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Abstract. Knaster-Tarski’s theorem, characterising the greatest fix-
point of a monotone function over a complete lattice as the largest post-
fixpoint, naturally leads to the so-called coinduction proof principle for
showing that some element is below the greatest fixpoint (e.g., for provid-
ing bisimilarity witnesses). The dual principle, used for showing that an
element is above the least fixpoint, is related to inductive invariants. In
this paper we provide proof rules which are similar in spirit but for show-
ing that an element is above the greatest fixpoint or, dually, below the
least fixpoint. The theory is developed for non-expansive monotone func-
tions on suitable lattices of the form MY , where Y is a finite set and M
an MV-algebra, and it is based on the construction of (finitary) approx-
imations of the original functions. We show that our theory applies to a
wide range of examples, including termination probabilities, behavioural
distances for probabilistic automata and bisimilarity. Moreover it allows
us to determine original algorithms for solving simple stochastic games.

1 Introduction

Fixpoints are ubiquitous in computer science as they allow to provide a meaning
to inductive and coinductive definitions (see, e.g., [26,23]). A monotone function
f : L → L over a complete lattice (L,v), by Knaster-Tarski’s theorem [28],
admits a least fixpoint µf and greatest fixpoint νf which are characterised as the
least pre-fixpoint and the greatest post-fixpoint, respectively. This immediately
gives well-known proof principles for showing that a lattice element l ∈ L is
below νf or above µf

l v f(l)

l v νf
f(l) v l
µf v l

On the other hand, showing that a given element l is above νf or below µf
is more difficult. One can think of using the characterisation of least and largest
fixpoints via Kleene’s iteration. E.g., the largest fixpoint is the least element
of the (possibly transfinite) descending chain obtained by iterating f from >.
Then showing that f i(>) v l for some i, one concludes that νf v l. This proof
principle is related to the notion of ranking functions. However, this is a less
satisfying notion of witness since f has to be applied i times, and this can be
inefficient or unfeasible when i is an infinite ordinal.
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The aim of this paper is to present an alternative proof rule for this purpose
for functions over lattices of the form L = MY where Y is a finite set and M
is an MV-chain, i.e., a totally ordered complete lattice endowed with suitable
operations of sum and complement. This allows us to capture several exam-
ples, ranging from ordinary relations, for dealing with bisimilarity, behavioural
metrics, termination probabilities and simple stochastic games.

Assume f : MY → MY monotone and consider the question of proving that
some fixpoint a : Y → M is the largest fixpoint νf . The idea is to show that
there is no “slack” or “wiggle room” in the fixpoint a that would allow us to
further increase it. This is done by associating with every a : Y →M a function
f#a on 2Y whose greatest fixpoint gives us the elements of Y where we have
a potential for increasing a by adding a constant. If no such potential exists,
i.e. νf#a is empty, we conclude that a is νf . A similar function fa# (specifying
decrease instead of increase) exists for the case of least fixpoints. Note that the
premise is νfa# = ∅, i.e. the witness remains coinductive. The proof rules are:

f(a) = a νf#a = ∅
νf = a

f(a) = a νfa# = ∅
µf = a

For applying the rule we compute a greatest fixpoint on 2Y , which is finite,
instead of working on the potentially infinite MY . The rule does not work for
all monotone functions f : MY → MY , but we show that whenever f is non-
expansive the rule is valid. Actually, it is not only sound, but also reversible, i.e.,
if a = νf then νf#a = ∅, providing an if-and-only-if characterisation.

Quite interestingly, under the same assumptions on f , using a restricted
function f∗a , the rule can be used, more generally, when a is just a pre-fixpoint
(f(a) v a) and it allows to conclude that νf v a. A dual result holds for post-
fixpoints in the case of least fixpoints.

f(a) v a νf∗a = ∅
νf v a

a v f(a) νfa∗ = ∅
a v µf

As already mentioned, the theory above applies to many interesting scenarios:
witnesses for non-bisimilarity, algorithms for simple stochastic games [11] and
lower bounds for termination probabilities and behavioural metrics in the setting
of probabilistic systems [1] and probabilistic automata [2]. In particular we were
inspired by, and generalise, the self-closed relations of Fu [16], also used in [2].

Motivating Example. Consider a Markov chain (S, T, η) with a finite set of states
S, where T ⊆ S are the terminal states and every state s ∈ S\T is associated
with a probability distribution η(s) ∈ D(S).3 Intuitively, η(s)(s′) denotes the
probability of state s choosing s′ as its successor. Assume that, given a fixed
state s ∈ S, we want to determine the termination probability of s, i.e. the
probability of reaching any terminal state from s. As a concrete example, take
the Markov chain given in Fig. 1, where u is the only terminal state.

3 D(S) is the set of all maps p : S → [0, 1] such that
∑
s∈S p(s) = 1.
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T : [0, 1]S → [0, 1]S

T (t)(s) =

{
1 if v ∈ T∑
s′∈S

η(s)(s′) · t(s′) otherwise x
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0/1

z

0/1

1
3

1
3

1
3

1

1

Fig. 1: Function T (left) and a Markov chain with two fixpoints of T (right)

The termination probability arises as the least fixpoint of a function T defined
as in Fig. 1. The values of µT are indicated in green (left value).

Now consider the function t assigning to each state the termination probabil-
ity written in red (right value). It is not difficult to see that t is another fixpoint
of T , in which states y and z convince each other incorrectly that they terminate
with probability 1, resulting in a vicious cycle that gives “wrong” results. We
want to show that µT 6= t without knowing µT . Our idea is to compute the set
of states that still has some “wiggle room”, i.e., those states which could reduce
their termination probability by δ if all their successors did the same. This def-
inition has a coinductive flavour and it can be computed as a greatest fixpoint
on the finite powerset 2S of states, instead of on the infinite lattice S[0,1].

We hence consider a function T t# : 2[S]t → 2[S]t , dependent on t, defined as

follows. Let [S]t be the set of all states s where t(s) > 0, i.e., a reduction is in
principle possible. Then a state s ∈ [S]t is in T t#(S′) iff s 6∈ T and for all s′ for
which η(s)(s′) > 0 it holds that s′ ∈ S′, i.e. all successors of s are in S′.

The greatest fixpoint of T t# is {y, z}. The fact that it is not empty means that
there is some “wiggle room”, i.e., the value of t can be reduced on the elements
{y, z} and thus t cannot be the least fixpoint of f . Moreover, the intuition that
t can be improved on {y, z} can be made precise, leading to the possibility of
performing the improvement and search for the least fixpoint from there.

Contributions. In the paper we formalise the theory outlined above, showing
that the proof rules work for non-expansive monotone functions f on lattices of
the form MY , where Y is a finite set and M an MV-algebra (§3 and §4). Addi-
tionally, given a decomposition of f we show how to obtain the corresponding
approximation compositionally (§5). Then, in order to show that our approach
covers a wide range of examples and allows us to derive original algorithms, we
discuss various applications: termination probability, behavioural distances for
probabilistic automata and bisimilarity (§6) and simple stochastic games (§7).

Proofs and further material can be found in the full version of the paper [5].

2 Lattices and MV-Algebras

In this section, we review some basic notions used in the paper.
A preordered or partially ordered set (P,v) is often denoted simply as P ,

omitting the order relation. Given x, y ∈ P , with x v y, we denote by [x, y] the
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interval {z ∈ P | x v z v y}. The join and the meet of a subset X ⊆ P (if they
exist) are denoted

⊔
X and

d
X, respectively.

A complete lattice is a partially ordered set (L,v) such that each subset
X ⊆ L admits a join

⊔
X and a meet

d
X. A complete lattice (L,v) always has

a least element ⊥ =
⊔
∅ and a greatest element > =

d
∅.

A function f : L → L is monotone if for all l, l′ ∈ L, if l v l′ then f(l) v
f(l′). By Knaster-Tarski’s theorem [28, Thm. 1], any monotone function on a
complete lattice has a least and a greatest fixpoint, denoted respectively µf
and νf , characterised as the meet of all pre-fixpoints respectively the join of all
post-fixpoints: µf =

d
{l | f(l) v l} and νf =

⊔
{l | l v f(l)}.

Let (C,v), (A,≤) be complete lattices. A Galois connection is a pair of
monotone functions 〈α, γ〉 such that α : C → A, γ : A → C and for all a ∈ A
and c ∈ C: α(c) ≤ a ⇐⇒ c v γ(a). Equivalently, for all a ∈ A and c ∈ C,
(i) c v γ(α(c)) and (ii) α(γ(a)) ≤ a. In this case we will write 〈α, γ〉 : C → A.
For a Galois connection 〈α, γ〉 : C → A, the function α is called the left (or
lower) adjoint and γ the right (or upper) adjoint.

Galois connections are at the heart of abstract interpretation [13,14]. In par-
ticular, when 〈α, γ〉 is a Galois connection, given fC : C → C and fA : A→ A,
monotone functions, if fC ◦ γ v γ ◦ fA, then νfC v γ(νfA). If equality holds,
i.e., fC ◦ γ = γ ◦ fA, then greatest fixpoints are preserved along the connection,
i.e., νfC = γ(νfA).

Given a set Y and a complete lattice L, the set of functions LY = {f | f :
Y → L}, endowed with pointwise order, i.e., for a, b ∈ LY , a v b if a(y) v b(y)
for all y ∈ Y , is a complete lattice.

In the paper we will mostly work with lattices of the kind MY where M is a
special kind of lattice with a rich algebraic structure, i.e. an MV-algebra [21].

Definition 1 (MV-algebra). An MV-algebra is a tuple M = (M,⊕, 0, (·))
where (M,⊕, 0) is a commutative monoid and (·) : M →M maps each element to
its complement, such that for all x, y ∈M (1) x = x; (2) x⊕0 = 0; (3) (x⊕ y)⊕
y = (y ⊕ x)⊕ x.

We denote 1 = 0, multiplication x⊗y = x⊕ y and subtraction x	y = x⊗y.

Definition 2 (natural order). Let M = (M,⊕, 0, (·)) be an MV-algebra. The
natural order on M is defined, for x, y ∈ M , by x v y if x ⊕ z = y for some
z ∈M . When v is total M is called an MV-chain.

The natural order gives an MV-algebra a lattice structure where ⊥ = 0,
> = 1, x t y = (x 	 y) ⊕ y and x u y = x t y = x ⊗ (x ⊕ y). We call the
MV-algebra complete, if it is a complete lattice, which is not true in general,
e.g., ([0, 1] ∩Q,≤).

Example 3. A prototypical example of an MV-algebra is ([0, 1],⊕, 0, (·)) where
x ⊕ y = min{x + y, 1} and x = 1 − x for x, y ∈ [0, 1]. This means that x ⊗ y =
max{x + y − 1, 0} and x 	 y = max{0, x − y} (truncated subtraction). The
operators ⊕ and ⊗ are also known as strong disjunction and conjunction in
 Lukasiewicz logic [22]. The natural order is ≤ (less or equal) on the reals.
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Another example is ({0, . . . , k},⊕, 0, (·)) where n⊕m = min{n+m, k} and
n = k−n for n,m ∈ {0, . . . , k}. Both MV-algebras are complete and MV-chains.

Boolean algebras (with disjunction and complement) also form MV-algebras
that are complete, but in general not MV-chains.

MV-algebras are the algebraic semantics of  Lukasiewicz logic. They can be
shown to correspond to intervals of the kind [0, u] in suitable groups, i.e., abelian
lattice-ordered groups with a strong unit u [21].

3 Non-expansive Functions and Their Approximations

As mentioned in the introduction, our interest is for fixpoints of monotone func-
tions f : MY → MY , where M is an MV-chain and Y is a finite set. We will
see that for non-expansive functions we can over-approximate the sets of points
in which a given a ∈ MY can be increased in a way that is preserved by the
application of f . This will be the core of the proof rules outlined earlier.

Non-expansive Functions on MV-Algebras. For defining non-expansiveness it is
convenient to introduce a norm.

Definition 4 (norm). Let M be an MV-chain and let Y be a finite set. Given
a ∈MY we define its norm as ||a|| = max{a(y) | y ∈ Y }.

Given a finite set Y we extend ⊕ and ⊗ to MY pointwise. Given Y ′ ⊆ Y and
δ ∈M, we write δY ′ for the function defined by δY ′(y) = δ if y ∈ Y ′ and δY ′(y) =
0, otherwise. Whenever this does not generate confusion, we write δ instead of
δY . It can be seen that ||·|| has the properties of a norm, i.e., for all a, b ∈ MY

and δ ∈ M, it holds that (1) ||a⊕ b|| v ||a|| ⊕ ||b||, (2) ||δ ⊗ a|| = δ ⊗ ||a|| and and
||a|| = 0 implies that a is the constant 0. Moreover, it is clearly monotonic, i.e.,
if a v b then ||a|| v ||b||.

We next introduce non-expansiveness. Despite the fact that we will finally be
interested in endo-functions f : MY →MY , in order to allow for a compositional
reasoning we work with functions where domain and codomain can be different.

Definition 5 (non-expansiveness). Let f : MY → MZ be a function, where
M is an MV-chain and Y, Z are finite sets. We say that it is non-expansive if
for all a, b ∈MY it holds ||f(b)	 f(a)|| v ||b	 a||.

Note that (a, b) 7→ ||a	 b|| is the supremum lifting of a directed version of
Chang’s distance [21]. It is easy to see that all non-expansive functions on MV-
chains are monotone.

Approximating the Propagation of Increases. Let f : MY →MZ be a monotone
function and take a, b ∈ MY with a v b. We are interested in the difference
b(y) 	 a(y) for some y ∈ Y and on how the application of f “propagates” this
increase. The reason is that, understanding that no increase can be propagated
will be crucial to establish when a fixpoint of a non-expansive function f is
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actually the largest one, and, more generally, when a (pre-)fixpoint of f is above
the largest fixpoint.

In order to formalise the above intuition, we rely on tools from abstract inter-
pretation. In particular, the following pair of functions, which, under a suitable
condition, form a Galois connection, will play a major role. The left adjoint αa,δ
takes as input a set Y ′ and, for y ∈ Y ′, it increases the values a(y) by δ, while
the right adjoint γa,δ takes as input a function b ∈MY , b ∈ [a, a⊕ δ] and checks
for which parameters y ∈ Y the value b(y) exceeds a(y) by δ.

We also define [Y ]a, the subset of elements in Y where a(y) is not 1 and thus
there is a potential to increase, and δa, which gives us the minimal such increase.

Definition 6 (functions to sets, and vice versa). Let M be an MV-algebra
and let Y be a finite set. Define the set [Y ]a = {y ∈ Y | a(y) 6= 1} and δa =
min{a(y) | y ∈ [Y ]a} with min ∅ = 1.

For 0 @ δ ∈ M we consider the functions αa,δ : 2[Y ]a → [a, a⊕ δ] and
γa,δ : [a, a⊕ δ]→ 2[Y ]a , defined, for Y ′ ∈ 2[Y ]a and b ∈ [a, a⊕ δ], by

αa,δ(Y
′) = a⊕ δY ′ γa,δ(b) = {y ∈ [Y ]a | b(y)	 a(y) w δ}.

When δ is sufficiently small, the pair 〈αa,δ, γa,δ〉 is a Galois connection.

2[Y ]a [a, a⊕ δ]

αa,δ

γa,δ

Lemma 7 (Galois connection). Let M be an
MV-algebra and Y be a finite set. For 0 6= δ v δa,
the pair 〈αa,δ, γa,δ〉 : 2[Y ]a → [a, a⊕ δ] is a Galois
connection.

Whenever f is non-expansive, it is easy to see that it restricts to a function
f : [a, a⊕ δ]→ [f(a), f(a)⊕ δ] for all δ ∈M.

As mentioned before, a crucial result shows that for all non-expansive func-
tions, under the assumption that Y, Z are finite and the order on M is total,
we can suitably approximate the propagation of increases. In order to state this
result, a useful tool is a notion of approximation of a function.

Definition 8 ((δ, a)-approximation). Let M be an MV-chain, let Y , Z be
finite sets and let f : MY → MZ be a non-expansive function. For a ∈ MY and
any δ ∈M we define f#a,δ : 2[Y ]a → 2[Z]f(a) as f#a,δ = γf(a),δ ◦ f ◦ αa,δ.

Given Y ′ ⊆ [Y ]a, its image f#a,δ(Y
′) ⊆ [Z]f(a) is the set of points z ∈ [Z]f(a)

such that δ v f(a⊕ δY ′)(z)	 f(a)(z), i.e., the points to which f propagates an
increase of the function a with value δ on the subset Y ′.

We first show that f#a,δ is antitone in the parameter δ, a non-trivial result.

Lemma 9 (anti-monotonicity). Let M be an MV-chain, let Y , Z be finite
sets, let f : MY → MZ be a non-expansive function and let a ∈ MY . For
θ, δ ∈M, if θ v δ then f#a,δ ⊆ f

#
a,θ.

Since f#a,δ increases when δ decreases and there are finitely many such func-

tions, there must be a value ιfa such that all functions f#a,δ for 0 @ δ v ιfa are

equal. This function is denoted by f#a and is called the a-approximation of f .
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We next show that indeed, for all non-expansive functions, the a-approxima-
tion properly approximates the propagation of increases.

Theorem 10 (approximation of non-expansive functions). Let M be a
complete MV-chain, let Y,Z be finite sets and let f : MY → MZ be a non-
expansive function. Then there exists ιfa ∈M, the largest value below or equal to

δa such that f#a,δ = f#a,δ′ for all 0 @ δ, δ′ v ιfa.

We denote this function by f#a and call it the
a-approximation of f . Then for all 0 @ δ ∈M:

a. γf(a),δ ◦ f ⊆ f#a ◦ γa,δ
b. for δ v δa: δ v ιfa iff γf(a),δ ◦ f = f#a ◦ γa,δ

[a, a⊕ δ]
f

��

γa,δ //

v

2[Y ]a

f#
a��

[f(a), f(a)⊕ δ]
γf(a),δ

// 2[Z]f(a)

Note that if Y = Z and a is a fixpoint of f , i.e., a = f(a), condition (a) above
corresponds exactly to soundness in the sense of abstract interpretation [13],
while condition (b) corresponds to (γ-)completeness (see also §2).

4 Proof Rules

In this section we formalise the proof technique outlined in the introduction for
showing that a fixpoint is the largest and, more generally, for checking over-
approximations of greatest fixpoints of non-expansive functions.

Consider a monotone function f : MY → MY for some finite set Y . We
first focus on the problem of establishing whether some given fixpoint a of f
coincides with νf (without explicitly knowing νf), and, in case it does not,
finding an “improvement”, i.e., a post-fixpoint of f , larger than a. Observe that
when a is a fixpoint, [Y ]a = [Y ]f(a) and thus the a-approximation of f (Thm. 10)

is an endofunction f#a : [Y ]a → [Y ]a. We have the following result, which relies
on the fact that due to Thm. 10 γa,δ preserves fixpoints (of f and f#a ).

Theorem 11 (soundness and completeness for fixpoints). Let M be a
complete MV-chain, Y a finite set and f : MY → MY be a non-expansive func-
tion. Let a ∈MY be a fixpoint of f . Then νf#a = ∅ if and only if a = νf .

Whenever a is a fixpoint, but not yet the largest fixpoint of f , we can increase
it and obtain a post-fixpoint.

Lemma 12. Let M be a complete MV-chain, f : MY → MY a non-expansive
function, a ∈M a fixpoint of f , and let f#a be the corresponding a-approximation
and ιfa as in Thm. 10. Then αa,ιfa(νf#a ) = a⊕ (ιfa)νf#

a
is a post-fixpoint of f .

Using these results one can perform an alternative fixpoint iteration where we
iterate to the largest fixpoint from below: start with a post-fixpoint a0 v f(a0)
(which is clearly below νf) and obtain, by (possibly transfinite) iteration, an
ascending chain that converges to a, the least fixpoint above a0. Now check
with Thm. 11 whether Y ′ = νf#a = ∅. If yes, we have reached νf = a. If not,



Fixpoint Theory – Upside Down 69

αa,ιfa(Y ′) = a⊕ (ιfa)Y ′ is again a post-fixpoint (cf. Lem. 12) and we continue this
procedure until – for some ordinal – we reach the largest fixpoint νf , for which
we have νf#νf = ∅.

Interestingly, the soundness result in Thm. 11 can be generalised to the case
in which a is a pre-fixpoint instead of a fixpoint. In this case, the a-approximation
for a function f : MY →MY is a function f#a : [Y ]a → [Y ]f(a) where domain and
codomain are different, hence it would not be meaningful to look for fixpoints.
However, as explained below, it can be restricted to an endofunction.

Theorem 13 (soundness for pre-fixpoints). Let M be a complete MV-chain,
Y a finite set and f : MY → MY be a non-expansive function. Given a pre-
fixpoint a ∈ MY of f , let [Y ]a=f(a) = {y ∈ [Y ]a | a(y) = f(a)(y)}. Let us define

f∗a : [Y ]a=f(a) → [Y ]a=f(a) as f∗a (Y ′) = f#a (Y ′) ∩ [Y ]a=f(a), where f#a : 2[Y ]a →
2[Y ]f(a) is the a-approximation of f . If νf∗a = ∅ then νf v a.

Roughly, the intuition for the above result is the following: the value of f(a)
on some y might or might not depend “circularly” on the value of a on y itself.
In a purely inductive setting, without such circular dependencies, µf = νf and
hence a being a pre-fixpoint means that we over-approximate νf . However, we
might have vicious cycles, as explained in the introduction, that destroy the
over-approximation since the values are too low. Now, since we restrict to non-
expansive functions, it must be the case that there is a cycle, such that all
elements on this cycle are points where a and f(a) coincide. It is hence sufficient
to check whether a given pre-fixpoint could be increased on its subpart which
corresponds to a fixpoint, i.e., the idea is to restrict to [Y ]a=f(a). We detect such
situations by looking for “wiggle room” as for fixpoints.

Completeness does not generalise to pre-fixpoints, i.e., it is not true that if
a is a pre-fixpoint of f and νf v a then νf∗a = ∅. A pre-fixpoint might contain
slack even though it is above the greatest fixpoint. A counterexample is in Ex. 25.

The Dual View for Least Fixpoints. The theory developed so far can be easily
dualised to check under-approximations of least fixpoints. Given a complete MV-
algebra M = (M,⊕, 0, (·)) and a monotone function f : MY → MY , in order to
show that a post-fixpoint a ∈ MY satisfies a v µf , we can in fact simply work
in the dual MV-algebra, Mop = (M,w,⊗, (·), 1). It is convenient to formulate
the conditions using 	 and the original order.

2[Y ]a [a	 θ, a]

αa,θ

γa,θ

We next outline the dualised setting. The notation
for the dual case is obtained from that of the original
(primal) case, exchanging subscripts and superscripts.

Given a ∈ MY , define [Y ]a = {y ∈ Y | a(y) 6= 0}
and δa = min{a(y) | y ∈ [Y ]a}. For θ ∈ M, we consider
the pair of functions 〈αa,θ, γa,θ〉 : 2[Y ]a → [a	 θ, a]
where, for Y ′ ∈ 2[Y ]a , we let αa,θ(Y ′) = a	 θY ′ and, for b ∈ [a	 θ, a], γa,θ(b) =
{y ∈ Y | a(y)	 b(y) w θ}.

A function f : MY → MZ is non-expansive in the dual MV-algebra when it
is in the primal one. Its approximation in the sense of Thm. 10 is denoted fa#.
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Table 1: Basic functions f : MY → MZ (constant, reindexing, minimum, maxi-
mum, average), function composition, disjoint union and the corresponding ap-

proximations f#a : 2[Y ]a → 2[Z]f(a) , fa# : 2[Y ]a → 2[Z]f(a) .

Notation: R−1(z) = {y ∈ Y | yRz}, supp(p) = {y ∈ Y | p(y) > 0} for p ∈ D(Y ),
Mina = {y ∈ Y | a(y) minimal}, Maxa = {y ∈ Y | a(y) maximal}, a : Y → M

function f definition of f f#
a (Y ′) (above), fa#(Y ′) (below)

ck f(a) = k ∅
(k ∈ MZ) ∅
u∗ f(a) = a ◦ u u−1(Y ′)
(u : Z → Y ) u−1(Y ′)

minR f(a)(z) = min
yRz

a(y) {z ∈ [Z]f(a) | Mina|R−1(z)
⊆ Y ′}

(R ⊆ Y × Z) {z ∈ [Z]f(a) | Mina|R−1(z)
∩ Y ′ 6= ∅}

maxR f(a)(z) = max
yRz

a(y) {z ∈ [Z]f(a) | Maxa|R−1(z)
∩ Y ′ 6= ∅}

(R ⊆ Y × Z) {z ∈ [Z]f(a) | Maxa|R−1(z)
⊆ Y ′}

avD (M = [0, 1], f(a)(p) =
∑
y∈Y

p(y) · a(y) {p ∈ [D]f(a) | supp(p) ⊆ Y ′}

Z = D ⊆ D(Y )) {p ∈ [D]f(a) | supp(p) ⊆ Y ′}
h ◦ g f(a) = h(g(a)) h#

g(a) ◦ g
#
a (Y ′)

(g : MY → MW , h
g(a)
# ◦ ga#(Y ′)

h : MW → MZ)⊎
i∈I

fi I finite f(a)(z) = fi(a|Yi)(z)
⊎
i∈I(fi)

#
a|Yi

(Y ′ ∩ Yi)

(fi : MYi → MZi , (z ∈ Zi)
⊎
i∈I(fi)

a|Yi
# (Y ′ ∩ Yi)

Y =
⋃
i∈I

Yi, Z =
⊎
i∈I

Zi)

Then the dualisations of Thm. 11 and 13 hold, i.e., if a is a fixpoint of f , then
νfa# = ∅ iff µf = a, and whenever a is a post-fixpoint, νfa∗ = ∅ implies a v µf .

5 (De)Composing Functions and Approximations

Given a non-expansive function f and a (pre/post-)fixpoint a, it is often non-
trivial to determine the corresponding approximations. However, non-expansive
functions enjoy good closure properties (closure under composition, and closure
under disjoint union) and we will see that the same holds for the corresponding
approximations. Furthermore it turns out that the functions needed in the ap-
plications can be obtained from just a few templates. This gives us a toolbox for
assembling approximations with relative ease.

Theorem 14. All basic functions listed in Table 1 are non-expansive. Further-
more non-expansive functions are closed under composition and disjoint union.
The approximations are the ones listed in the third column of the table.
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6 Applications

6.1 Termination Probability

We start by making the example from the introduction (§1) more formal. Con-
sider a Markov chain (S, T, η), as defined in the introduction (Fig. 1), where we
restrict the codomain of η : S\T → D(S) to D ⊆ D(S), where D is finite (to
ensure that all involved sets are finite). Furthermore let T : [0, 1]S → [0, 1]S be
the function from the introduction whose least fixpoint µT assigns to each state
its termination probability.

Lemma 15. The function T can be written as T = (η∗◦avD)]ck where k : T →
[0, 1] is the constant function 1 defined only on terminal states.

From this representation and Thm. 14 it is obvious that T is non-expansive.

Lemma 16. Let t : S → [0, 1]. The approximation for T in the dual sense is

T t# : 2[S]t → 2[S]T (t)

with

T t#(S′) = {s ∈ [S]T (t) | s /∈ T ∧ supp(η(s)) ⊆ S′}.

It is well-known that the function T can be tweaked in such a way that it has
a unique fixpoint, coinciding with µT , by determining all states which cannot
reach a terminal state and setting their value to zero [3]. Hence fixpoint iteration
from above does not bring us any added value here. It does however make sense
to use the proof rule in order to guarantee lower bounds via post-fixpoints.

Furthermore, termination probability is a special case of the considerably
more complex stochastic games that will be studied in §7, where the trick of
modifying the function is not applicable.

6.2 Behavioural Metrics for Probabilistic Automata

Before we start discussing probabilistic automata, we first consider the Hausdorff
and the Kantorovich lifting and the corresponding approximations.

Hausdorff Lifting. Given a metric on a set X, the Hausdorff metric is obtained
by lifting the original metric to 2X . Here we define this for general distance
functions on M, not restricting to metrics. In particular the Hausdorff lifting is

given by a function H : MX×X →M2X×2X where

H(d)(X1, X2) = max{ max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x1, x2)}.

An alternative characterisation due to Mémoli [20], also in [4], is more convenient
for our purposes. If we let u : 2X×X → 2X × 2X with u(C) = (π1[C], π2[C]),
where π1, π2 are the projections πi : X ×X → X and πi[C] = {πi(c) | c ∈ C}.
Then H(d)(X1, X2) = min{max(x1,x2)∈C d(x1, x2) | C ⊆ X × X ∧ u(C) =
(X1, X2)}. Relying on this, we can obtain the result below, from which we deduce
that H is non-expansive and construct its approximation as the composition of
the corresponding functions from Table 1.
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Lemma 17. H = minu ◦max∈ where max∈ : MX×X →M2X×X (∈ ⊆ (X×X)×
2X×X is the “is-element-of”-relation on X ×X), minu : M2X×X →M2X×2X .

Kantorovich Lifting. The Kantorovich (also known as Wasserstein) lifting con-
verts a metric on X to a metric on probability distributions over X. As for the
Hausdorff lifting, we lift distance functions that are not necessarily metrics.

Furthermore, in order to ensure finiteness of all the sets involved, we re-
strict to D ⊆ D(X), some finite set of probability distributions over X. A
coupling of p, q ∈ D is a probability distribution c ∈ D(X × X) whose left
and right marginals are p, q, i.e., p(x1) = mL

c (x1) :=
∑
x2∈X c(x1, x2) and

q(x2) = mR
c (x2) :=

∑
x1∈X c(x1, x2). The set of all couplings of p, q, denoted

by Ω(p, q), forms a polytope with finitely many vertices [24]. The set of all poly-
tope vertices that are obtained by coupling any p, q ∈ D is also finite and is
denoted by VPD ⊆ D(X ×X).

The Kantorovich lifting is given by K : [0, 1]X×X → [0, 1]D×D where

K(d)(p, q) = min
c∈Ω(p,q)

∑
(x1,x2)∈X×X

c(x1, x2) · d(x1, x2).

The coupling c can be interpreted as the optimal transport plan to move goods
from suppliers to customers [30]. Again there is an alternative characterisation,
which shows non-expansiveness of K:

Lemma 18. Let u : VPD → D×D, u(c) = (mL
c ,m

R
c ). Then K = minu ◦avVPD ,

where avVPD : [0, 1]X×X → [0, 1]VPD , minu : [0, 1]VPD → [0, 1]D×D.

Probabilistic Automata. We now compare our approach with [2], which describes
the first method for computing behavioural distances for probabilistic automata.
Although the behavioural distance arises as a least fixpoint, it is in fact better,
even the only known method, to iterate from above, in order to reach this least
fixpoint. This is done by guessing and improving couplings, similar to strategy
iteration discussed later in §7. A major complication, faced in [2], is that the
procedure can get stuck at a fixpoint which is not the least and one has to
determine that this is the case and decrease the current candidate. In fact this
paper was our inspiration to generalise this technique to a more general setting.

A probabilistic automaton is a tuple A = (S,L, η, `), where S is a non-empty
finite set of states, L is a finite set of labels, η : S → 2D(S) assigns finite sets of
probability distributions to states and ` : S → L is a labelling function. (In the
following we again replace D(S) by a finite subset D.)

The probabilistic bisimilarity pseudometrics is the least fixpoint of the func-
tion M : [0, 1]S×S → [0, 1]S×S where for d : S × S → [0, 1], s, t ∈ S:

M(d)(s, t) =

{
1 if `(s) 6= `(t)

H(K(d))(η(s), η(t)) otherwise

where H is the Hausdorff lifting (for M = [0, 1]) and K is the Kantorovich lifting
defined earlier. Now assume that d is a fixpoint of M, i.e., d =M(d). In order
to check whether d = µf , [2] adapts the notion of a self-closed relation from [16].
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Definition 19 ([2]). A relation M ⊆ S × S is self-closed wrt. d = M(d) if,
whenever sM t, then

– `(s) = `(t) and d(s, t) > 0,
– if p ∈ η(s) and d(s, t) = minq′∈η(t)K(d)(p, q′), then there exists q ∈ η(t) and
c ∈ Ω(p, q) such that d(s, t) =

∑
u,v∈S d(u, v) · c(u, v) and supp(c) ⊆M ,

– if q ∈ η(t) and d(s, t) = minp′∈η(s)K(d)(p′, q), then there exists p ∈ η(s) and
c ∈ Ω(p, q) such that d(s, t) =

∑
u,v∈S d(u, v) · c(u, v) and supp(c) ⊆M .

The largest self-closed relation, denoted by ≈d is empty if and only if d =
µf [2]. We now investigate the relation between self-closed relations and post-
fixpoints of approximations. For this we will first show thatM can be composed
from non-expansive functions, which proves that it is indeed non-expansive. Fur-
thermore, this decomposition will help in the comparison.

Lemma 20. The fixpoint function M characterizing probabilistic bisimilarity
pseudometrics can be written as:

M = maxρ ◦(((η × η)∗ ◦ H ◦ K) ] cl)

where ρ : (S × S) ] (S × S) → (S × S) with ρ((s, t), i) = (s, t).4 Furthermore
l : S×S → [0, 1] is defined as l(s, t) = 0 if `(s) = `(t) and l(s, t) = 1 if `(s) 6= `(t).

HenceM is a composition of non-expansive functions and thus non-expansive
itself. We do not spell out Md

# explicitly, but instead show how it is related to
self-closed relations.

Proposition 21. Let d : S×S → [0, 1] where d =M(d). ThenMd
# : 2[S×S]d →

2[S×S]d , where [S × S]d = {(s, t) ∈ S × S | d(s, t) > 0}.
Then M is a self-closed relation wrt. d if and only if M ⊆ [S × S]d and M

is a post-fixpoint of Md
#.

6.3 Bisimilarity

In order to define standard bisimilarity we use a variant G of the Hausdorff lifting
H from §6.2 where max and min are swapped and which we denote by G.

Now we can define the fixpoint function for bisimilarity and its corresponding
approximation. For simplicity we consider unlabelled transition systems, but it
would be straightforward to handle labelled transitions.

Let X be a finite set of states and η : X → 2X a function that assigns a set
of successors η(x) to a state x ∈ X. For the fixpoint function for bisimilarity
B : {0, 1}X×X → {0, 1}X×X we use the Hausdorff lifting G with M = {0, 1}.

Lemma 22. Bisimilarity on η is the greatest fixpoint of B = (η × η)∗ ◦ G.

4 Here we use i ∈ {0, 1} as indices to distinguish the elements in the disjoint union.
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Since we are interested in the greatest fixpoint, we are working in the primal
sense. Bisimulation relations are represented by their characteristic functions
d : X×X → {0, 1}, in fact the corresponding relation can be obtained by taking
the complement of [X ×X]d = {(x1, x2) ∈ X1 ×X2 | d(x1, x2) = 0}.

Lemma 23. Let d : X × X → {0, 1}. The approximation for the bisimilarity

function B in the primal sense is B#d : 2[X×X]d → 2[X×X]B(d) with

B#d (R) = {(x1, x2) ∈ [X ×X]B(d) |
∀y1 ∈ η(x1)∃y2 ∈ η(x2)

(
(y1, y2) 6∈ [X ×X]d ∨ (y1, y2) ∈ R)

)
∧∀y2 ∈ η(x2)∃y1 ∈ η(x1)

(
(y1, y2) 6∈ [X ×X]d ∨ (y1, y2) ∈ R)

}
We conclude this section by discussing how this view on bisimilarity can

be useful: first, it again opens up the possibility to compute bisimilarity – a
greatest fixpoint – by iterating from below, through smaller fixpoints. This could
potentially be useful if it is easy to compute the least fixpoint of B inductively
and continue from there.

Furthermore, we obtain a technique for witnessing non-bisimilarity of states.
While this can also be done by exhibiting a distinguishing modal formula [17,9]
or by a winning strategy for the spoiler in the bisimulation game [27], to our
knowledge there is no known method that does this directly, based on the defi-
nition of bisimilarity.

With our technique however, we can witness non-bisimilarity of two states
x1, x2 ∈ X by presenting a pre-fixpoint d (i.e., B(d) ≤ d) such that d(x1, x2) = 0

(equivalent to (x1, x2) ∈ [X ×X]d) and νB#d = ∅, since this implies νB(x1, x2) ≤
d(x1, x2) = 0 by our proof rule.

There are two issues to discuss: first, how can we characterise a pre-fixpoint
of B (which is quite unusual, since bisimulations are post-fixpoints)? In fact, the
condition B(d) ≤ d can be rewritten to: for all (x1, x2) ∈ [X ×X]d there exists
y1 ∈ η(x1) such that for all y2 ∈ η(x2) we have (y1, y2) ∈ [X ×X]d (or vice
versa). Second, at first sight it does not seem as if we gained anything since we
still have to do a fixpoint computation on relations. However, the carrier set is
[X ×X]d, i.e., a set of non-bisimilarity witnesses and this set can be small even
though X might be large.

Example 24. We consider the transition system depicted below.

Our aim is to construct a witness showing that
x, u are not bisimilar. This witness is a function
d : X × X → {0, 1} with d(x, u) = 0 = d(y, u)
and for all other pairs the value is 1.

x y u

Hence [X ×X]d=B(d) = [X ×X]d = {(x, u), (y, u)} and it is easy to check
that d is a pre-fixpoint of B and that νB∗d = ∅: we iterate over {(x, u), (y, u)}
and first remove (y, u) (since y has no successors) and then (x, u). This implies
that νB ≤ d and hence νB(x, u) = 0, which means that x, u are not bisimilar.
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Example 25. We modify Ex. 24 and consider a function d where d(x, u) = 0
and all other values are 1. Again d is a pre-fixpoint of B and νB ≤ d (since
only reflexive pairs are in the bisimilarity). However νB∗d 6= ∅, since {(x, u)} is a
post-fixpoint. This is a counterexample to completeness discussed after Thm. 13.

Intuively speaking, the states y, u over-approximate and claim that they are
bisimilar, although they are not. (This is permissible for a pre-fixpoint.) This
tricks x, u into thinking that there is some wiggle room and that one can increase
the value of (x, u). This is true, but only because of the limited, local view, since
the “true” value of (y, u) is 0.

7 Simple Stochastic Games

Introduction to Simple Stochastic Games. In this section we show how our tech-
niques can be applied to simple stochastic games [11,10]. A simple stochastic
game is a state-based two-player game where the two players, Min and Max,
each own a subset of states they control, for which they can choose the succes-
sor. The system also contains sink states with an assigned payoff and averaging
states which randomly choose their successor based on a given probability dis-
tribution. The goal of Min is to minimise and the goal of Max to maximise the
payoff.

Simple stochastic games are an important type of games that subsume parity
games and the computation of behavioural distances for probabilistic automata
(cf. §6.2, [2]). The associated decision problem is known to lie in NP∩ coNP, but
it is an open question whether it is contained in P. There are known randomised
subexponential algorithms [7].

It has been shown that it is sufficient to consider positional strategies, i.e.,
strategies where the choice of the player is only dependent on the current state.
The expected payoffs for each state form a so-called value vector and can be
obtained as the least solution of a fixpoint equation (see below).

A simple stochastic game is given by a finite set V of nodes, partitioned into
MIN , MAX , AV (average) and SINK , and the following data: ηmin : MIN → 2V ,
ηmax : MAX → 2V (successor functions for Min and Max nodes), ηav : AV → D
(probability distributions, where D ⊆ D(V ) finite) and w : SINK → [0, 1]
(weights of sink nodes).

The fixpoint function V : [0, 1]V → [0, 1]V is defined below for a : V → [0, 1]
and v ∈ V :

V(a)(v) =


minv′∈ηmin(v) a(v′) v ∈ MIN

maxv′∈ηmax(v) a(v′) v ∈ MAX∑
v′∈V ηav(v)(v′) · a(v′) v ∈ AV

w(v) v ∈ SINK

The least fixpoint of V specifies the average payoff for all nodes when Min and
Max play optimally. In an infinite game the payoff is 0. In order to avoid infinite
games and guarantee uniqueness of the fixpoint, many authors [18,10,29] restrict
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to stopping games, which are guaranteed to terminate for every pair of Min/Max-
strategies. Here we deal with general games where more than one fixpoint may
exist. Such a scenario has been studied in [19], which considers value iteration
to under- and over-approximate the value vector. The over-approximation faces
challenges with cyclic dependencies, similar to the vicious cycles described ear-
lier. Here we focus on strategy iteration, which is usually less efficient than value
iteration, but yields a precise result instead of approximating it.

Example 26. We consider the game depicted below. Here min is a Min node with
ηmin(min) = {1, av}, max is a Max node with ηmax(max) = {ε, av}, 1 is a sink
node with payoff 1, ε is a sink node with some small payoff ε ∈ (0, 1) and av is
an average node which transitions to both min and max with probability 1

2 .
Min should choose av as successor since a payoff of 1 is bad for Min. Given

this choice of Min, Max should not declare av as successor since this would create
an infinite play and hence the payoff is 0. Therefore Max has to choose ε and be
content with a payoff of ε, which is achieved from all nodes different from 1.

1 min av εmax

1
2

1
2

In order to be able to determine the approximation of V and to apply our
techniques, we consider the following equivalent definition.

Lemma 27. V = (η∗min ◦min∈) ] (η∗max ◦max∈) ] (η∗av ◦ avD) ] cw, where ∈ ⊆
V × 2V is the “is-element-of”-relation on V .

As a composition of non-expansive functions, V is non-expansive as well. Since
we are interested in the least fixpoint we work in the dual sense and obtain the
following approximation, which intuitively says: we can decrease a value at node
v by a constant only if, in the case of a Min node, we decrease the value of one
successor where the minimum is reached, in the case of a Max node, we decrease
the values of all successors where the maximum is reached, and in the case of an
average node, we decrease the values of all successors.

Lemma 28. Let a : V → [0, 1]. The approximation for the value iteration func-

tion V in the dual sense is Va# : 2[V ]a → 2[V ]V(a)

with

Va#(V ′) = {v ∈ [V ]V(a) |
(
v ∈ MIN ∧Mina|ηmin(v)

∩ V ′ 6= ∅
)
∨(

v ∈ MAX ∧Maxa|ηmax(v)
⊆ V ′

)
∨
(
v ∈ AV ∧ supp(ηav(v)) ⊆ V ′

)
}

Strategy Iteration from Above and Below. We describe two algorithms based on
strategy iteration, first introduced by Hoffman and Karp in [18], that are novel,
as far as we know. The first iterates to the least fixpoint from above and uses
the techniques described in §4. The second iterates from below: the role of our
results is not directly visible in the code of the algorithm, but its non-trivial
correctness proof is based on the proof rule introduced earlier.
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Determine µV (from above)

1. Guess a Min-strategy τ (0), i := 0
2. a(i) := µVτ(i)
3. τ (i+1) := swmin(τ (i), a(i))
4. If τ (i+1) 6= τ (i) i := i+ 1 then goto 2.
5. Compute V ′ = νVa#, where a = a(i).

6. If V ′ = ∅ then stop and return a(i).
Otherwise set a(i+1) := a − (ιaV)V ′ ,
τ (i+2) := swmin(τ (i), a(i+1)), i := i+2,
goto 2.

(a) Strategy iteration from above

Determine µV
(from below)

1. Guess a Max-strategy σ(0),
i := 0

2. a(i) := µVσ(i)

3. σ(i+1) := swmax(σ(i), a(i))
4. If σ(i+1) 6= σ(i) set i := i+1

and goto 2. Otherwise stop
and return a(i).

(b) Strategy iteration from below

Fig. 2: Strategy iteration from above and below

We first recap the underlying notions: a Min-strategy is a mapping τ : MIN →
V such that τ(v) ∈ ηmin(v) for every v ∈ MIN . With such a strategy, Min
decides to always leave a node v via τ(v). Analogously σ : MAX → V fixes
a Max-strategy. Fixing a strategy for either player induces a modified value
function. If τ is a Min-strategy, we obtain Vτ which is defined exactly as V but
for v ∈ MIN where we set Vτ (a)(v) = a(τ(v)). Analogously, for σ a Max-strategy,
Vσ is obtained by setting Vσ(a)(v) = a(σ(v)) when v ∈ MAX . If both players
fix their strategies, the game reduces to a Markov chain.

In order to describe our algorithms we also need the notion of a switch.
Assume that τ is a Min-strategy and let a be a (pre-)fixpoint of Vτ . Min can now
potentially improve her strategy for nodes v ∈ MIN where minv′∈ηmin(v) a(v′) <
a(τ(v)), called switch nodes. This results in a Min-strategy τ ′ = swmin(τ, a),
where5 τ ′(v) = arg minv′∈ηmin(v) a

(i)(v′) for a switch node v and τ ′, τ agree
otherwise. Also, swmax(σ, a) is defined analogously for Max strategies.

Now strategy iteration from above works as described in Figure 2a. The
computation of µVτ (i) in the second step intuitively means that Max chooses
his best answering strategy and we compute the least fixpoint based on this
answering strategy. At some point no further switches are possible and we have
reached a fixpoint a, which need not yet be the least fixpoint. Hence we use
the techniques from §4 to decrease a and obtain a new pre-fixpoint a(i+1), from
which we can continue. The correctness of this procedure partially follows from
Thm. 11 and Lem. 12, however we also need to show the following: first, we
can compute a(i) = µVτ (i) efficiently by solving a linear program (cf. Lem. 29)
by adapting [11]. Second, the chain of the a(i) decreases, which means that the
algorithm will eventually terminate (cf. Thm. 30).

5 If the minimum is achieved in several nodes, Min simply chooses one of them. How-
ever, she will only switch if this strictly improves the value.
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Strategy iteration from below is given in Figure 2b. At first sight, the algo-
rithm looks simpler than strategy iteration from above, since we do not have
to check whether we have already reached νV, reduce and continue from there.
However, in this case the computation of µVσ(i) via a linear program is more
involved (cf. Lem. 29), since we have to pre-compute (via greatest fixpoint it-
eration over 2V ) the nodes where Min can force a cycle based on the current
strategy of Max, thus obtaining payoff 0.

This algorithm does not directly use our technique but we can use our proof
rules to prove the correctness of the algorithm (Thm. 30). In particular, the
proof that the sequence a(i) increases is quite involved: we have to show that
a(i) = µVσ(i) ≤ µVσ(i+1) = a(i+1). We prove this, using our proof rules, by
showing that a(i) is below the least fixpoint of Vσ(i+1) .

The algorithm generalises strategy iteration by Hoffman and Karp [18]. Note
that we cannot simply adapt their proof, since we do not assume that the game
is stopping, which is a crucial ingredient.

Lemma 29. The least fixpoints of Vτ and Vσ can be determined by solving linear
programs.

Theorem 30. Strategy iteration from above and below both terminate and com-
pute the least fixpoint of V.

Example 31. Ex. 26 is well suited to explain our two algorithms.
Starting with strategy iteration from above, we may guess τ (0)(min) = 1.

In this case, Max would choose av as successor and we would reach a fixpoint,
where each node except for ε is associated with a payoff of 1. Next, our algorithm
would detect the vicious cycle formed by min, av and max. We can reduce the
values in this vicious cycle and reach the correct payoff values for each node.

For strategy iteration from below assume that σ(0)(max) = av. Given this
strategy of Max, Min can force the play to stay in a cycle formed by min, av and
max. Thus, the payoff achieved by the Max strategy σ(0) and an optimal play by
Min would be 0 for each of these nodes. In the next iteration Max switches and
chooses ε as successor, i.e. σ(1)(max) = ε, which results in the correct values.

We implemented strategy iteration from above and below and classical Kleene
iteration in MATLAB. In Kleene iteration we terminate with a tolerance of
10−14, i.e., we stop if the change from one iteration to the next is below this
bound. We tested the algorithms on random stochastic games and found that
Kleene iteration is always the fastest, but only converges and it is known that
the rate of convergence can be exponentially slow [10]. Strategy iteration from
below is usually slightly faster than strategy iteration from above. More details
can be found in the full version [5].

8 Conclusion

It is well-known that several computations in the context of system verification
can be performed by various forms of fixpoint iteration and it is worthwhile to
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study such methods at a high level of abstraction, typically in the setting of
complete lattices and monotone functions. Going beyond the classical results
by Tarski [28], combination of fixpoint iteration with approximations [14,6] and
with up-to techniques [25] has proven to be successful. Here we treated a more
specific setting, where the carrier set consists of functions from a finite set into an
MV-chain and the fixpoint functions are non-expansive (and hence monotone),
and introduced a novel technique to obtain upper bounds for greatest and lower
bounds for least fixpoints, including associated algorithms. Such techniques are
widely applicable to a wide range of examples and so far they have been studied
only in quite specific scenarios, such as in [2,16,19].

In the future we plan to lift some of the restrictions of our approach. First, an
extension to an infinite domain Y would of course be desirable, but since several
of our results currently depend on finiteness, such a generalisation does not seem
to be easy. Another restriction, to total orders, seems easier to lift: in particular,
if the partially ordered MV-algebra M̄ is of the form MI where I is a finite
index set and M an MV-chain. (E.g., finite Boolean algebras are of this type.)
Then our function space is M̄Y =

(
MI
)
Y ∼= MY×I and we have reduced to the

setting presented in this paper. This will allow us to handle featured transition
systems [12] where transitions are equipped with boolean formulas. We also plan
to determine the largest possible increase that can be added to a fixpoint that
is not yet the greatest fixpoint in order to maximally speed up fixpoint iteration
from below (this might be larger than ιfa).

There are several other application examples that did not fit into this paper,
but that can also be handled by our approach: for instance behavioural distances
for metric transition systems [15] and other types of systems [4]. We also plan
to investigate other types of games, such as energy games [8]. While here we in-
troduced strategy iteration techniques for simple stochastic games, we also want
to check whether we can provide an improvement to value iteration techniques,
combining our approach with [19].

We also plan to study whether some examples can be handled with other
types of Galois connections: here we used an additive variant, but looking at
multiplicative variants (multiplication by a constant factor) might also be fruit-
ful.

Acknowledgements: We are grateful to Ichiro Hasuo for making us aware of
stochastic games as application domain. Furthermore we would like to thank
Matthias Kuntz and Timo Matt for their help with experiments.
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