 

Download references

Acknowledgements

We acknowledge Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities and the use of the software Pore3D. We thank Gabriele Lanzafame (now at University of Catania, Italy), and Fabio Arzilli (now at Manchester University, UK) for assistance in using beamline SYRMEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miller Zambrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zambrano, M., Mancini, L., Tondi, E. (2021). The Use of Synchrotron-Based X-ray Microtomography for the Pore Network Quantitative and Computational Fluid Dynamics Experiments on Porous Carbonate Rocks. In: Di Cicco, A., Giuli, G., Trapananti, A. (eds) Synchrotron Radiation Science and Applications. Springer Proceedings in Physics, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-030-72005-6_16

Download citation

Publish with us

Policies and ethics