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Abstract We introduce a new measure on regular languages: their non-
deterministic syntactic complexity. It is the least degree of any extension
of the ‘canonical boolean representation’ of the syntactic monoid. Equival-
ently, it is the least number of states of any subatomic nondeterministic
acceptor. It turns out that essentially all previous structural work on non-
deterministic state-minimality computes this measure. Our approach rests
on an algebraic interpretation of nondeterministic finite automata as de-
terministic finite automata endowed with semilattice structure. Crucially,
the latter form a self-dual category.

1 Introduction

Regular languages admit a plethora of equivalent representations: finite automata,

finite monoids, regular expressions, formulas of monadic second-order logic, and

numerous others. In many cases, the most succinct representation is given by a

nondeterministic finite automaton (nfa). Therefore, the investigation of state-

minimal nfas is of both computational and mathematical interest. However, this

turns out to be surprisingly intricate; in fact, the task of minimizing an nfa, or even

of deciding whether a given nfa is minimal, is known to be PSPACE-complete [23].

One intuitive reason is that minimal nfas lack structure: a language may have

many non-isomorphic minimal nondeterministic acceptors, and there are no clearly

identified and easily verifiable mathematical properties distinguishing them from

non-minimal ones. As a consequence, all known algorithms for nfa minimization

(and related problems such as inclusion or universality testing) require some form

of exhaustive search [9, 11,26]. This sharply contrasts the situation for minimal

deterministic finite automata (dfa): they can be characterized by a universal

property making them unique up to isomorphism, which immediately leads to

efficient minimization.

In the present paper, we work towards the goal of bringing more structure

into the theory of nondeterministic state-minimality. To this end, we propose a

novel algebraic perspective on nfas resting on boolean representations of monoids,

i.e. morphismsM → JSL(S, S) from a monoidM into the endomorphism monoid

? Supported by Deutsche Forschungsgemeinschaft (DFG) under projects MI 717/5-2
and MI 717/7-1, and as part of the Research and Training Group 2475 “Cybercrime
and Forensic Computing” (393541319/GRK2475/1-2019)

?? Supported by Deutsche Forschungsgemeinschaft (DFG) under proj. SCHR 1118/8-2
© The Author(s) 2021
S. Kiefer and C. Tasson (Eds.): FOSSACS 2021, LNCS 12650, pp. 448–468, 2021.
https://doi.org/10.1007/978-3-030-71995-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71995-1_23&domain=pdf


Nondeterministic Syntactic Complexity 449

of a finite join-semilattice S. Our focus lies on quotient monoids of the free monoid

Σ∗ recognizing a given regular language L ⊆ Σ∗. The largest such monoid is Σ∗

itself, while the smallest one is the syntactic monoid syn(L). For both of them, L
induces a canonical boolean representation

Σ∗ → JSL(SLD(L), SLD(L) and syn(L)→ JSL(SLD(L), SLD(L))

on the semilattice SLD(L) of all finite unions of left derivatives of L. The first

representation gives rise to an algebraic characterization of minimal nfas:

Theorem. The size of a state-minimal nfa for L equals the least degree of any

extension of the canonical representation of Σ∗ induced by L.

Here, the degree of a representation refers to the number of join-irreducibles of the

underlying semilattice. In the light of this result, it is natural to ask for an ana-

logous automata-theoretic perspective on the canonical representation of syn(L)

and its extensions. For this purpose, we introduce the class of subatomic nfas, a

generalization of atomic nfas earlier introduced by Brzozowski and Tamm [6]. In

order to get a handle on them, we employ an algebraic framework that interprets

nfas in terms of JSL-dfas, i.e. deterministic finite automata in the category

of semilattices. In this setting, the semilattice SLD(L) used in the canonical

representations naturally arises as the minimal JSL-dfa for the language L. We

shall demonstrate that much of the structure theory of (sub-)atomic nfas reduces

to the observation that the category of JSL-dfas is self-dual. Our main result

gives an algebraic characterization of minimal subatomic nfas:

Theorem. The size of a state-minimal subatomic nfa for L equals the least

degree of any extension of the canonical representation of syn(L).

We call the measure suggested by the above theorem the nondeterministic
syntactic complexity of the language L. It turns out to be extremely natural: as

illustrated in Section 5, essentially all existing work on the structure of state-

minimal nfas implicitly identifies classes of languages whose nondeterministic

state complexity equals their nondeterministic syntactic complexity, and thus is

actually concerned with computing minimal subatomic acceptors.

2 Preliminaries

We start by introducing some notation and terminology used in the paper.

Semilattices. A (join-)semilattice is a poset (S,≤S) in which every finite subset

X ⊆ S has a least upper bound, a.k.a. join, denoted by
∨
X. A morphism of

semilattices is a map preserving all finite joins. Let JSL denote the category

of join-semilattices and their morphisms. An element j of a semilattice S is

join-irreducible if for all finite subsets X ⊆ S with j =
∨
X one has j ∈ X. Let

J(S) = { j ∈ S : j is join-irreducible }.

Let 2 = {0, 1} denote the two-element semilattice with 0 ≤ 1. Since 2 ∼= (P(1),⊆)

is the free semilattice on a single generator, morphisms from 2 into a semilattice S
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correspond uniquely to elements of S. Similarly, a morphism f : S → 2 corresponds

uniquely to a prime filter F = f−1[1] ⊆ S, i.e. an upwards closed subset such

that
∨
X ∈ F implies X ∩ F 6= ∅ for every finite subset X ⊆ S. If S is finite,

prime filters are precisely the sets F = {s ∈ S : s 6≤ s0} for s0 ∈ S. If S is a

subsemilattice of a semilattice T , every prime filter F of S can be extended to the

prime filter T \ (↓(S \ F )) of T , where ↓X = { t ∈ T : t ≤ x for some x ∈ X }
denotes the down-closure of a subset X ⊆ T . Equivalently, every morphism

f : S → 2 can be extended to a morphism g : T → 2. In category-theoretic

terminology, this means that the semilattice 2 forms an injective object of JSL.

The category JSLf of finite semilattices is self-dual [25]. The equivalence

functor JSLf
'−→ JSL

op
f sends a semilattice S to its dual semilattice Sop obtained

by reversing the order, and a morphism f : S → T to the morphism f∗ : T op → Sop

mapping t ∈ T to the ≤S-largest element s ∈ S with f(s) ≤T t. Note that f is

adjoint to f∗: for s ∈ S and t ∈ T we have f(s) ≤T t iff s ≤S f∗(t).

Languages. A language is a subset L of Σ∗, the set of finite words over an alphabet

Σ. We let L = Σ∗ \L denote the complement and Lr = {wr : w ∈ L} the reverse,
where wr = an . . . a1 for w = a1 . . . an. The left derivatives, right derivatives and

two-sided derivatives of L are, respectively, given by u−1L = {w ∈ Σ∗ : uw ∈ L},
Lv−1 = {w ∈ Σ∗ : wv ∈ L} and u−1Lv−1 = {w ∈ Σ∗ : uwv ∈ L} for u, v ∈ Σ∗.
More generally, for U ⊆ Σ∗ the language U−1L =

⋃
u∈U u

−1L is called the left
quotient of L w.r.t. U . We define the following sets of languages generated by L:

– LD(L) = {u−1L : u ∈ Σ∗}, the set of all left derivatives of L;

– SLD(L), its closure under finite union;

– BLD(L), its closure under all set-theoretic boolean operations;

– BLRD(L), its closure under all boolean operations and right derivatives.

In other words, SLD(L) is the ∪-semilattice of all left quotients of L, or equival-
ently, the ∪-subsemilattice of P(Σ∗) generated by all left derivatives. Moreover,

BLD(L) and BLRD(L) form the boolean subalgebras of P(Σ∗) generated by all

left derivatives and all two-sided derivatives, respectively.

3 Duality Theory of Semilattice Automata

In this section, we set up the algebraic framework in which nondeterministic

automata can be studied. Since it involves considering several different types of

automata, it is convenient to view them all as instances of a general categorical

concept. For the rest of this paper, let Σ denote a fixed finite input alphabet.

Definition 3.1. Let C be a category and let X,Y ∈ C be two fixed objects.

An automaton in C is a quadruple (S, δ, i, f) consisting of an object S ∈ C of

states, a family δ = (δa : S → S)a∈Σ of morphisms representing transitions, and
two morphisms i : X → S and f : S → Y representing initial and final states
(see the left-hand diagram below). A morphism between automata (S, δ, i, f) and

(S′, δ′, i′, f ′) is given by a morphism h : S → S′ in C preserving transitions, initial
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states and final states, i.e. making the right-hand diagram below commute for all

a ∈ Σ:

X
i // S

δa

�� f
// Y

X
i //

i′ $$

S
δa //

h ��

S

h��

f
// Y

S′
δ′a

// S′
f ′

::

Let Aut(C ) denote the category of automata in C and their morphisms.

Notation 3.2. We put δw := δan
◦ · · · ◦ δa1 for w = a1 . . . an in Σ∗.

Example 3.3. (1) An automaton D = (S, δ, i, f) in Set, the category of sets

and functions, with X = 1 and Y = 2, is precisely a classical deterministic
automaton. It is called a dfa if S is finite. We identify the map i : 1→ S with an

initial state s0 = i(∗) ∈ S, and the map f : S → 2 with a set F = f−1[1] ⊆ S
of final states. The language L(D, s) accepted by a state s ∈ S is the set of all

words w ∈ Σ∗ such that δw(s) ∈ F . The language L(D) accepted by D is the

language accepted by the state s0.

(2) An automaton N = (S, δ, i, f) in Rel, the category of sets and relations,

with X = Y = 1, is precisely a classical nondeterministic automaton. It is called
an nfa if S is finite. We identify i ⊆ 1× S with a set I ⊆ S of initial states and

f ⊆ S × 1 with a set F ⊆ S of final states. Thus, in our view an nfa may have

multiple initial states. The language L(N,R) accepted by a subset R ⊆ S consists

of all w ∈ Σ∗ such that (r, s) ∈ δw for some r ∈ R and s ∈ F . The language

L(N) accepted by N is the language accepted by the set I.

(3) An automaton A = (S, δ, i, f) in JSL with X = Y = 2, shortly a JSL-
automaton, is given by a semilattice S of states, a family δ = (δa : S → S)a∈Σ
of semilattice morphisms specifying transitions, an initial state s0 ∈ S (corres-

ponding to i : 2→ S), and a prime filter F ⊆ S of final states (corresponding to

f : S → 2). It is called a JSL-dfa if S is finite. The language accepted by a state

s ∈ S or by the automaton A, resp., is defined as for deterministic automata.

Remark 3.4 (JSL-dfas vs. nfas). Dfas, nfas and JSL-dfas are expressively

equivalent; they all accept precisely the regular languages. The interest of JSL-

dfas is that they constitute an algebraic representation of nfas:

(1) Every JSL-dfa A = (S, δ, s0, F ) induces an equivalent nfa J(A) on the set

J(S) of join-irreducibles of S. Given s, t ∈ J(S) and a ∈ Σ, there is a transition

s
a−→ t in J(A) iff t ≤ δa(s); the initial states are those s ∈ J(S) with s ≤ s0, and

the final states form the set J(S) ∩ F .
(2) Conversely, for every nfa N = (Q, δ, I, F ), the subset construction yields an

equivalent JSL-dfa P(N) with states P(Q) (the ∪-semilattice of subsets of Q),
transitions Pδa : P(Q) → P(Q), X 7→ δa[X], initial state I ∈ P(Q), and final

states those subsets of Q containing some state from F . Note that J(P(Q)) ∼= Q.

It follows that the task of finding a state-minimal nfa for a given language is

equivalent to finding a JSL-dfa with a minimum number of join-irreducibles [4].

This idea has recently been extended to a general coalgebraic framework [32,39].
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Recall that the minimal dfa [7] for a regular language L, denoted by dfa(L),

has states LD(L) (the set of left derivatives of L), transitions K
a−→ a−1K for

K ∈ LD(L) and a ∈ Σ, initial state L = ε−1L, and final states those K ∈ LD(L)

containing ε. Up to isomorphism, it can be characterized as the unique dfa

accepting L that is reachable (i.e. every state is reachable from the initial state

via transitions) and simple (i.e. any two distinct states accept distinct languages).

We now develop the analogous concepts for JSL-automata; they are instances of

the categorical theory of minimality due to Arbib and Manes [3] and Goguen [15].

Let us first observe that every language has two canonical infinite JSL-acceptors:

Definition 3.5. Let L ⊆ Σ∗ be a language.

(1) The initial JSL-automaton Init(L) for L has states Pf(Σ
∗) (the ∪-semilattice

of finite subsets of Σ∗), initial state {ε}, final states all X ∈ Pf(Σ
∗) with

X ∩ L 6= ∅, and transitions X 7→ Xa = {xa : x ∈ X} for X ∈ Pf(Σ
∗) and

a ∈ Σ.

(2) The final JSL-automaton Fin(L) for L has states P(Σ∗) (the ∪-semilattice

of all languages), initial state L, final states all languages K containing ε, and
transitions K 7→ a−1K for K ∈ P(Σ∗) and a ∈ Σ.

As suggested by the terminology, these automata form the initial and the final

object in the category of JSL-automata accepting L:

Lemma 3.6 [3, 15]. For every JSL-automaton A = (S, δ, s0, F ) accepting the
language L ⊆ Σ∗, there exist unique JSL-automata morphisms

eA : Init(L)→ A and mA : A→ Fin(L).

The map eA sends {w1, . . . , wn} ∈ Pf(Σ
∗) to the state

∨n
i=1 δwi(s0), and the map

mA sends a state s ∈ S to L(A, s), the language accepted by s.

Definition 3.7. A JSL-automaton A = (S, δ, s0, F ) is called

(1) reachable if the unique morphism eA : Init(L) → A is surjective, i.e. every

state is of the form
∨n
i=1 δwi

(s0) for some w1, . . . , wn ∈ Σ∗;
(2) simple if the unique morphism mA : A → Fin(L) in injective, i.e. any two

distinct states accept distinct languages;

(3) minimal if it is both reachable and simple.

Remark 3.8. (1) The category Aut(JSL) has a factorization system given by

surjective and injective morphisms. Thus, for every JSL-automata morphism

h : (S, δ, i, f) → (S′, δ′, i′, f ′) with image factorization h = (S
e // //S′′ // m //S′ )

in JSL, there exists a unique JSL-automaton structure (S′′, δ′′, i′′, f ′′) on S′′

making both e and m automata morphisms. We call e the coimage and m the

image of h. Subautomata and quotient automata of JSL-automata are represented

by injective and surjective morphisms, respectively.
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(2) Every JSL-automaton A has a unique reachable subautomaton reach(A) �
A, the reachable part of A. It is the smallest subautomaton of A and arises as

the image of the unique morphism eA : Init(L)→ A. Thus,

A is reachable iff A ∼= reach(A) iff A has no proper subautomaton.

Let us emphasize that a state in reach(A) is not necessarily reachable when A is

viewed as an ordinary dfa. For distinction, we thus call a state JSL-reachable if

it lies in reach(A), and dfa-reachable if it is reachable in the usual sense.

(3) Dually, every JSL-automaton A has a unique simple quotient automaton

A� simple(A), the simplification of A. It is the smallest quotient automaton of

A and arises as the coimage of the unique morphism mA : A→ Fin(L). Thus,

A is simple iff A ∼= simple(A) iff A has no proper quotient automaton.

(4) Every language L ⊆ Σ∗ has a minimal JSL-automaton, unique up to iso-

morphism. It can be constructed as the image of the unique automata morphism

hL : Init(L) → Fin(L). Since hL sends {w1, . . . , wn} ∈ Pf(Σ
∗) to the language⋃n

i=1 w
−1
i L, the minimal automaton of L is the subautomaton SLD(L) of Fin(L)

carried by the semilattice of finite unions of left derivatives of L.

Example 3.9. The minimal JSL-dfa accepting L = {a, aa} is shown below,
with the dashed lines representing the partial order.

{ε, a}−1L
a

��

a−1L

a

��
L

a
ll

oo

(aa)−1L

a
22 ∅ a

ww

Remark 3.10. The self-duality of JSLf lifts to a self-duality of the category of

JSL-dfas. The equivalence functor Aut(JSLf)
'−→ Aut(JSLf)

op maps a JSL-dfa

A = (S, (δa : S → S)a∈Σ , i : 2→ S, f : S → 2) to its dual automaton

Aop = (Sop, (δ∗a : Sop → Sop)a∈Σ , f
∗ : 2→ Sop, i∗ : Sop → 2),

using that 2op ∼= 2. Thus, the initial state of Aop is the ≤S-largest non-final state
of A, and its final states are those s ∈ S with s0 6≤S s. Given s, t ∈ S and a ∈ Σ,

there is a transition s
a−→ t in Aop iff t is the ≤S-largest state with δa(t) ≤S s.

The dualization of JSL-dfas can be seen as an algebraic generalization of the

reversal operation on nfas. Recall that the reverse of an nfa N is the nfa N r

obtained by flipping all transitions and swapping initial and final states. If N
accepts the language L, then N r accepts the reverse language Lr.

Lemma 3.11. For each nfa N = (Q, δ, I, F ), we have the JSL-dfa isomorphism

[P(N)]op ∼=−→ P(N r), X 7→ X = Q \X.
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The following lemma summarizes some important properties of Aop:

Lemma 3.12. Let A = (S, δ, i, f) be a JSL-dfa.
(1) For every s ∈ S, we have L(Aop, s) = {w ∈ Σ∗ : δwr (s0) 6≤S s }.
(2) If A accepts the language L, then Aop accepts the reverse language Lr.
(3) We have [reach(A)]op ∼= simple(Aop). Thus, A is reachable iff Aop is simple.
Our next goal is to give, for every regular language L, dual characterizations
of SLD(L), BLD(L) and BLRD(L), the JSL-subautomata of Fin(L) carried by

all finite unions of left derivatives, boolean combinations of left derivatives and

boolean combinations of two-sided derivatives, respectively. These results form

the core of our duality-based approach to (sub-)atomic nfas in the next section.

The minimal JSL-dfa SLD(L) admits the following dual description:

Proposition 3.13. For every regular language L, the minimal JSL-dfas for L
and Lr are dual. More precisely, we have the JSL-dfa isomorphism

drL : [SLD(Lr)]op ∼=−→ SLD(L), K 7→ (Kr)−1L.

Remark 3.14. (1) The isomorphism drL induces a bijection between the left
and right factors of L, i.e. the inclusion-maximal left/right solutions of X ·Y ⊆ L.
Conway [10] observed that the left and right factors are respectively {Kr : K ∈
SLD(Lr)} and {K : K ∈ SLD(L)} and that they biject. Backhouse [5] observed

that they are dually isomorphic posets. Proposition 3.13 provides an explicit

automata-theoretic lattice isomorphism arising canonically via duality.

(2) The isomorphism drL is tightly connected to the dependency relation [18,20]

of a regular language L, i.e. the binary relation given by

DRL ⊆ LD(L)× LD(Lr), DRL(u−1L, v−1Lr) :⇐⇒ uvr ∈ L.

Its restriction DRjL := DRL ∩ J(SLD(L))× J(SLD(Lr)) to the ∪-irreducible left

derivatives of L and Lr is called the reduced dependency relation. The following

theorem shows that the semilattice of left quotients and the dependency relation

are essentially the same concepts. In part (3), we use that the isomorphism

drL restricts to a bijection between the ∪-irreducible derivatives of Lr and the

meet-irreducible elements of the lattice SLD(L).

Theorem 3.15 (Dependency theorem).

(1) We have the JSL-isomorphism

SLD(L)
∼=−→ ({DRL[X] : X ⊆ LD(L)},∪, ∅), K 7→ {v−1Lr : v ∈ Kr }.

Note that its codomain forms a subsemilattice of P(LD(Lr)).
(2) For all u, v ∈ Σ∗ we have DRL(u−1L, v−1Lr) ⇐⇒ u−1L * drL(v−1Lr).
(3) The following diagram in Rel commutes:

J(SLD(Lr)) ∼=
drL // M(SLD(L))

J(SLD(L))

DRj
L

OO

J(SLD(L))

*
OO
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Let us now turn to a dual characterization of the JSL-dfa BLD(L):

Proposition 3.16. For every regular language L, the JSL-dfa BLD(L) is dual
to the subset construction of the minimal dfa for Lr:

[BLD(L)]op ∼= P(dfa(Lr)).

The isomorphism maps {w−1
1 Lr, . . . , w−1

n Lr} ∈ P(dfa(Lr)) to
⋂n
i=1 At(wr

i), where
At(x) is the unique atom (= join-irreducible) of BLD(L) containing x.

To state the dual characterization of BLRD(L), we recall two standard concepts

from algebraic language theory [33]. The transition monoid of a deterministic

automaton D = (S, δ, i, f) is the image tm(D) ⊆ Set(S, S) of the morphism

Σ∗ → Set(S, S), w 7→ δw.

Thus, tm(M) is carried by the set of extended transition maps δw (w ∈ Σ∗) with
multiplication given by δv • δw = δvw and unit idS = δε : S → S. We may view

tm(D) as a deterministic automaton with initial state idS , final states all δw such

that w is accepted by D, and transitions δw
a−→ δwa for w ∈ Σ∗ and a ∈ Σ. This

automaton accepts the same language as D. The syntactic monoid syn(L) of a

regular language L ⊆ Σ∗ is the transition monoid of its minimal dfa:

syn(L) = tm(dfa(L)).

Equivalently, syn(L) is the quotient monoid of the free monoid Σ∗ modulo the

syntactic congruence of L, i.e the monoid congruence on Σ∗ given by

v ≡L w iff ∀x, y ∈ Σ∗ : xvy ∈ L ⇐⇒ xwy ∈ L.

The associated surjective monoid morphism µL : Σ∗ � syn(L), mapping w ∈ Σ∗
to its congruence class [w]L ∈ syn(L), is called the syntactic morphism.

Proposition 3.17. For every regular language L, the JSL-dfa BLRD(L) is dual
to the subset construction of syn(Lr), viewed as a dfa:

[BLRD(L)]op ∼= P(syn(Lr)).

The isomorphism maps { [w1]Lr , . . . , [wn]Lr } ∈ P(syn(Lr)) to
⋂n
i=1 At(wir), with

At(x) denoting the unique atom of BLRD(L) containing x.

Our final duality result in this section concerns the transition semiring [35], a

generalization of the transition monoid to JSL-automata. Note that the monoid

JSL(S, S) of endomorphisms of a semilattice S forms an idempotent semiring with

join defined pointwise: for any f, g : S → S, the morphism f ∨ g : S → S is given

by s 7→ f(s) ∨ g(s). The transition semiring of a JSL-automaton A = (S, δ, i, f)

is the image ts(A) ⊆ JSL(S, S) of the semiring morphism

Pf(Σ
∗)→ JSL(S, S), {w1, . . . , wn} 7→

n∨
i=1

δwi
.
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Here Pf(Σ
∗) is the free idempotent semiring on Σ, with composition given by

concatenation of languages and join given by union. Thus, ts(A) is the semi-

ring carried by all morphisms
∨n
i=1 δwi

for w1, . . . , wn ∈ Σ∗, with join given

as above and multiplication
∨
j δvj

•
∨
i δwi

=
∨
i,j δvjwi

. We view ts(A) as a

JSL-automaton with initial state idS = δε, final states all
∨
i δwi such that some

wi is accepted by A, and transitions
∨n
i=1 δwi

a−−→
∨n
i=1 δwia for w1, . . . , wn ∈ Σ∗

and a ∈ Σ. This JSL-automaton is reachable and accepts the same language as

A. It has the following dual characterization:

Notation 3.18. Given a simple JSL-automaton A = (S, δ, i, f), the subauto-

maton of Fin(L) obtained by closing S (viewed as a set of languages) under right

derivatives is called the right-derivative closure of A and denoted rdc(A).

Proposition 3.19. Let A be a reachable JSL-dfa. Then the transition semiring
of A, viewed as a JSL-dfa, is dual to the right-derivative closure of Aop:

[ts(A)]op ∼= rdc(Aop).

Note that both [ts(A)]op and rdc(Aop) are simple, hence subautomata of Fin(L).

Thus, the isomorphism just expresses that their states accept the same languages.

4 Boolean Representations and Subatomic NFAs

Based upon the duality results of the previous section, we will now introduce our

algebraic approach to nondeterministic state minimality. It rests on the concept

of a representation of a monoid on a finite semilattice.

Definition 4.1 (Boolean representation). Let M be a monoid.

(1) A boolean representation of M is given by a finite semilattice S together with

a monoid morphism ρ : M → JSL(S, S). The degree of ρ is

deg(ρ) := |J(S)|.

(2) Given boolean representations ρi : M → JSL(Si, Si), i = 1, 2, an equivariant
map f : ρ1 → ρ2 is a JSL-morphism f : S1 → S2 such that

f(ρ1(m)(s)) = ρ2(m)(f(s)) for all m ∈M and s ∈ S1.

If f is injective, we say that the representation ρ2 extends ρ1.

Remark 4.2. (1) The above representations are called boolean because sem-

ilattices are precisely semimodules over the boolean semiring 2 = {0, 1} with

1 + 1 = 1. For more on representations over general commutative semirings,

see [21].

(2) The category of boolean representations of M coincides with the functor

category JSLMf , viewing M as a one object category.
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Definition 4.3 (Canonical representation). For every regular language L,
the canonical boolean representation of the syntactic monoid syn(L) is given by

κL : syn(L)→ JSL(SLD(L), SLD(L)), [w]L 7→ λK.w−1K.

It induces the canonical boolean presentation of the free monoid Σ∗ given by

κL ◦ µL : Σ∗ → JSL(SLD(L), SLD(L)), w 7→ λK.w−1K,

where µL : Σ∗ � syn(L) is the syntactic morphism.

The representation κL ◦ µL amounts to constructing the transition semiring of

the minimal JSL-automaton SLD(L), i.e. the syntactic semiring [35] of L.

Example 4.4. We describe the canonical boolean representation κLn
for the

language Ln := (0 + 1)∗1(0 + 1)n, n ∈ N. Let S := 2n+1
⊥ be the semilattice

of binary words of length n+ 1, ordered pointwise, with an additional bottom

element ⊥. Then SLD(Ln) is isomorphic to S, as witnessed by the isomorphism

f : S
∼=−→ SLD(Ln), f(⊥) = ∅, f(w) = w−1Ln.

Thus, κLn is isomorphic to the representation ρ : syn(Ln)→ JSL(S, S) where:

(1) ρ([0]Ln) : S → S performs a left-shift (distinct from left-rotate);

(2) ρ([1]Ln) : S → S performs a left-shift and sets the last bit as 1.

Finally, deg(κLn) = deg(ρ) = 1 + |J(2n+1)| = n + 2 is the number of states of

the usual minimal nfa for L.

Example 4.5. We describe the canonical boolean presentation κL for the lan-

guage L = a1(a2 +a3)+a2(a1 +a3)+a3(a1 +a2) over Σ = {a1, a2, a3}. Consider
the ∪-semilattice M3 = {∅, {a1, a2}, {a1, a3}, {a2, a3}, Σ}. Then SLD(L) is iso-

morphic to the product semilattice 2×M3 × 2 via the map

f : SLD(L)
∼=−→ 2×M3 × 2, f(X) = (X ∩Σ2, X ∩Σ,X ∩ {ε}).

Note that the first and third component is either ∅ or one other set, i.e. it may be

identified with the elements of 2. For i = 1, 2, 3 we define the following semilattice

morphisms:

αi : 2→M3, αi(1) = Σ \ {ai};
βi : M3 → 2, βi(S) = 1 ⇐⇒ ai ∈ S;

γ : 2→ 2 γ(1) = 0;

δ : M3 × 2× 2→ 2×M3 × 2, δ(x, y, z) = (z, x, y).

Then κL is isomorphic to ρ : syn(L)→ JSL(2×M3 × 2, 2×M3 × 2) where

ρ([ai]L) = ( 2×M3 × 2
αi×βi×γ−−−−−−→M3 × 2× 2

δ−→ 2×M3 × 2 ).

Thus, deg(κL) = deg(ρ) = 1 + 3 + 1 = 5. An analogous description of κL exists

for any language L where each word has the same length.
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The next theorem links minimal nfas and representations.

Definition 4.6. The nondeterministic state complexity ns(L) of a regular lan-

guage L is the least number of states of any nfa accepting L.

Theorem 4.7. For every regular language L, the nondeterministic state com-
plexity ns(L) is the least degree of any boolean representation extending the
canonical representation κL ◦ µL : Σ∗ → JSL(SLD(L), SLD(L)).

Proof (Sketch).
(1) Given a k-state nfa N = (Q, δ, I, F ) accepting L, consider the subsemilattice

langs(N) = simple(P(N)) of P(Σ∗) on all languages accepted by subsets of Q.
The embedding SLD(L) � langs(N) yields an extension of κL ◦ µL. Since the

semilattice langs(N) is generated by the languages accepted by single states of

N , this extension has degree at most k.

(2) Conversely, let ρ : Σ∗ → JSL(S, S) be a boolean representation of degree k
extending κL ◦ µL, witnessed by an injective equivariant map h : SLD(L) � S.
One can equip S with a JSL-dfa structure making h an automata morphism.

Since morphisms preserve accepted languages, it follows that S accepts L. Then
the nfa of join-irreducibles of S, see Remark 3.4, is a k-state nfa accepting L. ut

As an application, let us return to the dependency relation DRL introduced

in Remark 3.14(2). Recall that a biclique of a relation R ⊆ X × Y (viewed as

a bipartite graph) is a subset of the form X ′ × Y ′ ⊆ R, where X ′ ⊆ X and

Y ′ ⊆ Y . A biclique cover of R is a set C of bicliques with R =
⋃

C . The bipartite
dimension dim(R) is the least cardinality of any biclique cover of R.

Theorem 4.8 (Gruber-Holzer [18]). For every regular language L, we have

dim(DRL) ≤ ns(L).

We give a new algebraic proof of this result based on boolean representations.

Proof. (1) The task of computing biclique covers is well-known to be equivalent

to the set basis problem. Given a family C ⊆ P(Y ) of subsets of a finite set

Y , a set basis for C is a family B ⊆ P(Y ) such that each element of C can be

expressed as a union of elements of B. A relation R ⊆ X ×Y has a biclique cover

of size k iff the family CR = {R[x] : x ∈ X} ⊆ P(Y ) of neighborhoods of nodes

in X has a set basis of size k.

(2) Given an instance C ⊆ P(Y ) of the set basis problem, consider the ∪-
subsemilattice 〈C〉 ⊆ P(Y ) generated by C, i.e. the semilattice of all unions of

sets in C. We claim that C has a set basis of size at most k iff there exists an

extension of 〈C〉 of degree at most k, i.e. a monomorphism 〈C〉� S into some

finite semilattice S with |J(S)| ≤ k.
For the “only if” direction, suppose that B ⊆ P(Y ) is a set basis of C of size

at most k. The the embedding 〈C〉� 〈B〉 gives an extension of 〈C〉 with the
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desired property: since the semilattice 〈B〉 has a set of generators with at most k
elements, it has at most k join-irreducibles.

For the “if” direction, suppose that m : 〈C〉 � S with |J(S)| ≤ k is given.

Since the free semilattice P(Y ) is an injective object of JSL [19, Corollary 2.9],

there exists a morphism f : S → P(Y ) extending the embedding 〈C〉� P(Y ).

Consider the image S′ ⊆ P(Y ) of f , leading to the commutative diagram below:

〈C〉
%%

⊆ %%

// m // S

f
��

e // // S′yy

⊆yy

P(Y )

We thus have 〈C〉 ⊆ S′ ⊆ P(Y ). Every set of generators of the semilattice S′ is
a basis of C. Since the morphism e is surjective, we have |J(S′)| ≤ |J(S)| ≤ k,
i.e. S′ has a set of generators with at most k elements.

(3) Let CDRL
⊆ P(LD(Lr)) be the instance of the set basis problem corres-

ponding to the dependency relation DRL ⊆ LD(L)× LD(Lr). Note that 〈CDRL
〉

consists of all DRL[X] for X ⊆ LD(L). Thus, Theorem 3.15(1) shows that

〈CDRL
〉 ∼= SLD(L). In particular, every extension of the canonical boolean repres-

entation of Σ∗ yields an extension of the semilattice 〈CDRL
〉 of the same degree.

Therefore, by part (1) and (2) and Theorem 4.7, we have dim(DRL) ≤ ns(L), as

required.

Theorem 4.7 motivates the following definition, which can be considered the key

concept of our paper:

Definition 4.9. The nondeterministic syntactic complexity nµ(L) of a regular

language L is the least degree of any boolean representation of syn(L) extending

the canonical boolean representation κL : syn(L)→ JSL(SLD(L), SLD(L)).

Just like the degrees of boolean representations of Σ∗ determine the state com-

plexity of nfas, we will provide an automata-theoretic characterization of nµ(L)

in terms of subatomic nfas in Theorem 4.14 below.

Definition 4.10. An nfa accepting the language L is called

(1) atomic if each state accepts a language from BLD(L), and

(2) subatomic if each state accepts a language from BLRD(L).

The notion of an atomic nfa goes back to Brzozowski and Tamm [6], as does the

following characterization.

Notation 4.11. For any nfa N , let rsc(N) denote the dfa obtained via the

reachable subset construction, i.e. the dfa-reachable part of P(N).

Theorem 4.12. An nfa N is atomic iff rsc(N r) is a minimal dfa.

We present a new conceptual proof, interpreting this theorem as an instance of

the self-duality of JSL-dfas.
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Proof (Sketch). Let L be the language accepted by N . We establish the theorem

by showing each of the following statements to be equivalent to the next one:

(1) N is atomic.

(2) There exists a JSL-automata morphism from P(N) to BLD(L).

(3) There exists a JSL-automata morphism from P(dfa(Lr)) to P(N r).

(4) There exists a dfa morphism from dfa(Lr) to P(N r).

(5) There exists a dfa morphism from dfa(Lr) to rsc(N r).

(6) rsc(N r) is a minimal dfa.

The key step is (2)⇔(3), which follows via duality from Lemmas 3.11 and 3.12,

and Proposition 3.16. All remaining equivalences follow from the definitions. ut
The next theorem gives an analogous characterization of subatomic nfas. Again,

the proof is based on duality.

Theorem 4.13. An nfa N accepting the language L is subatomic iff the trans-
ition monoid of rsc(N r) is isomorphic to the syntactic monoid syn(Lr).

Proof (Sketch). Each of the following statements is equivalent to the next one:

(1) N is subatomic.

(2) There exists a JSL-dfa morphism from P(N) to BLRD(L).

(3) There exists a JSL-dfa morphism from rdc(simple(P (N))) to BLRD(L).

(4) There exists a JSL-dfa morphism from P(syn(Lr)) to ts(reach(P(N r))).

(5) There exists a dfa morphism from syn(Lr) to ts(reach(P(N r))).

(6) There exists a dfa morphism from syn(Lr) to tm(rsc(N r)).

(7) The monoids syn(Lr) and tm(rsc(N r)) are isomorphic.

The equivalence (3)⇔(4) follows via duality from Lemma 3.11, Proposition 3.17

and Proposition 3.19. All remaining equivalences follow from the definitions. ut

We are prepared to state the main result of our paper, an automata-theoretic

characterization of the nondeterministic syntactic complexity:

Theorem 4.14. For every regular language L, the nondeterministic syntactic
complexity nµ(L) is the least number of states of any subatomic nfa accepting L.

Proof (Sketch).
(1) Let N be a k-state subatomic nfa accepting the language L. As in the proof

of Theorem 4.7, we consider the semilattice langs(N) = simple(P(N)). Then

ρ : syn(L)→ JSL(langs(N), langs(N)), [w]L 7→ λK.w−1K,

is a representation of syn(L) of degree at most k extending κL.

(2) Conversely, let ρ : syn(L)→ JSL(S, S) be a boolean representation extending

κL, and let h : SLD(Q) � S be the embedding. As in the proof of Theorem 4.7,

we can equip S with the structure of a JSL-dfa making h an automata morphism.

Its nfa of join-irreducibles, see Remark 3.4, is a subatomic nfa accepting L with

deg(ρ) states. ut
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We conclude this section with the observation that the state complexity of

unrestricted nfas, subatomic nfas and atomic nfas generally differs:

Example 4.15 (Subatomic more succinct than atomic). Consider the
language L accepted by the nfa N shown below, along with the minimal dfas for
L and Lr. Each automaton has exactly one initial state, namely 0.

0

a,b��

b

��
1

b

��

b
??

2

a

__
a

rr

a
��

3 a
gg

a

__

1

b

��
a

��

0
aoo b // 2

??
b

��
a

��

3a

''
b

OO

4

a

��

5

b

OO

a
��

6

a

OO

b //
8

a
oo

b // 7 a,b
gg

0a

'' b //
1

a
oo

b //
2

a
oo

b

��

5a,b

''
4

a,b
oo 3

b

OO

a
oo

N dfa(L) dfa(Lr)

Brzozowski and Tamm [6] showed that there is no atomic nfa with four states

accepting L. However, N is subatomic: one can verify that the transition monoids

of dfa(Lr) and rsc(N r) both have 22 elements. Since the former is the syntactic

monoid of Lr, they are isomorphic, and so Theorem 4.13 applies.

Example 4.16 (Subatomic less succinct than general nfas). There is a

regular language for which no state-minimal nfa is subatomic:

L := { an : n ∈ N, n 6= 5 } ⊆ {a}∗.

It is accepted by the following nfa:

//

a

��

a

��

oo

a
//

a

__

a //

a

OO

An exhaustive search shows that no subatomic nfa with five states accepts L.
In fact, L is the unique (!) unary language with ns(L) ≤ 5 and ns(L) < nµ(L).

Moreover, the above nfa and its reverse are the only state-minimal nfas for L.

5 Applications

While subatomic nfas are generally less succinct then unrestricted ones, all struc-

tural results concerning nondeterministic state complexity we have encountered

in the literature are actually about nondeterministic syntactic complexity: they

implicitly identify classes of languages where the two measures coincide. In the

present section, we illustrate this in a few selected applications.
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5.1 Unary languages

For unary languages L ⊆ {a}∗, two-sided derivatives are left derivatives. Thus, a

unary nfa is atomic iff it is subatomic.

Example 5.1 (Cyclic unary languages). A unary language L is cyclic if

its minimal dfa is a cycle [16]. We claim that ns(L) = nµ(L). To see this, let

d := |LD(L)| be the period (i.e. number of states) of the minimal dfa. By Fact 1 of

[16] (originally from [22]) every state-minimal nfaN accepting L is a disjoint union

of cyclic dfas whose periods divide d.1 Then |rsc(N r)| = d: we have |rsc(N r)| ≥ d
since rsc(N r) is a dfa accepting L = Lr and d is the size of the minimal dfa for

L, and |rsc(N r)| ≤ d because after d steps, each cycle will be back in its initial

state. Thus N is atomic by Theorem 4.12 and hence subatomic.

We deduce the following result for (not necessarily unary) regular languages:

Theorem 5.2. If syn(L) is a cyclic group, then ns(L) = nµ(L).

Proof (Sketch). Suppose that syn(L) = tm(dfa(L)) is cyclic. Then there exists

w0 ∈ Σ∗ such that the map λX.w−1
0 X : LD(L) → LD(L) generates tm(dfa(L)).

Fix an alphabet Σ0 = {a0} disjoint from Σ and consider the unary language

L0 := { an0 : n ∈ N, wn0 ∈ L } ⊆ Σ∗0 .

Let g : Σ∗0 → Σ∗ be the monoid morphism where g(a0) := w0. Then we have the

JSL-isomorphism

f : SLD(L0)
∼=−→ SLD(L), f(X−1L0) := [g[X]]−1L.

For each a ∈ Σ choose na ∈ N such that a−1K = (wna
0 )−1K for all K ∈ LD(L).

The respective transition endomorphisms of the JSL-automata SLD(L0) and

SLD(L) determine each other in the sense that the following diagrams commute:

SLD(L0)
f

∼=
//

a−1
0 (−)

��

SLD(L)

w−1
0 (−)

��

SLD(L0)
f

∼= // SLD(L)

SLD(L0)
f

∼=
//

(ana
0 )−1(−)

��

SLD(L)

a−1(−)
��

SLD(L0)
f

∼= // SLD(L)

Then ns(L) = ns(L0) by Theorem 4.7 and nµ(L) = nµ(L0) by Theorem 4.14.

Moreover, by Example 5.1 we know that ns(L0) = nµ(L0), so the claim follows.

Example 5.3 (nµ(L) no larger than Chrobak normal form). A unary nfa

is in Chrobak normal form [8, 13] if it has a single initial state and at most one

state with multiple successors, all of which lie in disjoint cycles. We claim that

for any nfa N in Chrobak normal form accepting the language L, we have

nµ(L) ≤ |N |,
1 In [16] nfas are restricted to have a single initial state and so are distinguished from
unions of dfas; the latter are valid nfas from our perspective.
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where |N | denotes the number of states of N . To see this, observe that each state

of N up to and including the unique choice state accepts some left derivative of

L. The successors of the choice state collectively accept a derivative u−1L; this
language is cyclic because it is a finite union of cyclic languages. Therefore, by

Example 5.1 we may replace the cycles by an atomic nfa accepting u−1L, without
increasing the number of states. The resulting nfa is atomic.

Since every unary nfa on n states can be transformed into an nfa in Chrobak

normal form with O(n2) states [8, Lemma 4.3], we get:

Corollary 5.4. If L is a unary regular language, then nµ(L) = O(ns(L)2).

5.2 Languages with a canonical state-minimal nfa

There are several natural classes of regular languages for which canonical state-
minimal nondeterministic acceptors have been identified. We show that these

acceptors are actually subatomic. In our arguments, we frequently consider the

length of a finite semilattice S, i.e. the maximum length n of any ascending chain

s0 < s1 < . . . < sn in S. Note that since every element is uniquely determined

by the set of join-irreducibles below it, the length of S is at most |J(S)|.

Example 5.5 (Bideterministic and biseparable languages).

(1) A language is called bideterministic if it is accepted by a dfa whose reverse is

also a dfa. In this case, the minimal dfa is a minimal nfa [34,38]. Bideterministic

languages have been studied in the context of automata learning [2] and coding

theory, where they are known as rectangular codes [27,36]. We show that for

every bideterministic language L,

ns(L) = nµ(L) = |LD(L)|.

To this end, we first note that by [36, Theorem 3.1] a language L ⊆ Σ∗ is

bideterministic iff the left derivatives of L are pairwise disjoint. This implies that

SLD(L) is a boolean algebra with atoms LD(L). Since the length of a boolean

algebra equals the number of atoms (= join-irreducibles), we conclude that for

every finite semilattice extension SLD(L) � S, the semilattice S has length

at least |LD(L)|. Thus, |LD(L)| ≤ |J(S)|, so any representation ρ extending

κL or κL ◦ µL satisfies |LD(L)| ≤ deg(ρ). Hence, ns(L) = nµ(L) = |LD(L)| by
Theorem 4.7 and 4.14. In particular, the minimal dfa of L is a minimal nfa.

(2) A language L is biseparable if SLD(L) is a boolean algebra [28].2 For every

biseparable language L, the canonical residual automaton [12], i.e. the nfa NL
of join-irreducibles of the minimal JSL-dfa SLD(L), is a state-minimal nfa; it

is subatomic because every state of NL accepts a derivative of L. This follows
exactly as in (1): our argument only used that SLD(L) is a boolean algebra.

2 Actually [28] defines biseparability as a property of nfas, and characterizes biseparable
nfas as those accepting a language L for which no ∪-irreducible left derivative is
contained in the union of other ∪-irreducible left derivatives. This is equivalent to
the lattice SLD(L) being boolean, i.e. to L being ‘biseparable’ in our sense.
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Example 5.6 (Maximal reachability). A folklore result asserts that if N
is an nfa whose accepted language L satisfies |LD(L)| = 2|N |, then N is state-

minimal. Since LD(L) forms the set of states of the minimal dfa for L and rsc(N)

accepts L, we have rsc(N) = P(N). It follows the JSL-dfa P(N) is reachable

and simple, hence isomorphic to the minimal JSL-dfa SLD(L). This proves that

SLD(L) is a boolean algebra, i.e. L is a biseparable language. We conclude from

Example 5.5(2) that ns(L) = nµ(L) = |N | and NL is a subatomic minimal nfa.

Example 5.7 (BiRFSA and topological languages). So far SLD(L) has

been a boolean algebra. But the argument in Example 5.5 also applies when

SLD(L) is a distributive lattice, noting that the length of a finite distributive

lattice is equal to the number of its join-irreducibles [17, Corollary 2.14]. Languages

with this property are called topological [1]. It thus follows as in Example 5.5(2)

that for any topological language L, the canonical residual automaton NL is

subatomic and a state-minimal nfa. Thus, ns(L) = nµ(L) = |J(SLD(L))|.
There is another class of languages where NL is known to be a state-minimal

nfa, the biRFSA languages [28]. A language L is called biRFSA ifNL is isomorphic

to (NLr )
r
. Surprisingly, these languages are exactly the topological ones:

(1) Suppose that L is topological. Recall that NL is the nfa of join-irreducibles

of the minimal JSL-dfa. Thus, it has states J(SLD(L)) and transitions given by

X
a−→ Y iff Y ⊆ a−1X for a ∈ Σ. Moreover, a join-irreducible j is initial iff j ⊆ L

and final iff ε ∈ j. Since the lattice SLD(L) is distributive, we have a canonical

bijection between its join- and meet-irreducibles:

τ : J(SLD(L))
∼=−→M(SLD(L)), τ(j) =

⋃
{X ∈ SLD(L) : j * X}.

Let θ be the unique map making the following diagram commute, where drL is

the restriction of the isomorphism of Proposition 3.13:

J(SLD(L))
τ
∼= ''

θ
∼=ww

J(SLD(Lr))
drL

∼= // M(SLD(L))

One can show θ to be an nfa isomorphism from NL to (NLr )
r
. Thus, L is biRFSA.

(2) Suppose that L is biRFSA. Then we have a surjective JSL-morphism

[P(J(SLD(L)))]op ∼= P(J(SLD(Lr)))
eLr−−→ SLD(Lr) ∼= [SLD(L)]op,

where the first isomorphism follows from NL ∼= (NLr )
r
and Lemma 3.11, the

second isomorphism is given by Proposition 3.13, and eLr sends X ⊆ J(SLD(Lr))
to

⋃
X. The dual of this morphism is the injective JSL-morphism

mL : SLD(L) � P(J(SLD(L)))

sending K ∈ SLD(L) to the set of all j ∈ J(SLD(L)) with j ⊆ K. Note that

eL ◦mL = idSLD(Q), showing that SLD(L) is a retract of P(J(SLD(L))). Since

JSL-retracts of finite distributive lattices are distributive, see e.g. [31, Lemma

2.2.3.15], it follows that SLD(L) is distributive. Thus, L is topological.
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Example 5.8 (Extremal languages). Call a language extremal if SLD(L) has

length |J(SLD(L))| i.e. we have an extremal lattice in the sense of Markowsky

[29]. Again, the argument of Example 5.5 applies and we get ns(L) = nµ(L) =

|J(SLD(L))|. Topological languages are extremal since every distributive lattice

is an extremal lattice, although extremal languages need not be topological. Both

classes are naturally characterized in terms of the reduced dependency relation:

(1) L is topological iff DRjL is essentially an order relation ≤P ⊆ P × P of a

finite poset [30, Example 2.2.12].

(2) L is extremal iff DRjL is upper unitriangularizable [29, Theorem 11].

The latter means the adjacency matrix of the bipartite graph DRjL can be

put in upper triangular form with ones along the diagonal, by permuting rows

and columns. An order relation is upper unitriangularizable because it may be

extended to a linear order.

6 Conclusion and Future Work

Motivated by the duality theory of deterministic finite automata over semilattices,

we introduced a natural class of nondeterministic finite automata called subatomic
nfas and studied their state complexity in terms of boolean representations of

syntactic monoids. Furthermore, we demonstrated that a large body of previous

work on state minimization of general nfas actually constructs minimal subatomic

ones. There are several directions for future work.

As illustrated by Theorem 4.8, the dependency relation DRL forms a useful

tool for proving lower bounds on nfas. It is also a key element of the Kameda-

Weiner algorithm [26,37] for minimizing nfas, which rests on computing biclique

covers of DRL. We aim to give an algebraic interpretation of dependency rela-

tions based on the representation of finite semilattices by contexts [24], which

can be augmented to a categorical equivalence between JSLf and a suitable

category of bipartite graphs [31]. Under this equivalence, JSL-dfas correspond to

dependency automata; in particular, the minimal JSL-dfa SLD(L) corresponds

to a dependency automaton whose underlying bipartite graph is precisely the

dependency relation DRL. We expect that this observation can lead to a fresh

algebraic perspective on the Kameda-Weiner algorithm, as well as a generalization

of it computing minimal (sub-)atomic nfas.

On a related note, we also intend to investigate the complexity of the minim-

ization problem for (sub-)atomic nfas. While minimizing general nfas is PSPACE-

complete, even if the input automaton is a dfa, we conjecture that the additional

structure present in (sub-)atomic acceptors will simplify their minimization to

an NP-complete task. First evidence in this direction is provided by Geldenhuys,

van der Merve, and van Zijl [14] whose work implies that minimal atomic nfas

can be efficiently computed in practice using SAT solvers.
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