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Abstract. Most interaction with a computer is via graphical user in-
terfaces. These are traditionally implemented imperatively, using shared
mutable state and callbacks. This is efficient, but is also difficult to rea-
son about and error prone. Functional Reactive Programming (FRP)
provides an elegant alternative which allows GUIs to be designed in a
declarative fashion. However, most FRP languages are synchronous and
continually check for new data. This means that an FRP-style GUI will
“wake up” on each program cycle. This is problematic for applications
like text editors and browsers, where often nothing happens for extended
periods of time, and we want the implementation to sleep until new data
arrives. In this paper, we present an asynchronous FRP language for de-
signing GUIs called λWidget. Our language provides a novel semantics for
widgets, the building block of GUIs, which offers both a natural Curry–
Howard logical interpretation and an efficient implementation strategy.
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Introduction

Many programs, like compilers, can be thought of as functions – they take a single
input (a source file) and then produce an output (such as a type error message).
Other programs, like embedded controllers, video games, and integrated devel-
opment environments (IDEs), engage in a dialogue with their environment: they
receive an input, produce an output, and then wait for a new input that depends
on the prior input, and produce a new output which is in turn potentially based
on the whole history of prior inputs.

The usual techniques for programming interactive applications are often con-
fusing, since different parts of the program are not written to interact via struc-
tured control flow (e.g., by passing and return values from functions). Instead,
they communicate indirectly, via state-manipulating callbacks which are implic-
itly invoked by an event loop. This makes program reasoning very challenging,
since each of aliased mutable state, higher-order functions, and concurrency is
tricky on its own, and interactive programs rely upon their combination.

This challenge has led to a great deal of work on better abstractions for
programming reactive systems. Two of the main lines of work on this problem
are synchronous dataflow and functional reactive programming. The synchronous
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dataflow languages, like Esterel [5], Lustre [9], and Lucid Synchrone [28], fea-
ture a programming model inspired by Kahn networks. Programs are networks
of stream-processing nodes which communicate with each other, each node con-
suming and producing a fixed number of primitive values at each clock tick. The
first-order nature of these languages makes them strongly analysable, which lets
them offer powerful guarantees on space and time usage. This means they see
substantial use in embedded and safety-critical contexts.

Functional reactive programming, introduced by Elliott and Hudak [13], also
uses time-indexed values, dubbed signals, rather than mutable state as its ba-
sic primitive. However, FRP differs from synchronous dataflow by sacrificing
static analysability in favour of a much richer programming model. Signals are
true first-class values, and can be used freely, including in higher-order functions
and signal-valued signals. This permits writing programs with a dynamically-
varying dataflow network, which simplifies writing programs (such as GUIs) in
which the available signals can change as the program executes. Over the past
decade, a long line of work has refined FRP via the Curry–Howard correspon-
dence [21,18,17,19,20,10,1]. This approach views functional reactive programs as
the programming counterpart for proofs of formulas in linear temporal logic [27],
and has enabled the design of calculi which can rule out spacetime leaks [20] or
can enforce temporal safety and liveness properties [10].

However, both synchronous dataflow and FRP (in both original and modal
flavours) have a synchronous (or “pull”) model of time – time passes in ticks,
and the program wakes up on every tick to do a little bit more computation. This
is suitable for applications in which something new happens at every time step
(e.g., video games), but many GUI programs like text editors and spreadsheets
spend most of their time doing nothing. That is, even at each event, most of the
program will continue doing nothing, and we only want to wake up a component
when an event directly relevant to it occurs. This is important both from a
performance point of view, as well as for saving energy (and extending battery
life). Because of this need, most GUI programs continue to be written in the
traditional callbacks-on-mutable-state style.

In this paper, we give a reactive programming language whose type system
both has a very straightforward logical reading, and which can give natural types
to stateful widgets and the event-based programming model they encourage.
We also derive a denotational semantics of the language, by first working out a
semantics of widgets in terms of the operations that can be performed upon them
and the behaviour they should exhibit. Then, we find the categorical setting in
which the widget semantics should live, and by studying the structure this setup
has, we are able to interpret all of the other types of the programming language.

Contributions The contributions of this paper are:

– We give a descriptive semantics for widgets in GUI programming, and show
that this semantics correctly models a variety of expected behaviours. For
example, our semantics shows that a widget which is periodically re-set to
the colour red is different from a widget that was only persistently set to
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the colour red at the first timestep. Our semantic model can show that as
long as neither one is updated, they look the same, but that they differ if
they are ever set to blue – the first will return to red at reset time, and the
second will remain blue.

– From this semantics, we find a categorical model within which the widget
semantics naturally fits. This model is a Kripke–Joyal presheaf semantics,
which is morally a “proof-relevant” Kripke model of temporal logic.

– We give a concrete calculus for event-based reactive programming, which
can be implemented in terms of the standard primitives for modern GUI
programming, scene graphs (or DOM) which are updated via callbacks in-
voked upon events. We then show that our model can soundly interpret the
types of our calculus in an entirely standard way, showing that the types of
our reactive programming language can be interpreted as time-varying sets.

– Furthermore, this calculus has an entirely standard logical reading in terms of
the Curry–Howard correspondence. It is a “linear temporal linear logic”, with
the linear part of the language corresponding to the Benton–Wadler [3] LNL
calculus for linear logic, and the temporal part of the language corresponding
to S4.3 linear temporal logic. We also give a proof term for the St4.3 axiom
enforcing the linearity of time, and show that it corresponds to the select

primitive of concurrent programming.

The Language

We now present λWidget through the API of the Widget type. This API mirrors
how one would work with a GUI at the browser level. An important feature of a
well-designed GUI is that it should not do anything when not in use. In particu-
lar, it should not check for new inputs in each program cycle (pull -based reactive
programming), but rather sleep until new data arrives (push-based reactive pro-
gramming). Many FRP languages are synchronous languages and have some
internal notion of a timestep. These languages are mostly pull-based, whereas
more traditional imperative reactive languages are push-based. The former have
clear semantics and are easy to reason about, the latter have efficient implemen-
tations. In λWidget we would like to combine these aspects and get a language
that is easy to reason about with an efficient implementation.

In general, we think of a widget as a state through time, i.e., at each timestep,
the widget is in some state which is presented to the user. The widget is mod-
ified by commands, which can update the state. To program with widgets, the
programmer applies commands at various times.

The proper type system for a language of widgets should thus be a system
with both state and time. If we consider what a logic for widgets should be, there
are two obvious choices. A logic for state is linear logic [14], and a logic for time
is linear temporal logic [27]. The combination of these two is the correct setting
for a language of widgets, and, going through Curry–Howard, the corresponding
type theory is a linear, linear temporal type theory.
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Widget API To work with widgets, we define a API which mirrors how one
would work with a browser level GUI:

newWidget : I ( ∃ (i : Id),Widget i
dropWidget : ∀ (i : Id),Widget i ( I

setColor : ∀ (i : Id),F Color ⊗ Widget i ( Widget i
onClick : ∀ (i : Id),Widget i ( Widget i ⊗ 3 I
onKeypress : ∀ (i : Id),Widget i ( Widget i ⊗ 3 (F Char)

out :3 A ( ∃ (n : Time),A @ n
into : ∃ (n : Time),A @ n ( 3 A

split : ∀ (i : Id) (t : Time),Widget i ( Prefix i t ⊗ (Widget i) @ t
join : ∀ (i : Id) (t : Time),Prefix i t ⊗ (Widget i) @ t ( Widget i

The first two commands creates and deletes widgets, respectively. The( should
be understood as state passing. We read the type of newWidget as “consuming
no state, produce a new identifier index and a widget with that identifier index”.
The identifier indices are used to ensure the correct behavior when using the split
and join commands explained below. The existential quantification describes the
non-deterministic creation of an identifier index. The use of non-determinism is
crucial in our language and will be explaining in further detail in section 1. Since
λWidget has a linear type system, we need an explicit construction to delete state.
For widgets, this is dropWidget. The type is read as “for any identifier index,
consume a widget with that identifier index and produce nothing”.

The first command that modifies the state of a widget is setColor. Here we see
the adjoint nature of the calculus with F Color. A color is itself not a linear thing,
and as such, to use it in the linear setting, we apply F, which moves from the
non-linear (Cartesian) fragment and into the linear fragment. The second new
thing is the linear product ⊗. This differs from the regular non-linear product
in that we do not have projection maps. Again, because of the linearity of our
language, we cannot just discard state. We can now read the type of setColor
as “Given a color and a identified widget, consume both and produce a new
widget”. The produced widget is the same as the consumed widget, but with
the color attribute updated.

The next two commands, onClick and onKeypress, are roughly similar. Both
register a handle on the widget, for a mouse click and a key press, respectively.
Here we see the first use of the 3 modality, which represents an event. The type
3A represents that at some point in the future we will receive something of
type A. Importantly, because of the asynchronous nature of λWidget, we do not
know when it happens. We can then read the type of onClick as “Consuming
an identified widget, produce an updated widget together with a mouse click
event”. The same holds for onKeypress except a key press event is produced.

The two commands out and into allows us to work with events in a more
precise way. Given an event, we can use out to “unfold” it into an existential.
The @ connective describes a type that is only available at a certain timestep,
i.e., A@n means “at the timestep n, a term of type A will be available”. The
into commands is the reverse of out and turns an existential and an @ into an
event.
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Note the besides the above ways of constructing events, we can also turn any
value into an event using the evt construction which is part of the core calculus.
Given some element a : A, we get evt a : 3A which represents the event that
returns immediately.

So far, we have only applied commands to a widget in the current timestep,
but to program appropriately with widgets, we should be able to react to events
and apply commands “in the future”. This is exactly what the split and join
commands allows us to do. The type of split is read as “Given any time step
and any identified widget, split the widget into all the states before that time
and the widget at that time”. We denote the collection of states before a given
time a prefix and give it the type Prefix. Given the state of the widget at a given
timestep, we can now apply commands at that timestep. Note that both the
prefix and the widget is indexed by the same identifier index. This is to ensure
that when we use join, we combined the correct prefix and future.

Widget Programming To see the API in action, we now proceed with several
examples of widget programming. For each example, we will add a comment
on each line with the type of variables, and then explain the example in text
afterwards.

One of the simplest things we can do with a widget is to perform some action
when the widget is clicked. In the following example, we register a handler for
mouse clicks, and then we use the click event to change the color of the widget
to red at the time of the click. To do this, we use the out map to get the time
of the event, then we split the widget and apply setColor at that point in the
future.

1 turnRedOnClick : ∀ (i : Id),Widget i ( Widget i
2 turnRedOnClick i w0 =
3 let (w1, c0) = onClick i w0 in -- w1 : Widget i, c0 : 3I
4 let unpack (x , c1) = out c0 in -- x : Time, c1 : I @x
5 let c2 @ x = c1 in -- c2 : I at x
6 let 〈〉@ x = c2 in
7 let (p, w2) = split i x w1 in -- p : Prefix i x, w2 : Widget i@x
8 let w3 @ x = w2 in -- w3 : Widget i at time x
9 let w4 = -- w4 : Widget i@x

10 (setColor (F Red) w3) @ x in
11 join i x (p, w4)

To see why this type checks, we go through the example line by line. In line
3, we register a handle for a mouse click on the widget. In line 4, we turn the
click event into an existential. In line 5, we get c2 which is a binding that is
only available at the timestep x. Since we only need the time of the click, we
discharge the click itself in line 6. In line 7 and 8, we split the widget using the
timestep x and bind w3 to the state of the widget at that timestep. In line 9-10,
we change the color of the widget to red at x and in line 11 we recompose the
widget.
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In general, we will allow pattern matching in eliminations and since widget
identity indices can always be inferred, we will omit them. In this style, the
above example become:

1 turnRedOnClick : ∀ (i : Id),Widget i ( Widget i
2 turnRedOnClick w0 =
3 let (w1, c0) = onClick w1 in -- w1 : Widget i, c0 : 3I
4 let unpack (x , 〈〉@ x ) = out c0 in -- x : Time
5 let (p, w2 @ x ) = split x w1 in -- p : Prefix i x, w2 : Widget i at time x
6 join x (p, (setColor (F Red) w2) @ x )

We will use the same sugared style throughout the rest of the examples.
The above example turns a widget red exactly at the time of the mouse

click, but will not do anything with successive clicks. To also handle further
mouse clicks, we must register an event handler recursively. This is a simple
modification of the previous code:

1 keepTurningRed : ∀ (i : Id),Widget i ( Widget i
2 keepTurningRed w0 =
3 let (w1, c0) = onClick w1 in -- w1 : Widget i, c0 : 3I
4 let unpack (x , 〈〉@ x ) = out c0 in -- x : Time
5 let (p, w2 @ x ) = split x w1 in -- p : Prefix i x, w2 : Widget i at time x
6 join (p, (setColor (F Red) (keepTurningRed w2) @ x ))

By calling itself recursively, this function will make sure a widget will always
turn red on a mouse click.

To understand the difference between two above examples, consider the code
turnBlueOnClick(keepTurningRed w), where w is some widget. On the first click,
the widget will turn blue, on the second click it will turn red and on any subse-
quent click, it will keep turning red, i.e., stay red unless further modified.

When working with widgets, we will often register multiple handlers on a
single widget. For example, a widget should have one behavior for a click and
another behavior for a key press. To choose between two events, we use the select
construction. This construction is central to our language and how to think about
a push-based reactive language.

Given two events, t1 : 3A, t2 : 3B, there are three possible behaviors: Either
t1 returns first, and we wait for t2 or t2 returns first and we wait for t1 or they
return at the same time. In general, we want to select between n events, but if
we need to handle all possible cases, this will give 2n cases, so to keep the syntax
linear in size, we will omit the last case. In the case events actually return at
the same time, we do a non-deterministic choice between them. The syntax for
select is

select (t1 as x 7→ t′1 | t2 as y 7→ t′2)

where x : A, y : B, t′1 : A( 3B ( 3C and t′2 : B ( 3A( 3C. The second
important thing to understand when working with select is that given we are
working with events, we do not actually know at which timestep the events will
trigger, and hence, we do not know what the (linear) context contains. Thus,
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when using select, we will only know either a : A, t2 : 3B or t1 : 3A, b : B. We
can think of the select rule a case-expression that must respect time.

In the following example, we register two handlers, one for clicks and one for
key presses, and change the color of the widget based on which returns first. We
will only annotate the new parts.

1 widgetSelect : ∀ (i : Id),Widget i ( Widget i
2 widgetSelect w0 =
3 let (w1, c) = onClick w0 in -- c : 3I.
4 let (w2, k) = onKeypress w1 in -- k : 3(F char).
5 let col = -- col : 3(F Color)
6 select
7 ( c as x → let 〈〉 = x in -- x : I, k : 3(F Color).
8 let unpack (t , 〈〉@ t)
9 = out (mapE (fun F ( )→ 〈〉) k) in

10 evt (F Red)

11 | k as y → let F k ′ = y in -- y : F char, c : 3I
12 let unpack (t , 〈〉@ t) = c in
13 evt (F Blue))
14 let unpack (x , col ′@ x ) = out col in -- col′ : F Color at time x.
15 let (p, w3 @ x ) = split x w2 in
16 join (p, (setColor col ′ w3) @ x )

In line 3 and 4, we register the two handlers. In line 5-13, we use the select
construction. In the first case, the click happens first and we return the color
red. In the second case, the key press happens first and we return the color blue.
In both cases, because of the linear nature of the language, we need to discharge
the unit and char, respectively, and the event that does not return first. In line
14, we turn the color event into an existential. In line 15, we use the timestep
of the color event to split the widget, and in line 16, we change the color of the
widget at that time and recompose it.

To see how λWidget differs from more traditional synchronous FRP languages,
we will examine how to encode a kind of streams. Since our language is asyn-
chronous, the stream type must be encoded as

Str A := να.3(A⊗ α)

This asynchronous stream will at some point in the future give a head and a
tail. We do not know when the first element of the stream will arrive, and after
each element of the stream is produced, we will wait an indeterminate amount
of time for the next element. The reason why the stream type in λWidget must be
like this is essentially that we want a push-based language, i.e., we do not want
to wake up and check for new data in each program cycle. Instead, the program
should sleep until new data arrives.

To show the difference between the asynchronous stream and the more tra-
ditional synchronous stream, we will look at some examples. With a traditional
stream, a standard operation is zipping two streams: that is, given Str A and
Str B, we can produce Str A × B, which should be the element-wise pairing of
the two streams. It should be clear that this is not possible for our asynchronous
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streams. Given two streams, we can wait until the first stream produces an ele-
ment, but the second stream may only produce an element after a long period of
time. Hence, we would need to buffer the first element, which is not supported
in general. Remember, when using select, we can not use any already defined
linear variables, since we do not know if they will be available in the future.

Rather than zipping stream, we can instead do a kind of interleaving as
shown below. We use fold and unfold to denote the folding and unfolding of the
fixpoint.

1 interleave : Str A ( Str B ( Str (A ⊕ B)
2 interleave xs ys = fold (
3 select
4 ( unfold xs as xs ′ →
5 let (x , xs ′′) = xs ′ in -- xs′ : A⊗ Str A, x : A, xs′′ : Str A
6 evt (inl x , interleave xs ′′ ys)
7 | unfold ys as ys ′ →
8 let (y , ys ′′) = ys ′ in -- ys′ : B ⊗ Str B, y : B, ys′′ : Str A
9 evt (inr y , interleave xs ys ′′)))

Here, we use select to choose between which stream returns first, and then we
let that element be the first element of the new stream.

On the other hand, some of the traditional FRP functions on streams can be
translated. For instance, we can map of function over a stream, given that it is
available at each step in time:

1 map : F (G (A ( B)) ( Str A ( Str B
2 map f0 xs =
3 let F f1 = f0 in -- f1 : G(A( B)
4 let (y , (x , xs ′) @ y) = -- y : Time, x : A, xs′ : 3Str A at time y
5 out (unfold xs) in
6 fold (evt ((runG f1) x ,map f0 xs ′))

The type F(G(A( B)) is read as a linear function with no free variables that
can be used in a non-linear fashion, i.e., duplicated. This restriction to such
“globally available functions” is reminiscent of the “box” modality in Bahr et
al. [1] and Krishnaswami [20], and the F and G construction can be understood
as decomposing the box modality into two separate steps. This relationship will
be made precise in the logical interpretation of λWidget in section 1

As a final example, we will show how to dynamically update the GUI, i.e.,
how to add new widgets on the fly. Before we can give the example, we need to
extend our widget API, to allow composition of widgets. To that end, we add
the vAttach command to our API.

vAttach : ∀(i, j : Id),Widget i(Widget j (Widget i

This command should be understood as an abstract version the div tag in
HTML. In the following example, we think of the widget as a simple button
that when clicked, will create a new button. When any of the buttons gets
clicked, a new button gets attached.
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1 buttonStack : ∀ i ,Widget i ( Widget i
2 buttonStack w0 =
3 let (w1, c) = onClick w0 in
4 let (x , 〈〉@ x ) = out e in
5 let (p, w2 @ x ) = split x w1 in
6 let w3 = (let (y ,w) = newWidget 〈〉 in
7 vAttach w2 (buttonStack w)) @ x in
8 join (p, w3)

The important step here is in line 6 and 7. Here the new button is attached at
the time of the mouse click, and buttonStack is called recursively on the newly
created button.

Formal Calculus

This sections gives the rules, meta-theory and logical interpretation of λWidget.
Briefly, the language is a mixed linear-non-linear adjoint calculus in the style
of Benton–Wadler [4,3]. The non-linear fragment, also called Cartesian in the
following, is a minimal simply typed lambda calculus whereas the linear fragment
contains several non-standard judgments used for widget programming.

Contexts and Typing Judgments We have three typing judgments: one for
indices, one for Cartesian (non-linear) terms, and one for linear terms. These are
distinguished by a subscript on the turnstile, i for indices, c for Cartesian terms
and l for linear terms. These depend on different contexts. The index judgment
depends only on a index context, whereas the Cartesian and linear judgments
depends on both an index and a linear and/or a Cartesian context. The rules for
context formation is given in Figure 1. These are mostly standard except for the
dependence on a previously defined context and the fact that the linear context
contains variables of the form a :τ A, i.e., temporal variables. The judgment
a :τ A is read as “a has the type A at the timestep τ”. In the linear setting we
will write a : A instead of a :0 A, i.e., a judgment in the current timestep.

Indices: `i ·
`i Θ s 6∈ dom(Θ) σ ∈ {Id,Time}

`i Θ, s : σ

Cartesian: · `c
Θ `c Γ x 6∈ dom(Γ ) Θ `c X

Θ `c Γ, x : X

Linear: · `l
Θ `l ∆ x 6∈ dom(∆) Θ `l A Θ `i τ : Time

Θ `l ∆, a :τ A

Fig. 1. Context Formation

The index judgment describes how to introduce indices. The typing rules are
given in Figure 2. The judgment Θ `i τ : σ contains a single context, Θ, for
index variables. There are only two sorts of indices, identifiers and timesteps.
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Index Judgments:

τ ∈ Time

Θ `i τ : Time
Time

ι ∈ Id

Θ `i ι : Id
Id

i : σ ∈ Θ
Θ `i i : σ

Var

Fig. 2. Index Typing rules

The Cartesian judgment describes the Cartesian, or non-linear, fragment.
This is a minimal simply typed lambda calculus with the addition of the G
type, used for moving between the linear and Cartesian fragment, and explained
further below. The judgment Θ;Γ `c t : A has two contexts; Θ for indices and
Γ for Cartesian variables.

The linear fragment is most of the language, and a selection of typing rules
is given in Figure 3. The judgment is done w.r.t three contexts, Θ for index
variables, Γ for Cartesian variables and ∆ for linear variables. Many of the
rules are standard for a linear calculus, except for the presence of the additional
contexts. We will not describe the standard rules any further.

The first non-standard rule is for 3. The introduction and elimination rules
follow from the fact that 3 is a non-strong monad. More interesting is the select
rule. Here we see the formal rule corresponding to the informal explanation in
section 1. The important thing here is that we can not use any previously defined
linear variable when typing t′1 and t′2, since we do not actually know when the
typing happens. Note, we can see the select rule as a binary version of the 3
let-binding. This could be extended to an n-ary version, but we do not do this in
our core calculus. The rules for A@ τ shows how to move between the judgment
t : A@ τ and t :τ A. That is, moving from knowing in the current timestep that
t will have the type A at time τ and knowing at time τ that t has type A. The
(F -I), (F -E), (G -I) and (G -E) rules show the adjoint structure of the language.
The (G -I) rule takes a closed linear term of type A and gives it the Cartesian
type G A. Note, because it has no free linear variables, it is safe to duplicate. The
(G -E) rule lets us get an A without needing any linear resources. Conversely, the
(F -I) rule embeds a intuitionistic term into the linear fragment and the (F -E)
rule binds an intuitionistic variable to let us freely use the value. The (Delay)
rule shows what happens when we actually know the timestep. The important
part is ∆′ = ∆ ↓τ which means two things. One, all the variables in ∆ are on
the form a :τ A, i.e., judgments at time τ and two, we shift ∆ into the future
such that all the variables of ∆′ is of the form a : A. The way to understand this
is, if all the variables in ∆ are typed at time τ and the conclusion is at time τ ,
it is enough to “move to” time τ and then type w.r.t that timestep. Finally, we
have (Iτ -E) and (⊗τ -E). These allow us to work with linear unit and products
at time τ . These are added explicitly since they can not be derived by the other
rules, and are needed for typing certain kinds of programs.

Unfolding Events to Exists The type system as given above contains both
3A and A@ k, as two distinct ways to handle time. The former means that
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Θ `i τ : Time Θ;Γ ;∆ `l t :τ A

Θ;Γ ;∆ `l t@ τ : A@ τ
(@-I)

Θ `i t : Time Θ;Γ ;∆1 `l t1 : A@ τ Θ;Γ ;∆2, a :τ A `l t2 : B

Θ;Γ ;∆1,∆2 `l let a@ τ = t1 in t2 : B
(@-E)

Θ;Γ `c e : G A

Θ;Γ ; · `l runG e : A
(G-E)

Θ;Γ `c e : X

Θ;Γ ; · `l F e : F x
(F-I)

Θ;Γ ;∆1 `l t1 : F X Θ;Γ, x : X;∆2 `l t2 : B

Θ;Γ ;∆1,∆2 `l let F x = t1 in t2 : B
(F-E)

Θ, i : σ;Γ ;∆ `l t : A

Θ;Γ ;∆ `l Λ(i : σ).t : ∀(i : σ).A
(∀-I)

Θ `i s : σ Θ;Γ ;∆ `l t : ∀(i : σ).A

Θ;Γ ;∆ `l ts : {s/i}A
(∀-E)

Θ `i s : σ Θ;Γ ;∆ `l t : {s/i}A
Θ;Γ ;∆ `l {s, t} : ∃(i : σ).A

(∃-I)

Θ;Γ ;∆1 `l t1 : ∃(i : σ).A Θ, s : σ;Γ ;∆2, a : {s/i}A `l t2 : B

Θ;Γ ;∆1,∆2 `l let unpack {s, a} = t1 in t2 : B
(∃-E)

Θ;Γ ;∆1 `l t1 : 3A Θ;Γ ;∆2 `l t2 : 3B
Θ;Γ ; a : A, t2 : 3B `l t′1 : 3C Θ;Γ ; b : B, t1 : 3A `l t′2 : 3C

Θ;Γ ;∆1,∆2 `l select (t1 as a 7→ t′1 | t2 as b 7→ t′2) : 3C
(select)

Θ `i τ : Time ∆′ = ∆ ↓τ Θ;Γ ;∆′ `l t : A

Θ;Γ ;∆ `l t :τ A
(delay)

Θ `i τ : Time Θ;Γ ;∆1 `l t1 :τ I Θ;Γ ;∆2 `l t2 : B

Θ;Γ ;∆1,∆2 `l let 〈〉@ τ = t1 in t2 : B
(Iτ -E)

Θ `i τ : Time
Θ;Γ ;∆1 `l t1 :τ A⊗B Θ;Γ ;∆2, a :τ A, b :τ B `l t2 : C

Θ;Γ ;∆1,∆2 `l let (a, b) @ τ = t1 in t2 : C
(⊗τ -E)

Fig. 3. Selected Linear Typing rules
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something of type A will arrive at some point in the future, whereas the latter
means an A arrives at a specific point in the future. The strength of 3 is that
is gives easy and concise typing rules, whereas the strength of A@ k is that
it allows for a more precise usage of time. To connect these two, we add the
linear isomorphism 3A ∼= ∃k.A@ k to our language, which is witnessed by out
and into, as part of the widget API. This isomorphism is true semantically, but
can not be derived in the type system. In particular, this isomorphism allows
the select rule to be given with 3, while still allowing the use timesteps when
working with the resulting event. If we were to give the equivalent definition using
timesteps, one would need to have some sort of constraint system for deciding
which events happens first. Avoiding such constraints also allows for a simpler
implementation, as everything is our type system can be inferred.

Meta-theory of Substitution The meta-theory of λWidget is given in the form
of a series of substitution lemmas. Since we have three different contexts, we will
end up with six different substitutions into terms. The Cartesian to Cartesian,
Cartesian to linear and linear to linear are the usual notion of mutual recursive
substitution. More interesting is the substitution of indices into Cartesian and
linear terms and types. We prove the following lemma, showing that typing is
preserved under index substitution:

Lemma 1 (Preservation of Typing under Index Substitution).

ζ : Θ′ → Θ Θ;Γ `c e : X

Θ′; ζ(Γ ) `c ζ(e) : ζ(X)

ζ : Θ′ → Θ Θ;Γ ;∆ `l t :τ A

Θ′; ζ(Γ ); ζ(∆) `l ζ(t) :τ ζ(A)

Both are these (and all other cases for substitution) are proved by a lengthy
but standard induction over the typing tree. See the technical appendix for full
proofs of all six substitution lemmas.

Logical Interpretation Our language has a straightforward logical interpre-
tation. The logic corresponding to the Cartesian fragment is a propositional
intuitionistic logic, following the usual Curry–Howard interpretation. The logic
corresponding to the substructural part of the language is a linear, linear tempo-
ral logic. The single-use condition on variables means that the syntax and typing
rules correspond to the rules of intuitionistic linear logic (i.e., the first occurrence
of linear in “linear, linear temporal”). However, we do not have a comonadic ex-
ponential modality !A as a primitive. Instead, we follow the Benton–Wadler
approach [4,3] and decompose the exponential into the composition of a pair of
adjoint functors mediating between the Cartesian and linear logic.

In addition to the Benton–Wadler rules, we have a temporal modality 3A,
which corresponds to the eventually modality of linear temporal logic (i.e., the
second occurrence of “linear” in “linear, linear temporal logic”). This connective
is usually written F A in temporal logic, but that collides with the F modality
of the Benton–Wadler calculus. Therefore we write it as 3A to reflect its nature
as a possibility modality (or monad). In our calculus, the axioms of S4.3 are
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derivable:

(T ) : A( 3A

(4) : 33A( 3A

(.3) : 3(A⊗B)( 3((3A⊗B)⊕3(A⊗3B)⊕3(A⊗B))

Since the ambient logic is linear, intuitionistic implication X → Y is replaced
with the linear implication A ( B, and intuitionistic conjunction X ∧ Y is
replaced with the linear tensor product A⊗B. It is easy to see that the first two
axiom corresponds to the monadic structure of 3, and the .3 axiom corresponds
to the select rule (with our syntax for select corresponding to immediately waiting
for and then pattern-matching on the sum type). In the literature, the .3 axiom
is often written in terms of the box modality 2A [8], but we present it here in
a (classically) equivalent formulation mentioning the eventually modality 3A.
We do not need to an explicit box modality 2A, since the decomposition of the
exponential F(GA) from the linear-non-linear calculus serves that role.

In our system, we do not offer the next-step operator �A. Since we model
asynchronous programs, we do not let programmers write programs which wake
up in a specified amount of time. We only offer an iterated version of this con-
nective, A@n, which can be interpreted as �nA, and our term syntax has no
numeric constants which can be used to demand a specific delay.

Finally, the universal and existential quantifiers (in both the intuitionistic
and linear fragments) are the usual quantifier rules for first-order logic.

Semantics

In this section we give a denotational model for λWidget. It is a linear-non-linear
(LNL) hyperdoctrine [24,16] with the non-linear part being Set and the linear
part being the category of internal relations over a suitable “reactive” category.
The hyperdoctrine structure is used to interpret the quantification over indices.
This model is nearly entirely standard: the most interesting thing is the reactive
base category and the interpretation of widgets. It is well known that any sym-
metric monoidal closed category (SMCC) models multiplicative intuitionistic
linear logic (MILL), and it is similarly well known that the category of relations
over Set can be give the structure of a SMCC by using the Cartesian product
as both the monoidal product and monoidal exponential. This construction lift
directly to any category of internal relations over a category that is suitably
“Set-like”, i.e., a topos. Our base category is a simple presheaf category, and
hence, we use this construction to model the linear fragment of λWidget.

The Base Reactive Category The base reactive category is where the notion
of time will arise and is it this notion that will be lifted all the way up to the LNL
hyperdoctrine. The simplest model of “time” is SetN, which can be understood
as “sets through time” [23]. This can indeed by used as a model for a reactive
setting, but for our purposes it is too simple, and further, depending on which
ordering is considered for N, may have undesirable properties for the reactive
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setting. Instead, we use the only slightly more complicated SetN+1, henceforth
denoted R, where the ordering on N + 1 is the discrete ordering on N and 1 is
related to everything else. Adding this “point at infinity” allows global reasoning
about objects, an intuition that is further supported by the definition of the sub-
object classifier below. Further, this model is known to be able to differentiate
between least and greatest fixpoints [15], and even though we do not use this for
λWidget, we consider it a useful property for further work (see section 1). Objects
in R can be visualized as

A =

A∞

A0 A1 · · ·

π1 π2

We can think of A∞ as the global view of the object and An as the local view
of the object at each timestep. Morphisms are natural transformations between
such diagrams and the naturality condition means that having a map from A∞
to B∞ must also come with coherent maps at each timestep.

In R we define two endofunctors, which can be seen as describing the passage
of time:

Definition 1. We define the later and previous endofunctors on R, denoted �
and �, respectively:

(�A)n :=


1 n = 0

An′ n = n′ + 1

A∞ n =∞
(�A)n :=

{
An+1 n 6=∞
A∞ n =∞

Note that when we apply the later functor, the global view does not change, but
the local views are shifted forward in time.

Theorem 1. The later and previous endofunctors form an adjunction.

Definition 2. The sub-object classifier, denoted Ω, in R is the object

Ω∞ = P(N) + 1 Ωn = {0, 1}

For each n ∈ N, Ωn denotes whether a given proposition is true at the nth
timestep. Ω∞ gives the “global truth” of a given proposition. The left injection
is some subset of N that denotes at which points in time something is true. The
right injection denotes that something is true “at the limit”, and in particular,
also at all timesteps. Note, a proposition can be true at all timesteps but not at
the limit. This extra point at infinity is precisely what allows us the differentiate
between least and greatest fixpoints.

The Category of Internal Relations To interpret the linear fragment of
the language, we will use the category of internal relations on R. Given two
objects A and B in R, an internal relation is a sub-object of the product A×B.
This can equivalently by understood as a map A × B → Ω. The category of
internal relations in the category where the objects are the objects of R and
the morphisms A → B are internal relations A × B → Ω in R. We denote the
category of internal relations as RelR.
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Theorem 2. Using A⊗B = A×B and A( B = A×B as monoidal product
and exponential, respectively, RelR is a symmetric monoidal closed category.

Theorem 3. There is an adjunction � ` � in RelR where � and � are the
lifting of the previous and later functors from R to RelR.

Definition 3. We define the iterated later modality or the “at” connective as
a successive application of the later modality.

�0A = A

�(k+1)A = �(�kA)

and we will alternatively write A@ k to mean �kA.

Definition 4. We define the event functor on RelR as an iterated later.

3A : RelR → RelR

(3A)∞ = A∞

(3A)n = Σ(k : N).(�k A)n

The event functor additionally carries a monadic structure (see [29] and the
technical appendix).

Theorem 4. We have the isomorphism 3A ∼= Σ(n : N).A@n for any A

Theorem 5. We have the following adjunctions between Set, R and RelR:

Set ⊥ R ⊥ RelR

∆ I

lim P

where ∆ is the constant functor, lim is the limit functor, I is the inclusion
functor and P is the image functor. This induces an adjunction between Set and
RelR.

The Widget Object One of the most important objects in RelR is the widget
object. This object is used to interpret widgets and prefixes. The widget object
will be defined with respect to an ambient notion of identifiers, which we will
denote Id. These will be part of the hyperdoctrine structure define below, and
for now, we will just assume such an object to exists. We will also use a notion of
timesteps internal to the widget object. Note that this timestep is different from
the abstract timestep used for defining RelR, but are related as defined below.
We denote the abstract timesteps with Time.

Before we can define the widget object, we need to define an appropriate ob-
ject of commands. In our minimal Widget API, the only semantic commands will
be setColor, onClick and onKeypress. The rest of the API is defined as morphisms
on the widget object itself. To work with the semantics commands, we addition-
ally need a compatibility relation. This relation describes what commands can
be applied at the same time. In our setting this relation is minimal, but can in
principle be used to encode whatever restrictions is needed for a given API.
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Definition 5. We define the command object as

Cmd = {(setColor, color), onClick, onKeypress}

where color is an element of a “color” object. The compatibility relations are:

(op, arg) ./ (op′, arg ′) iff (op = op′ ⇒ arg = arg ′)

The only non-compatible combination of commands is two application of the
setColor command, the idea being that you can not set the color twice in the
same timestep.

We can now define the widget and prefix objects

Definition 6. The widget object, denoted Widget, is indexed by i ∈ Id and is
defined as

Widget∞ i =
{

(w, i) | w ∈ P(Time× Cmd), (t, c) ∈ w ∧ (t, c′) ∈ w → c ./ c′
}

Widgetn i = {(w, i) ⊂Widget∞ i | ∀(t, c) ∈ w, t 6 n}

The prefix object, denoted Prefix, is indexed by i ∈ Id and t ∈ Time and is:

Prefix∞ i t =
{

(P, i) ⊂Widget∞ i | ∀(t′, c) ∈ P, t′ 6 t
}

Prefixn i t =

{
{(P, i) ⊂ Prefix∞ i t | ∀(t′, c) ∈ P, t′ 6 n} n < t

I otherwise

The widget object is a collection of times and commands keeping track of what
has happened to it at various times – imagine a logbook with entries for each time
step. At the point at infinity, the “global” behavior of the widget is defined, i.e.,
the full logbook of the widget. For each n, Widgetn is simply what has happened
to the widget so far, i.e., a truncated logbook. The prefix object is a widget
object that is only defined up to some timestep, and is the unit after that. This
yields a semantic difference between the widget where the color is set only once,
and the widget where the color is set at every timestep. This reflects a real
difference in actual widget behavior: if turnRedOnClick w later set to be blue,
it will remain blue, but keepTurningRed w will turn back to being red.

To manipulate widgets we define two “restriction” maps.

Definition 7. We define the following on widgets and prefixes

shift t : Widget i→RelR Widget i

(shift t W )n =
{

(t′ − t, c) | (t′, c) ∈W ∧ t 6 t′
}

prefix t i : Widget i→RelR Prefix i t

(prefix t i W )n =

{
{(t′, c) ∈W | t′ < t} n < t

I n > t

The intuition behind these is that prefix t i “cuts off” the widget after t, giving
a prefix, whereas shift t shifts forward all entries in the widget by t.

Using the above, we can now define the split and join morphisms. These are
again given w.r.t ambient Id and Time objects, which will be part of the full
hyperdoctrine structure:
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Definition 8. We define the following morphisms on the widget object

split i t : Widget i→RelR Prefix i t⊗Widget i@ t

(split i t w)n = (prefix t i w, shift t w)n

join i t : Prefix i t⊗Widget i@ t→RelR Widget i

(join i t (p, w))n =

{
pn n < t

wn−t n > t

Linear-non-linear Hyperdoctrine So far we have not explained in details
how to model the quantifiers in our system. To do this, we use the notion of
a hyperdoctrine [22]. For first-order logic, this is a functor from a category of
contexts and substitutions to the category of Cartesian closed categories, with
the idea that we have one CCC for each valuation of the free first-order variables.

As our category of contexts, we use a Cartesian category to interpret our
index objects, Time and Id. The former is interpreted as N + 1 and the latter as
N. In our case, both Set and RelR are themselves hyperdoctrines w.r.t to this
category of contexts, the former a first-order hyperdoctrine and the latter a mul-
tiplicative intuitionistic linear logic (MILL) hyperdoctrine. Together these form
a linear-non-linear hyperdoctrine through the adjunction given in Theorem 5.

Definition 9. A linear-non-linear hyperdoctrine is a MILL hyperdoctrine L to-
gether with a first-order hyperdoctrine C and a fiber-wise monoidal adjunction
F : L� C : G.

Theorem 6. The categories Set and RelR form a linear-non-linear hyperdoc-
trine w.r.t the interpretation of the indices objects, with the adjunction given as
in Theorem 5.

We refer the reader to the accompanying technical appendix for the full details.

Denotational Semantics We the above, we have enough structure to give
an interpretation of λWidget. Again, most of this interpretation is standard in
the use of the hyperdoctrine structure, and we interpret 3 in the obvious way
using the linear hyperdoctrine structure on RelR. As an example, we sketch the
interpretation of the widget object and the setColor command below.

Definition 10. We interpret the Widget i and Prefix i types using the widget
and prefix objects:

JΘ `Widget iK = Widget JΘ `s i : IdK
JΘ ` Prefix i tK = Prefix JΘ `s i : IdK JΘ `s t : TimeK

and we interpret the setColor commands as:

JsetColor : ∀(i : Id),Widget i⊗ F Color(Widget iK =

{w ∪W {(0, (setColor, col))} | w ∈ JWidget iK, col ∈ JColorK}

where ∪W is a “widget union”, which is a union of sets such that identifiers
indices and compatibility of commands are respected
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This interpretation shows that a widget is indeed a logbook of events. Using
the setColor command simply adds an entry to the logbook of the widget. Note
we only set the color in the current timestep. To set the color in the future, we
combine the above with appropriate uses of splits and joins. The interpretation of
split and join are done using their semantic counterparts, and the interpretation
of onClick and onKeypress are done, using our non-deterministic semantics, by
associating a widget with all possible occurrences of the corresponds event.

Soundness of Substitution Finally, we prove that semantic substitution is
sound w.r.t syntactic substitution. As with the proofs of type preservation for
syntactic substitution, there are several cases for the different kinds of substitu-
tion, but the main results is again concerned with substitution of indices:

Theorem 7. Given ζ : Θ′ → Θ, Θ;Γ `c e : X and Θ;Γ ;∆ `l t : A then

JζK JΘ;Γ `c e : XK = JΘ′; ζ(Γ ) `c ζ(e) : ζ(X)K
JζK JΘ;Γ ;∆ `l t : AK = JΘ′; ζ(Γ ); ζ(∆) `l ζ(t) : ζ(A)K

Proofs for all six substitutions lemmas can be found in the technical appendix.

Related and Future Work

Much work has aimed at a logical perspective on FRP via the Curry–Howard
correspondence [21,18,17,19,20,10,1]. As mentioned earlier, most of this work has
focused on calculi that have a Nakano-style later modality [25], but this has the
consequence that it makes it easy to write programs which wake up on every clock
tick. In this paper, we remove the explicit next-step modality from the calculus,
which opens the door to a more efficient implementation style based on the so-
called “push” (or event/notification-based) implementation style. Elliott [12] also
looked at implementing a push-based model, but viewed it as an optimization
rather than a first-class feature in its own right. In future work, we plan on
implementing a language based upon this calculus, with the idea that we can
compile to Javascript, and represent widgets with DOM nodes, and represent
the 3A and A@n temporal connectives using doubly-negated callback types (in
Haskell notation, Event A = (A -> IO ()) -> IO ()). This should let us write
GUI programs in functional style, while generating imperative, callback-based
code in the same style that a handwritten GUI program would use.

Our model, in terms of SetN+1, enriches LTL’s semantics from time-indexed
truth-values to time-indexed sets. The addition of the global view or point at
infinity enables our model to distinguishes between least and greatest fixed
points [15] (i.e., inductive and coinductive types), unlike in models of guarded
recursion where guarded types are bilimit-compact [6]. This lets us encode tem-
poral liveness and safety properties using inductive and coinductive types [10,2].

A recent development for comonadic modalities is the introduction of the
so-called ’Fitch-style’ calculi [7,11] as an alternative to the Pfenning–Davies
pattern-style elimination [26]. These calculi have been used successfully for FRP
[1], and one interesting question is whether they extend to adjoint calculi as well
– i.e., can the F (X) modality support a direct-style eliminator?
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