
Generalized Bounded Linear Logic and its
Categorical Semantics

Yōji Fukihara1(B) and Shin-ya Katsumata2

1 Kyoto University, Kyoto, Japan fukihara@kurims.kyoto-u.ac.jp
2 National Institute of Informatics, Tokyo, Japan s-katsumata@nii.ac.jp

Abstract. We introduce a generalization of Girard et al.’s BLL called
GBLL (and its affine variant GBAL). It is designed to capture the core
mechanism of dependency in BLL, while it is also able to separate com-
plexity aspects of BLL. The main feature of GBLL is to adopt a multi-
object pseudo-semiring as a grading system of the !-modality. We analyze
the complexity of cut-elimination in GBLL, and give a translation from
BLL with constraints to GBAL with positivity axiom. We then introduce
indexed linear exponential comonads (ILEC for short) as a categorical
structure for interpreting the !-modality of GBLL. We give an elemen-
tary example of ILEC using folding product, and a technique to modify
ILECs with symmetric monoidal comonads. We then consider a seman-
tics of BLL using the folding product on the category of assemblies of
a BCI-algebra, and relate the semantics with the realizability category
studied by Hofmann, Scott and Dal Lago.

Keywords: Linear Logic · Categorical Semantics · Linear Exponential
Comonad · Graded Comonad

1 Introduction

Girard’s linear logic is a refinement of propositional logic by restricting weakening
and contraction in proofs [15]. Linear logic also has an of-course modality !, which
restores these structural rules to formulas of the form !A.

Later, Girard et al. extended the !-modality with quantitative information so
that usage of !-modal formulas in proofs can be quantitatively controlled [16].
This extension, called bounded linear logic (BLL for short), is successfully applied
to a logical characterization of P-time computations.

Their extension takes two steps. First, the !-modality is extended to the form
!rA, where the index r is an element of a semiring [16, Section 2.4]. The index r is
called grade in modern terminology [11,13]. This extension and its variants have
been employed in various logics and programming languages [7,30,14,26,28]. The
categorical structure corresponding to !rA is identified as graded linear exponen-
tial comonad [7,13,22].

Second, the !r-modality is further extended to the form !x<pA, where p is a
polynomial (called resource polynomial) giving the upper bound of x [16, Sec-
tion 3]. The formula !x<pA also binds free occurrences of the resource variable

© The Author(s) 2021
S. Kiefer and C. Tasson (Eds.): FOSSACS 2021, LNCS 12650, pp. 226–246, 2021.
https://doi.org/10.1007/978-3-030-71995-1 12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71995-1_12&domain=pdf
http://orcid.org/0000-0001-7529-5489
https://doi.org/10.1007/978-3-030-71995-1_12

Generalized Bounded Linear Logic and its Categorical Semantics 227

x in resource polynomials in A. Therefore, in BLL, both formulas and resource
polynomials depend on the values stored in free resource variables. This depen-
dency mechanism significantly increases the expressiveness of BLL, leading to a
characterization of P-time complexity.

This characterization result was later revisited through a realizability seman-
tics of BLL [16,19,10]. Inside this semantics, however, mechanisms for controlling
complexity of program execution are hard-coded, and it is not very clear which
semantics structure realizes the dependency mechanism of BLL. This leads us
to seek a logical and categorical understanding of BLL’s dependency mechanism
hidden underneath the complexity-related features, such as resource polynomials
and computability constraints.

As a result of the quest, we propose a generalization of BLL called GBLL,
and study its categorical semantics. The central idea of the generalization is to
replace the grading semiring of the !r-modality with a particular multi-object
pseudo-semiring realized as a 2-category. Let us see how this replacement works.
In GBLL, each formula is formed by deriving a judgment of the form ∆ ` A,
where ∆ is a set (called index set) and A is a raw formula. We may think that
such a well-formed formula ∆ ` A denotes a ∆-indexed family {JAKi}i∈∆ of
denotations. The formation rule for !-modal formula in GBLL is the following:

∆′ ` A f ∈ Set(∆, (∆′)∗)

∆ ` !fA
(()∗: Kleene closure)

where the function f abstractly represents dependency. This modality is enough
to express the !x<p-modality of BLL: we express the bindig x < p under a resource
variable context ~y as the function fp(~y) = (~y, 0) · · · (~y, p(~y)− 1) that returns the
list of environments extended with values less than p(~y). Then the denotation of
the !fA-modality is given by a variable-arity operator D. For each index i ∈ ∆,
the denotation is given by applying D to the denotations obtained by mapping
A to list f(i):

J!fAKi = D(JAKj1 , · · · , JAKjn) where j1 · · · jn = f(i).

A simple example of a variable-arity modal operator is the folding product
D(X1, · · · , Xn) = X1 ⊗ · · · ⊗Xn.

The pseudo-semiring structure on the class of functions of the form ∆ →
(∆′)∗ is given as follows. For the multiplication g • f , we adopt the Kleisli com-
position of the free monoid monad ()∗, while for the addition f+g, the pointwise
concatenation (f + g)(x) = f(x)g(x). However, these operations fail to satisfy
one of the semiring axioms: (f + g) • h = f • h+ g • h. To fix this, we introduce
(pointwise) list permutations as 2-cells between functions of type ∆ → (∆′)∗.
These data form a 2-category Idx, which may be seen as a multi-object pseudo-
semiring. Weakening, contraction, digging and dereliction in GBLL interact with
these operations, much like the !r-modality in [7].

We first study syntactic properties of GBLL. We introduce cut-elimination to
GBLL and study its complexity property. It turns out that the proof technique
used in BLL naturally extends to GBLL — as done in [16], we classify cuts

228 Y. Fukihara and S. Katsumata

into reducible and irreducible ones, introduce proof weight, and show that the
reduction steps of reducible cuts will terminate in cubic time of proof weights.
We also examine the expressive power of GBLL by giving a translation from an
extension of BLL with constraints that are seen in Dal Lago et al.’s QBAL [10].

We next give a categorical semantics of GBLL. We introduce the concept of
indexed linear exponential comonad (ILEC); it is an Idx-graded linear exponen-
tial comonad satisfying a commutativity condition with respect to an underlying
indexed SMCCs. Then, we present a construction of ILEC from a symmetric
monoidal closed category C with a symmetric monoidal comonad on it. We ap-
ply this construction to the case where C is the category of assemblies over a
BCI algebra [2,20], and relate the semantics of GBLL with the constructed ILEC
and the realizability category studied in [19,10].

Acknowledgment The first author was supported by JST ERATO HASUO Meta-
mathematics for Systems Design Project (No. JPMJER1603). The authors are
grateful to anonymous reviewers for comments, and Masahito Hasegawa, Nao-
hiko Hoshino, Clovis Eberhart and Jérémy Dubut for fruitful discussions.

Preliminaries For a set ∆, by ∆∗ we mean the set of finite sequences of ∆.
The empty sequence is denoted by (). Juxtaposition of ∆∗-elements denotes the
concatenation of sequences. For x ∈ ∆∗, by |x| we mean the length of x. We
identify a natural number n and the set {0, · · · , n− 1}; note that 0 = ∅. We also
identify a sequence x ∈ ∆∗ and the function “λi ∈ |x| . the i-th element of x”.

2 Generalized Bounded Linear Logic

2.1 Indexing 2-Category

We first introduce a 2-category Idx (and its variant Idxa), which may be seen
as a multi-object pseudo-semiring. It consists of the following data3: 0-cells are
sets (called index sets), and the hom-category Idx(∆,∆′), which is actually a
groupoid, is defined by:

– An object (1-cell) is a function f : ∆→ (∆′)∗.
– A morphism (2-cell) from f to g in Idx(∆,∆′) is a ∆-indexed family of

bijections {σx : |g(x)| → |f(x)|}x∈∆ such that f(x)(σx(i)) = g(x)(i).

The identity 1-cell and the composition of 1-cells in Idx are denoted by i∆ and

(•), respectively. The composition is defined by (g•f)(x)
def
= g(y1) · · · g(yn) where

y1 · · · yn = f(x). The hom-category Idx(∆,∆′) has a symmetric strict monoidal
structure:

– the monoidal unit is the constant empty-sequence function 0(x) = (),

3 This is a full sub-2-category of the Kleisli 2-category CATS , where S is the 2-monad
of symmetric strict monoidal category [21].

Generalized Bounded Linear Logic and its Categorical Semantics 229

– the tensor product of f, g, denoted by f + g, is defined by the index-wise

concatenation (f + g)(x)
def
= f(x)g(x).

We write J : Set→ Idx for the inclusion, namely J∆ = ∆ and (Jf)(x) = f(x)
(the singleton sequence).

Proposition 2.1. The composition • is symmetric strong monoidal in each ar-
gument. Especially, we have

f • 0 = 0 0 • f = 0 f • (g + h) = f • g + f • h (f + g) • h ∼= f • h+ g • h.

We also define Idxa by replacing “bijection” in the definition of 2-cell of Idx
with “injection”. The hom-category Idxa(∆,∆′) has the 1-cell 0 as the terminal
object, hence is a symmetric affine monoidal category.

2.2 Formulas and Proofs

Definition of GBLL Formulas We first fix a set-indexed sets {A(∆)}∆∈Set
of atomic propositions. Formulas are defined by the following BNF:

A ::= a ? r | A⊗A | A(A | !fA

where a ∈ A(∆) for some set ∆, r is a function (called reindexing function) and
f is a 1-cell in Idx. Formula formation rules are introduced to derive the pair
∆ ` A of an index set ∆ and a formula A. They are defined as follows:

a ∈ A(∆′) r ∈ Set(∆,∆′)

∆ ` a ? r
∆ ` A ∆ ` B
∆ ` A⊗B

∆ ` A ∆ ` B
∆ ` A(B

∆′ ` A f ∈ Idx(∆,∆′)

∆ ` !fA

The formula a?r represents the atomic formula a precomposed with a reindexing
function r. We write Fml(∆) = {A | ∆ ` A}.

We next introduce the reindexing operation on formulas.

Definition 2.1. For a reindexing function r ∈ Set(∆,∆′), we define the rein-
dexing operator ()|r : Fml(∆′)→ Fml(∆) along r by

a ? r|r′
def
= a ? (r ◦ r′), (A⊗B)|r

def
= A|r ⊗B|r,

(A(B)|r
def
= A|r (B|r, (!fA)|r

def
= !f•JrA.

We routinely extend reindexing operators to sequences of formulas well-formed
under a common index set.

We quotient the set of well-formed formulas by the least congruent equiva-
lence relation generated from the following binary relation:

{(!Jr•fA, !f (A|r)) | r ∈ Set(∆′, ∆′′), f ∈ Idx(∆,∆′), ∆′′ ` A} (2.1)

We see some formations of formulas in GBLL.

230 Y. Fukihara and S. Katsumata

Example 2.1. Let us illustrate how a formula !y<x2 !z<x+yA in BLL is represented
in GBLL; here we assume that x, y, z are the only resource variables used in this
formula. We first introduce a notation. Let E be a mathematical expression using
variables x1 · · ·xn. Then by [E]n : Nn → (Nn+1)∗ we mean the function

[E]n(~x) = (~x, 0)(~x, 1) · · · (~x,E[x1/x1, · · · , xn/xn]− 1) (~x , (x1, · · · , xn) ∈ Nn)

For instance, [x2
1]1(x) = (x, 0), · · · , (x, x2− 1). Then from a well-formed formula

N3 ` A, we obtain N ` ![x2
1]1 ![x1+x2]2A. Generalizing this, a BLL formula !x<EA

containing resource variables x1, · · · ,xn corresponds to the GBLL formula ![E]nA.

Example 2.2. We look at how we express the substitution of a resource polyno-
mial A[x := p(x1, ..., xn)]. We define a function 〈p〉n : Nn → Nn+1 by

〈p〉n(x1, ..., xn)
def
= (x1, ..., xn, p(x1, ..., xn)).

Then the reindexed formula Nn ` A|〈p〉n corresponds to A[x := p(x1, · · · , xn)].

Example 2.3. We illustrate the equality between well-formed formulas. Consider
a formula N ` A and a function r ∈ Set(N3,N). Then we equate formulas
N2 ` ![x1+x2]2(A|r) and N2 ` !hA, where h ∈ Idx(N2,N) is given by

h
def
= Jr • [x1 + x2]2(x, y) = r(x, y, 0), · · · , r(x, y, x+ y − 1).

Definition of GBLL Proofs A judgment of GBLL is the form ∆ | Γ ` A,
where ∆ is an index set, Γ is a sequence of formulas well-formed under ∆, and
A is a well-formed formula under ∆, respectively. The inference rules of GBLL
are presented in Fig. 1. Similarly, we define GBAL to be the system obtained by
replacing Idx in Fig. 1 with Idxa.

Example 2.4. We mimic a special case of the contraction rule in BLL

Γ, !x<xiA, !y<xjA{xi+y/x} ` B
Γ, !x<xi+xjA ` B

See also (!C)-rule of CBLL in Section 3.2. We use the shift function sn,i ∈
Set(Nn+1,Nn+1) defined by sn,i(x1, · · · , xn, y)

def
= (x1, · · · , xn, xi + y). Then

we easily see [xi]n + Jsn,i • [xj]n = [xi + xj]n. By contraction rule of GBLL, we
obtain the following derivation for well-formed formulas Nn+1 ` A and Nn ` B,
mimicking the contraction of BLL:

![xi]nA, ![xj]n(A|sn,i) ` B
![xi+xj]nA = ![xi]n+Jsn,i•[xj]nA ` B

Here, we use the formula equality !Jsn,i•[xj]nA = ![xj]n(A|sn,j).

Generalized Bounded Linear Logic and its Categorical Semantics 231

∆ ` A (Ax) Axiom
∆ | A ` A

∆ | Γ,X, Y, Γ ′ ` A
(Exch) Exchange

∆ | Γ, Y,X, Γ ′ ` A

∆ | Γ1 ` A ∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2 ` B

∆ | Γ,X, Y ` A
(⊗L)

∆ | Γ,X ⊗ Y ` A
∆ | Γ1 ` X ∆ | Γ2 ` Y

(⊗R)
∆ | Γ1, Γ2 ` X ⊗ Y

∆ | Γ1 ` X ∆ | Γ2, Y ` B
((L)

∆ | Γ1, Γ2, X (Y ` B
∆ | Γ,X ` Y

((R)
∆ | Γ ` X (Y

∆ | Γ ` B
(!W) Weakening

∆ | Γ, !0A ` B
∆ | Γ,A ` B

(!D) Dereliction
∆ | Γ, !idA ` B

∆ | Γ, !gA ` B σ ∈ Idx(∆,∆′)(f, g)
(!F) !-Functor

∆ | Γ, !fA ` B

∆ | Γ, !f1A, !f2A ` B (!C)Contraction
∆ | Γ, !f1+f2A ` B

∆′ | !g1A1, · · · , !gkAk ` B f ∈ Idx(∆,∆′)
(P!) Composition

∆ | !g1•fA1, · · · , !gk•fAk ` !fB

Fig. 1. GBLL Proof Rules

Example 2.5. The reindexing operator can be extended to proofs. Let r be a
reindexing function in Set(∆,∆′). Reindexing of the axiom rule ∆′ | A ` A,
by r is the axiom rule ∆ | A|r ` A|r. Reindexing of other rules except (P!)
can be easily defined—the judgment ∆′ | Γ ` A in each rule is replaced with
∆ | Γ |r ` A|r by reindexing. For (P!) rule, reindexing by r is given as follows:

∆′′ | !g1A1, · · · , !gkAk ` B f • Jr ∈ Idx(∆,∆′′)

∆ | (!g1•fA1)|r, · · · , (!gk•fAk)|r ` (!fB)|r

Remark 2.1. In this paper, indexing 2-category is either Idx or Idxa. Allowing
more general indexing 2-categories in GBLL is a future work. In his PhD thesis,
Breuvart designed a linear logic similar to GBLL upon an abstract indexing mech-
anism called dependent semirings [5, Definition 3.2.4.5]. It consists of categories
(S,U) such that 1) each hom-set in S carries a (not necessarily commutative)
ordered monoid structure (0,+) and the composition of S distributes over 0,+,
and 2) U acts on S from both sides. Roughly speaking, S and U corresponds to
our Idxop and Setop, respectively. We expect that a unification of dependent
semirings and 2-categories Idx, Idxa would yield a suitable generalization of
indexing categories for GBLL. This generalization will subsume the non-graded
linear logic, and allow us to compare GBLLs over different idexing categories.

232 Y. Fukihara and S. Katsumata

2.3 Complexity of Cut-Elimination in GBLL

By a similar discussion to BLL [16], instances of Cut inference are divided in two
classes: reducible cuts and irreducible cuts. We define the weight of proof |π| for
each proof π . ∆ | Γ ` A and reduction steps of proofs, such that every reduction
steps will terminate, for each index δ ∈ ∆, in polynomial steps of |π|(δ).

Definition 2.2. [16, Appedix A] In GBLL (resp. GBAL) proofs, an instance of
the Cut inference is irreducible if there are at least one Composition rule below
it or if its left premise is obtained by a Composition rule with nonempty context
and the other premise is obtained by a Weakening, !-Functor, Dereliction, Con-
traction or Composition inference. A reducible cut is Cut inferences that is not
irreducible.

The definition of (ir)reducibility and weight is diverted from Girard’s paper.
Therefore, our system inherits from BLL the conditions under which cuts can be
reduced. See also Section 2.4 in [16].

Definition 2.3. A GBLL or GBAL proof is irreducible if it contains only irre-
ducible cut inferences.

Following [16], we introduce the concept of weight of a proof. It is a function
|π| : ∆ → N assigning a weight number |π|(δ) to a proof π at an index δ ∈ ∆.
The weight number never increases at any reduction step of Cut in π. In the
original BLL, weights are expressed by resource polynomials, while here, they
are generalized to arbitrary functions. We remark that weights of the proofs
involving Composition rules, which introduce !f modality, use the length of the
lists constructed by f .

Definition 2.4. For a given proof π .∆ | Γ ` A of GBLL or GBAL, the weight
of π is a function |π| : ∆ → N inductively defined as follows. A) When ∆ = ∅,
|π| is the evident function. B) When ∆ 6= ∅, |π| is defined by the following rules:

1. For an Axiom rule π . ∆ | A ` A, |π|(δ) def
= 1.

2. If π is obtained from π′ by a unary rule except Contraction and Composition,

|π|(δ) def
= |π′|(δ) + 1.

3. If π is obtained from π1 and π2 by a binary rule except Cut, |π|(δ) def
= |π1|(δ)+

|π2|(δ) + 1.

4. If π is obtained from π1 and π2 by a Cut rule, |π|(δ) def
= |π1|(δ) + |π2|(δ).

5. If π is obtained from π′ by a Contraction rule, |π|(δ) def
= |π′|(δ) + 2

6. If π is obtained from π′ by a Composition rule, such as

...π′

∆′ | !α1
A1, · · · , !αkAk ` Bπ.

∆ | !α1•fA1, · · · , !αk•fAk ` !fB

Generalized Bounded Linear Logic and its Categorical Semantics 233

then |π|(δ) def
=
∑
γ∈f(δ) (|π′|(γ) + 2k + 1) + k + 1. Note that the summation∑

γ∈f(δ) scans all elements in the list f(δ), hence the weight depends on the

length of f(δ).

Theorem 2.1. For every proof π . ∆ | Γ ` A and every δ ∈ ∆, reduction steps
of reducible cuts will terminate in at most (|π|(δ))3 steps.

Proof (sketch). The proof is almost the same as Section 2.2 and Appendix A of
[16], except for the definition of the weight. Suppose that π one-step reduces into
π′. From the definition of the weight, either 1) for all index δ ∈ ∆, the weight
decreases (that is, |π|(δ) > |π′|(δ)), or 2) for all index δ ∈ ∆, the weight keeps
(that is, |π|(δ) = |π′|(δ)). The reduction of the former type is called symmetric
or axiom reduction [16, Section 2.2.1 and 2.2.2], while the latter commutative
reduction [16, Section 2.2.3].

In the case where the weight keeps, we introduce another measure called the
cut size ‖π‖ : ∆→ N of a proof π. Its definition is the same as the definition of
weight except for Cut rule. For a proof π obtained by Cut rule from π1 and π2,
the cut size ‖π‖(δ) is defined to be ‖π1‖(δ) + ‖π2‖(δ) + |π1|(δ) + |π2|(δ).

In each commutative reduction from π to π′ the cut size decrease at all index
(that is, for all δ ∈ ∆, ||π||(δ) > ||π′||(δ)), and the cut size is at most the square
of the weight (that is, for all δ ∈ ∆, ||π||(δ) ≤ (|π|(δ))2). Therefore, the total
number of steps is at most the cube of the weight.

The number of reduction steps of a proof π and its weight depend on the
length of lists computed by the Idx-morphisms occurring in π. However, to
discuss the actual time complexity of cut-elimination, we further need to take
into account the time complexity of the computation of Idx-morphisms. This
would be achieved by looking at a subcategory of Idx computable within a
certain time complexity. We leave this argument of analyzing the actual time
complexity of cut-elimination as a future work.

3 Translation from Constrained BLL

We show that GBLL can express BLL via a translation. This translation is actu-
ally given to variants of these calculi, namely from BLL with constraints (called
CBLL) to GBAL with positivity axioms (called GBAL+).

CBLL is an extension of BLL with constraints, which are one of the features
of Dal Lago and Hofmann’s QBAL [10]. Constraints explicitly specify conditions
imposed on resource variables, and it is natural to explicitly maintain these
conditions throughout proofs. We also remark that in CBLL, weakening of !-
formulas !x<p+qA(!x<pA is allowed, and atomic formulas are assumed to satisfy
the positivity property (3.1).

GBAL+ is designed for a sound translation from CBLL. Recall that GBAL is
an extension of GBLL with weakening !f+gA(!fA on !-formulas. Then GBAL+

is a further extension of GBAL with the following positivity axioms of atomic

234 Y. Fukihara and S. Katsumata

formulas: for every n-ary atomic formula a ∈ A in CBLL, we introduce an atomic
formula [a] ∈ A(Nn) to GBAL together with the axiom:

VC (F) | Ø ` [a] ? 〈p1, · · · , pn〉([a] ? 〈q1, · · · , qn〉 (∀i.pi vC qi).

Here the definition of each notation is given in Section 3.1 and 3.3. Positivity
axiom induces proofs VC (F) | A′ ` A for every two formulas A,A′ such that
A′ vC A (the relation vC for formulas is defined in Section 3.2).

3.1 Resource Polynomials and Constraints

We introduce basic concepts around CBLL, referring to its super-logic QBAL [10].
We put a reference in the beginning of each paragraph when the contents come
from QBAL in [10].

[10, Definition 2.1] Given a countably infinite set RV of resource variables, a
resource monomial over RV is a finite product of binomial coefficients

∏m
i=1

(
xi
ni

)
,

where the resource variables x1, · · · , xm are distinct and n1, · · · , nm ∈ N are
natural numbers. A resource polynomial over RV is a finite sum of resource
monomials. We write 1 as

(
x
0

)
and x as

(
x
1

)
for short. Each positive natural

number n denotes a resource polynomial 1 + 1 + · · · + 1. Resource polynomials
are closed under sum, product, bounded sum and composition [10, Lemma 2.2].

[10, Definition 2.3] A constraint is an inequality p ≤ q, where p and q are
resource polynomials. We abbreviate p+1 ≤ q as p < q. A constraint p ≤ q holds
(written � p ≤ q) if it is true in the standard model. A constraint set (denoted
with C , D) is a finite set of constraints. A constraint p ≤ q is a consequence
of a constraint set C (written C � p ≤ q) if p ≤ q is a logical consequence of
C . For every constraint sets C and D , we write C � D iff C � p ≤ q for every
constraint p ≤ q in D . For each constraint set C , we define an order vC on
resource polynomials by pvC q iff C � p ≤ q.

[10, Definition 2.3] We define the polarity of occurrences of free resource
variables. For a constraint p ≤ q, we say that an occurrence of a resource variable
x in p is called negative, while the one in q is called positive.

3.2 Formulas and Inference Rules of CBLL

Let A be a set of atomic formulas and assume that each atomic formula a ∈ A
is associated with an arity ar(a). Formulas of CBLL are defined by:

A,B ::= a(p1, · · · , par(a)) | A⊗B | A(B | !x<pA

where p in the formula !x<pA satisifes x /∈ FV(p).
[10, Definition 2.6] Each occurrence of a free resource variable in a formula

is classified into positive or negative. Below we inductively define a positive oc-
currence of a resource variable. An occurrence of x in:

– a(p1, · · · , par(a)) is always positive.
– A⊗B is positive iff it is in A and positive, or so in B.

Generalized Bounded Linear Logic and its Categorical Semantics 235

AvCB
(Ax)

A`CB

Γ `C A D � C
(Str)

Γ `D A

Γ `C B
(!W)

Γ, !x<0A `C B

A{0/x}, Γ `C B
(!D)

!x<1A,Γ `C B

Γ, !x<pA, !y<qA{p+y/x} `C B
(!C)

Γ, !x<p+qA `C B

A1, · · · , An `C∪{x<p} B x /∈ FV(C)
(!P)

!x<pA1, · · · , !x<pAn `C !x<pB

!y<p!z<q{y/w}A
{

(z+
∑
w<y q(w))/x

}
, Γ `C B

(!N)
!x<∑

w<p q(w)A,Γ `C B

Fig. 2. Inference Rules for CBLL (⊗ and (are omitted)

– A(B is positive iff it is in A and negative, or it is in B and positive.
– !x′<pA is positive iff it is in A and positive. We remark that an occurrence

of a free resource variable in p is counted as negative in !x′<pA.

[10, Definition 2.8] We extend the order vC on resource polynomials to the
one on CBLL formulas.

a(p1, · · · , par(a))vC a(q1, · · · , qar(a)) iff ∀i.pi vC qi

A⊗B vC C ⊗D iff (AvC C) ∧ (B vC D)

A(B vC C (D iff (C vC A) ∧ (B vC D)

!x<pAvC !x<qB iff (q vC p) ∧ (x /∈ FV(C)) ∧ (AvC∪{x<q} B)

(3.1)

[10, Section 2.3] A CBLL judgment is an expression Γ `C A, where C is
a constraint set, Γ is a multiset of formulas and A is a formula. A judgment
Γ `C A means that A is a consequence of Γ under the constraints C .

Inference rules (Fig. 2) are almost the same as those of QBAL; we omit the
rules for ⊗,(and Cut. Note that weakening is restricted to !-formulas. Every
BLL proof of Γ ` A can be translated to a CBLL proof of Γ `Ø A.

3.3 Translation into GBAL+

As mentioned at the beginning of Section 3, we will give a translation from CBLL
to GBAL+. When translating a CBLL proof Γ `C A, we also need to supply a set
F of free resource variables satisfying F ⊇ FV(Γ) ∪ FV(A) ∪ FV(C). Then the
translation of the proof of Γ `C A yields a proof of VC (F) | [Γ](F ;C) ` [A](F ;C)

in GBAL+.

For Constraints We define an environment over a finite set F of resource
variables to be a function from F to N; by V (F) we mean the set of environments
over F . Given an environment ρ ∈ V (F) and a resource variable x 6∈ F and
n ∈ N, by ρ{x 7→ n} we mean the environment over F ∪ {x} that extends ρ

236 Y. Fukihara and S. Katsumata

with a mapping x 7→ n. Given a resource polynomial p such that FV (p) ⊆ F , by
JpK : V (F) → N we mean the function that evaluates the resource polynomial
p under a given environment. For resource polynomials p1, · · · , pn such that
FV(pi) ⊆ F , we give a function 〈p1, · · · , pn〉 : (V (F)) → Nn by 〈p1, · · · , pn〉ρ =
(Jp1Kρ, · · · , JpnKρ).

Let ρ � p ≤ q denote JpKρ ≤ JqKρ for a constraint p ≤ q with a set F of
free resource variables (such that FV(p) ∪ FV(q) ⊆ F) and for an environment
ρ ∈ V (F). For a subset S ⊂ V (F) and for a constraint set C , S � C is also
defined similarly: for every ρ ∈ S and for every p ≤ q ∈ C , ρ � p ≤ q. Given a
constraint set C and a set F of resource variables such that FV(C) ⊆ F , let a
set VC (F) and a function ιF,C : VC (F)→ V (F) be given by:

VC (F)
def
= {ρ ∈ V (F) | ρ � C } , ιF,C (ρ)

def
= ρ.

For a resource polynomial p, a free resource variable x such that x /∈ FV(p), a
constraint set C and a set F of resource variables such that FV(p)∪FV(C) ⊆ F ,
we introduce a map [x < p](F,C) : VC (F)→ VC∪{x<p}(F ∪ {x})∗ by

[x < p](F,C)ρ
def
= ρ{x 7→ 0}, ρ{x 7→ 1}, · · · , ρ{x 7→ (JpKρ− 1)}

For Formulas Given a CBLL formula A, a constraint set C and a set of resource
variables F such that F ⊇ FV(A) ∪ FV(C), the translation [A](F ;C) of a well-
formed formula VC (F) ` A is defined inductively as follows:

[a(p1, ..., pn)](F ;C) def
= [a] ? (〈p1, ..., pn〉 ◦ ιF,C)

[A⊗B](F ;C) def
= [A](F ;C) ⊗ [B](F ;C)

[A(B](F ;C) def
= [A](F ;C) ([B](F ;C)

[!x<pA](F ;C) def
= ![x<p](F,C)

[A](F∪{x};C∪{x<p})

For Proofs To give a translation of proofs, we define another notation. For a
resource polynomial p, q, a set F of resource variables and a constraint set C
such that FV(p) ∪ FV(C) ⊆ F , a set [p, q)(F,C) of environments is defined by

[p, q)(F,C) = {ρ ∈ V (F ∪ {t}) | ρ � C , JpK(ρ) ≤ ρ(t) < Jp+ qKρ}

here t is a “fresh” resource variable such that t /∈ F .
Given a proof π .Γ `C A, a translation [π](F ;C) .VC (F) | [Γ](F ;C) ` [A](F ;C)

is defined inductively on the structure of the proof:

– For Axiom rule, we can prove VC (F) | [A](F ;C) ` [B](F ;C) for formulas A,B
such that AvC B.

– For rules (Cut), (⊗L), (⊗R), ((L), ((R) and (!W), the translation is simple
replacement of each formula A with [A](F ;C).

Generalized Bounded Linear Logic and its Categorical Semantics 237

– For (Str) rule, we have a map r ∈ Set(VD(F), VC (F)). Then the transla-
tion is given as reindexed proof [π′](F ;C)|r of the translation [π′](F ;C) of the
premise.

– For (!D) rule, the premise is translated to VC (F) | A′, [Γ](F ;C) ` [B](F ;C),
where A′ = [A](F∪{x};C∪{x<1})|r and r is a map such that Jr = [x < 1](F,C).

– For (!C) rule, we define a morphism s
(F ;C)
p,q in Idxa and functions r

(F ;C)
p,q ,

i
(p,q;F ;C)
1 , i

(p,q;F ;C)
2 (s, r, i1 and i2 for short) by

s(F ;C)
p,q : VC (F)→ [p, q)(F,C)

ρ 7→ ρ{t 7→ JpKρ}, · · · , ρ{t 7→ (Jp+ qKρ− 1)}
r(F ;C)
p,q : [p, q)(F,C) ∼−→ VC∪{y<q}(F ∪ {y})

ρ{t 7→ (JpKρ+ k)} 7→ ρ{y 7→ k}

i
(p,q;F ;C)
1 : VC∪{x<p}(F ∪ {x})→ VC∪{x<p+q}(F ∪ {x})

ρ{x 7→ k} 7→ ρ{x 7→ k}

i
(p,q;F ;C)
2 : [p, q)(F,C) → VC∪{x<p+q}(F ∪ {x})

ρ{t 7→ (JpKρ+ k)} 7→ ρ{x 7→ JpKρ+ k}

They satisfy ![x<p][A](F∪{x};C∪{x<p}) =![x<p]([A](F∪{x};C∪{x<p+q})|i1) and

![y<q][A{p+y/x}](F∪{y};C∪{y<q}) =!Jr•s([A](F∪{x};C∪{x<p+q})|i2◦r−1).
Then the conclusion of (!C) is obtained:

VC (F) | [Γ](F ;C), !(Jii•[x<p])+(Ji2•s)[A](F∪{x};C∪{x<p+q}) ` [B](F ;C).

– For (!P) rule, let F ′ = F ∪ {x} and C ′ = C ∪ {x < p}. We can prove the
translated conclusion from the translated premise by the following proof:

VC ′(F
′) | [A1](F

′;C ′), · · · , [An](F
′;C ′)` [B](F

′;C ′)

n times (!D)’s
...

VC ′(F
′) | !id[A1](F

′;C ′), · · · , !id[An](F
′;C ′)` [B](F

′;C ′)

VC (F) | ![x<p][A1](F
′;C ′) · · · ![x<p][An](F

′;C ′)` ![x<p][B](F
′;C ′)

– For (!N) rule, we define index sets ∆0, ∆1, ∆2 and constraints C0,C1,C2 by

C0 = C ∪ {y < p} ∆0 = VC0(F ∪ {y})
C1 = C ∪ {y < p, z < q{y/w}} ∆1 = VC1(F ∪ {y, z})

C2 = C ∪ {x <
∑
w<p

q(w)} ∆2 = VC2
(F ∪ {x})

There is an isomorphism r ∈ Set(∆1, ∆2), and it holds an equation [z <
q{y/w}](F∪{y},C0) • [y < p](F,C) = Jr−1 • [x <

∑
w<p q(w)](F,C). Therefore,

(!N) rule can be translated to the following provable judgment:

VC (F)|![x<∑
w<p q]

[A](F∪{x};C2) ` ![y<p]![z<q{y/w}][A{z+
∑
w<y q/x}](F∪{y,z};C1)

Since every BLL proof Γ ` A can be translated to a CBLL proof Γ `Ø A, it
can further be translated to a GBAL+ proof VØ(F) | [Γ](F ;Ø) ` [A](F ;Ø).

238 Y. Fukihara and S. Katsumata

4 Categorical Semantics for GBLL

We give a categorical semantics of GBLL. First, notice that each index set ∆ de-
termines a multiplicative linear logic under ∆. We model this situation by a set-
indexed symmetric monoidal closed categories, given by a functor C : Setop →
SMCCstrict. That is, for each ∆ ∈ Set, a symmetric monoidal closed category
C∆ is given, and any function f : ∆→ ∆′ induces a strict symmetric monoidal
closed functor Cf : C∆′ → C∆, performing renaming of indexes.

Upon this indexed symmetric monoidal closed categories, we introduce a cat-
egorical structure that models the !f modality. We call it indexed linear exponen-
tial comonad. This is a generalization of the semiring-graded linear exponential
comonad studied in [13,22]. Our generalization replaces the semiring with Idx,
which may be regarded as a many-object pseudo-semiring (Proposition 2.1).

We write [C,D]l for the category of symmetric lax monoidal functors from C
to D and monoidal natural transformations between them. We equip it with the
pointwise symmetric monoidal structure (İ , ⊗̇) given by İX = I and (F ⊗̇G)X =
FX ⊗GX for X ∈ C.

Definition 4.1. An indexed linear exponential comonad (ILEC for short) over
a set-indexed SMCC C consists of:

– A collection of symmetric colax monoidal functors

(D,w∆,∆
′
, c∆,∆

′
) : Idx(∆,∆′)→ [C∆′, C∆]l (∆,∆′ ∈ Set).

The symmetric lax monoidal structure of Df is denoted by mf : I → DfI
and mf,A,B : DfA⊗DfB → Df(A⊗B).

– Monoidal natural transformations ε∆ : D(i∆)→ IdD∆ and δg,f : D(g • f)→
Df ◦Dg satisfying axioms in Figure 3.

– Cr′ ◦Df ◦ Cr = D(Jr • f • Jr′) holds for any morphism f in Idx and r, r′

in Set of appropriate type.

The last axiom has two purposes: the equality Cr′(DfA) = D(f • Jr′)A
is to allow reindexing functions to act from outside, and the other equality
Df(CrA) = D(Cr • f)A is to make D invariant under internal reindexing of
formulas. These equalities are tied up with the formula equivalence in (2.1) and
the definition of reindexing at !fA in Definition 2.1, respectively. We postpone
a concrete example of ILEC to Section 4.2.

4.1 Semantics of GBLL

We interpret a well-formed formula ∆ ` A as an object J∆ ` AK ∈ C∆. This is
done by induction on the structure of the formula. We assume that each atomic
formula a ∈ A(∆) comes with its interpretation as an object [a] ∈ C∆.

J∆ ` a ? rK def
= Cr[a] J∆ `!fAK def

= DfJ∆′ ` AK

J∆ ` A⊗BK def
= J∆ ` AK⊗ J∆ ` BK J∆ ` A(BK def

= J∆ ` AK(J∆ ` BK

Generalized Bounded Linear Logic and its Categorical Semantics 239

D(f • h+ g • h)A

��

D((f + g) • h)A

��
D(f • h)A⊗D(g • h)A

��

Dh(D(f + g)A)

��
Dh(DfA)⊗Dh(DgA) // Dh(DfA⊗DgA)

D0A

��

D(0 • h)A

��
Dh(D0A)

��
I // DhI

D(h • f + h • g)A
D∼=A //

��

D(h • (f + g))A

��
D(h • f)A⊗D(h • f)A

��

D(f + g)(DhA)

��
Df(DhA)⊗Dg(DhA) (Df ⊗Dg)(DhA)

D0A

��

D(h • 0)A

��
D0(DhA)

��
I I

DfA //

��

D(i∆)(DfA)

��

D(h • g • f)A //

��

D(g • f)(DhA)

��
Df(D(i∆)A) // DfA Df(D(h • g)A) // Df(Dg(DhA))

Fig. 3. Axioms of Indexed Linear Exponential Comonad

Proposition 4.1. For any r ∈ Set(∆,∆′) and well-formed formula ∆′ ` A, we
have J∆ ` A|rK = CrJ∆′ ` AK.

Proposition 4.2. J∆ ` !Jr•fAK = J∆′ ` !f (A|r)K.

Each proof π .∆ | Γ ` A of GBLL is interpreted as a morphism J∆ | Γ ` AK :
J∆ ` Γ K → J∆ ` AK in C∆. Here, for a sequence Γ = C1, · · · , Cm of formulas,
J∆ ` Γ K denotes J∆ ` C1K ⊗ · · · ⊗ J∆ ` CmK. We write out the interpretation
only for the cases of modalities, because the other rules, Axiom, Exchange, Cut,
⊗(L, R) and((L, R) are interpreted similarly to the semantics of multiplicative
intuitionistic linear logic. Fig. 4 shows the interpretation of rules related to !f .

Theorem 4.1. For a proof π . ∆ | Γ ` A, if π has a reducible cut and reduces
into π′ by a reduction step, then JπK = Jπ′K in C∆.

4.2 Construction of an Indexed Linear Exponential Comonad

We present a construction of an indexed SMCCs C : Setop → SMCCstrict and
an ILEC D : Idx(∆,∆′)→ [C∆′, C∆]l over C from a SMCC 〈C,⊗, I,(〉, and
a symmetric lax monoidal comonad 〈V,mV ,mV

X,Y , ε, δ〉 on C.

Construction of Indexed SMCCs First, for each index set ∆, we define
the category ∆ t C to be the product of ∆-many copies of C. We represent
objects and morphisms of this category by maps X : ∆ → Obj(C) and maps

240 Y. Fukihara and S. Katsumata

t
π′ . ∆ | Γ ` B

∆ | Γ, !0∆,∆′A ` B

|

= JΓ, !0∆,∆′AK
id⊗w∆,∆

′
JAK−−−−−−−→ JΓ K⊗ I

Jπ′K◦∼=−−−−→ JBK
s
π′ . ∆ | Γ,A ` B
∆ | Γ, !idA ` B

{
= JΓ, !i∆AK

id⊗ε∆JAK−−−−−→ JΓ K⊗ JAK
Jπ′K−−−→ JBK

s
π′ . ∆ | Γ, !gA ` B σ : f ⇒ g

∆ | Γ, !fA ` B

{
=

JΓ, !fAK
id⊗(Dσ)JAK−−−−−−−−→ JΓ, !gAK
Jπ′K−−−→ JBK

s
π′ . ∆ | Γ, !fA, !gA ` B

∆ | Γ, !f+gA ` B

{
=

JΓ, !f+gAK
id⊗cf,g−−−−−→ JΓ K⊗ (J!fAK⊗ J!gAK)
Jπ′K◦∼=−−−−→ JBK

t
π′ . ∆, g | !g1A1, · · · , !gkAk ` B
∆ | !g1•fA1, · · · , !gk•fAk ` !fB

|

=

⊗
iJ!gi•fAiK

⊗
i δgi,f,JAiK−−−−−−−−−→

⊗
iDf(J!giAiK)

mf,···J!giAiK···−−−−−−−−−−→ Df
(⊗

iJ!giAiK
)

Df(Jπ′K)−−−−−−→ J!fBK

Here, 1) JAK denotes J∆ ` AK for each well-formed formula ∆ ` A. 2) π′ denotes the
proof of the premise of each rule.

Fig. 4. Interpretations of Modal Rules.

f : ∆→ Mor(C), respectively. Since SMCCs are closed under products, ∆tC is
a SMCC by the component-wise tensor product and internal hom:

I(d)
def
= I, X ⊗̇ Y(d)

def
= X(d)⊗ Y(d), X(̇Y(d)

def
= X(d)(Y(d)

We then define the indexed SMCCs C by C∆
def
= ∆ t C.

Folding Product We next introduce the folding product functor T; we later
compose it with the symmetric lax monoidal comonad V so that we can derive
various ILECs over C. Note that T itself is also an ILEC; set V = Id. The type
of T is ∆∗ × (∆ t C) −→ C, and is defined by

T(i1i2 · · · in,A)
def
= A(i1)⊗ A(i2)⊗ · · · ⊗ A(in), T((),A)

def
= I

On morphisms, T maps a list permutation in the first argument to the symmetry
morphism in C. T is symmetric strong monoidal in each argument. Moreover,
each strong monoidal structure interacts well with each other, concluding that
it becomes a multi-symmetric strong monoidal functor in the sense of [21].

Proposition 4.3. For f ∈ Idx(∆,∆′) and l = i1 · · · ik ∈ ∆∗, let f(l) denote
f(i1) · · · f(ik). Then it holds T(f(l),A) ' T(l,T(f(),A)) and this isomorphism
is natural for A.

Generalized Bounded Linear Logic and its Categorical Semantics 241

Remark 4.1. Usually the !-modal formula !A in linear logic is interpreted by the
object consisting of many copies of the same data (referred as uniformity of !A
[8]). We leave the development of uniform folding product as a future work.

Construction of ILEC We now compose the folding product functor with
the symmetric lax monoidal comonad V , to derive another ILEC. Let ∆,∆′

be index sets. We define a symmetric strong (hence colax) monoidal functor
D : Idx(∆,∆′) −→ [C∆′, C∆]l by

DfA(i)
def
= T(f(i), V ◦A) Dfp(i)

def
= T(f(i), V p) DαA

def
= T(α,V ◦ A). (4.1)

Here, A ∈ ∆′ t C, and p and α are morphisms in ∆′ t C and Idx(∆,∆′),
respectively. We also define a helper morphism γlA : T(l, V ◦ A) → V T(l,A) for
(l1 · · · lk) ∈ ∆∗ and A ∈ ∆ t C. It is the multiple composite of mA,B :

V A(l1)⊗ · · · ⊗ V A(lk)→ V (A(l1)⊗ · · · ⊗ A(lk)) .

It is routine to verify that this morphism is monoidal natural on l and A.
Two monoidal natural transformations ε : Di∆ → Id∆tC and δg,f : D(g•f)→

Df ◦Dg are defined by:

εA,i :T(i, V ◦ A) = V A(i) (4.2)

δg,f ;A;i :T((g • f)(i), V ◦ A)
∼−→ T(f,T(g(), V ◦ A))

T(f,T(g(),δA))−−−−−−−−−−→ T(f,T(g(), V ◦ V ◦ A))
T(f,γ

g()
A)

−−−−−−−→ Df(DgA)(i).
(4.3)

Theorem 4.2. The symmetric colax monoidal functor D (4.1) and monoidal
natural transformations ε, δ (4.2,4.3) determine an ILEC over C.

4.3 GBLL Semantics by Realizability Category

Hofmann et al., and also Dal Lago et al. employ a realizability semantics to
show that the complexity of BLL proof reductions belongs to P-time [19,10].
In this section we compare their semantics and the simple semantics of GBLL
constructed in the previous section.

We instantiate C in the previous section with the realizability category over a
BCI algebra (A, ·), which is a combinatory algebra based on B,C, I-combinators;
see e.g. [2,20]. We then form the realizability category Ass(A) by the following
data: an object is a function f into P+A, where P+ is the nonempty powerset
construction, and a morphism from f to g is a function h : dom f → dom g
with the following property: there exists an element e ∈ A such that for any
x ∈ dom f and a ∈ f(x), we have e · a ∈ g(h(x)). The category Ass(A) is
symmetric monoidal closed; see e.g. [20, Proposition 4]. The tensor product of f
and g is given by (f ⊗ g)(x, y) = {u� v | u ∈ f(x), v ∈ g(y)}, where u� v is the
BCI-algebra element corresponding to λx.xuv [20, Section 2].

242 Y. Fukihara and S. Katsumata

Next, let ∆ be a set and consider the power category ∆tAss(A). Under the
axiom of choice, ∆ tAss(A) is equivalently described as follows: an object is a
family of functions {fi}i∈∆ into P+A, and a morphism from {fi}i∈∆ to {gi}i∈∆
is a family of functions {hi : dom fi → dom gi}i∈∆ with the following property:
there exists a function e : ∆ → A such that for any i ∈ ∆, x ∈ dom fi and
a ∈ fi(x), we have e(i) · a ∈ gi(hi(x)).

This power category is quite close to the realizability category introduced
in [19, Section 4] and [10, Section 4]. A membership statement a ∈ fi(x) for
an object {fi}i∈∆ ∈ ∆ tAss(A) corresponds to a realizability statement i, a
x in the realizability category (see [19]). The major difference between these
categories is twofold: 1) In the realizability category, a computability constraint
is imposed on e : ∆→ A to achieve the characterization of P-time complexity. 2)
Objects in the realizability category are limited to ∆tAss(A)-objects such that
all fi share the common domain. This is to synchronize with the set-theoretic
semantics ignoring resource polynomials [19, Section 3] [10, Section 3].

We compute the bounded !-modality using the folding product ILEC T with
respect to the indexed SMCC () tAss(A). Let F be a finite set of variables,
x 6∈ F be a resource variable, p be a resource polynomial and C be a constraint
set under F . For any object X in VC∪{v≤p}(F∪{v})tAss(A), the folding product
T([v ≤ p](F,C),X) is an object in VC (F) tAss(A) satisfying

T([v < p](F,C),X)(i)

= λ(x0, · · · , xJpKi−1) . {a0 ⊗ · · · ⊗ aJpKi−1 | aj ∈ X(i{v 7→ j})(xj)} (4.4)

This is different from the modality over the realizability category introduced in
[19, Definition 16] and [10, Definition 4.6]:

(!v<pX)(i) = λx . {a0 ⊗ · · · ⊗ aJpKi−1 | aj ∈ X(i{v 7→ j})(x)};

it only takes a single argument. This is again because their realizability se-
mantics is designed to synchronize with the set-theoretic semantics ignoring
resource polynomials — especially it interprets J!x≤pAK = JAK. On the other
hand, the bounded quantification computed in (4.4) does not ignore resource
polynomials and indexing, as the domain of (4.4) is the index-dependent prod-
uct

∏
j dom(X(i{v 7→ j})). From this, we conjecture that the semantics of BLL

using the ILEC T over () t Ass(A) realizes an index-dependent set-theoretic
semantics of BLL — we leave this semantics as a future work.

5 Conclusion and Related Work

We introduced GBLL, a generalization of Girard et al.’s BLL. We analyzed the
complexity of cut-elimination in GBLL, and gave a translation from CBLL, an
extension of BLL with constraints to GBAL+. We then introduced ILEC as a
categorical structure for interpreting the !-modality of GBLL. The ILEC is a
Idx-graded linear exponential comonad interacting well with a specified indexed
SMCCs. We gave an elementary construction of ILEC using the folding product,

Generalized Bounded Linear Logic and its Categorical Semantics 243

and a technique to derive its variants by inserting symmetric monoidal comonads.
We gave the semantics of BLL using the folding product on the category of
assemblies of a BCI-algebra, and related with the realizability category studied
in [19,10].

Girard’s BLL has a great influence on the subsequent development of indexed
modalities and implicit complexity theory [16]. Hofmann and Scott introduced
the realizability technique to BLL and semantically proved that BLL characterizes
P-time complexity [19]. Their work was further enriched and studied by Dal Lago
and Hofmann [10]. Gaboardi combined the !-modality involving variable binding
with PCF and showed that the combined system is relatively complete [24].

Bucciarelli and Ehrhard’s indexed linear logic with exponential [9] is one of
the closest systems to GBLL. However, the type of the !-modality is different:
their system derives ∆ ` !fA from ∆′ ` A and an almost injective function
f : ∆′ → ∆; it is a function where each f−1(i) is finite. To relate their system
and GBLL, let us use the finite powerset construction Pfin and convert f into
its inverse f−1 : ∆ → Pfin(∆′). This exhibits the similarity with GBLL: GBLL
relaxes Pfin to ()∗, and takes the inverse as the parameter for the !-modality.
The novelty of this work to [9] is that a categorical axiomatization for the !f
modality is identified as an extension of the graded linear exponential comonads
[7,22]. Another novelty is to show that GBLL is enough to encode BLL.

As described in Section 1, the simple form of !-modality !rA is also widely
used in various type systems and programming languages. Examples include:
INTML [30], coeffect calculus [28,7] and its combination with effect systems
[13], Granule language [26], bounded linear type system [14,26], type systems
for the analysis of higher-order model-checking [18,17], a generic BLL-like logic
BSLL over semirings [6], Fuzz type system for function sensitivity and differential
privacy [29,12,3], and many more. A combination of !rA with dependent type
theory called QTT is also introduced in [25] and [4]. Among these systems, each
of [12,26,1] supports 1) full universal and existential, 2) full universal and 3)
partial universal quantification over grades, respectively.

The categorical structure corresponding to the simple form of !-modality ap-
pears in [7,13,22] and is identified as semiring-graded linear exponential comonad.
Breuvart constructed various examples of semiring-graded linear exponential
comonads on relational models of linear logic [6] using his slicing technique. In
this work we replaced semirings to Idx, which may be seen as a multi-object
pseudo-semiring. In the study of graded monad, Orchard et al. generalize the
grading structure from ordered monoids to 2-categories [27]. The main difference
from this work is that their generalized graded monad is defined over a single
category, while an ILEC is defined over an indexed SMCCs.

References

1. Abel, A., Bernardy, J.P.: A unified view of modalities in type systems. Proc. ACM
Program. Lang. 4(ICFP) (Aug 2020). https://doi.org/10.1145/3408972

https://doi.org/10.1145/3408972

244 Y. Fukihara and S. Katsumata

2. Abramsky, S., Lenisa, M.: Linear realizability and full completeness for
typed lambda-calculi. Ann. Pure Appl. Log. 134(2-3), 122–168 (2005).
https://doi.org/10.1016/j.apal.2004.08.003

3. de Amorim, A.A., Gaboardi, M., Hsu, J., Katsumata, S., Cherigui, I.: A semantic
account of metric preservation. In: Castagna, G., Gordon, A.D. (eds.) Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017. pp. 545–556. ACM (2017).
https://doi.org/10.1145/3009837, http://dl.acm.org/citation.cfm?id=3009890

4. Atkey, R.: Syntax and semantics of quantitative type theory. In: Dawar, A., Grädel,
E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 56–65. ACM
(2018). https://doi.org/10.1145/3209108.3209189

5. Breuvart, F.: Dissecting Denotational Semantics: From the Well-established H∗
to the More Recent Quantitative Coeffects. Ph.D. thesis, Université Paris Diderot
(2015), https://lipn.univ-paris13.fr/∼breuvart/These breuvart.pdf

6. Breuvart, F., Pagani, M.: Modelling coeffects in the relational semantics of
linear logic. In: Kreutzer [23], pp. 567–581, http://www.dagstuhl.de/dagpub/
978-3-939897-90-3

7. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantita-
tive coeffect calculus. In: Shao, Z. (ed.) Programming Languages and Sys-
tems. pp. 351–370. Springer Berlin Heidelberg, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54833-8 19

8. Bucciarelli, A., Ehrhard, T.: On phase semantics and denotational semantics in
multiplicative-additive linear logic. Ann. Pure Appl. Log. 102(3), 247–282 (2000).
https://doi.org/10.1016/S0168-0072(99)00040-8

9. Bucciarelli, A., Ehrhard, T.: On phase semantics and denotational semantics:
the exponentials. Annals of Pure and Applied Logic 109(3), 205 – 241 (2001).
https://doi.org/10.1016/S0168-0072(00)00056-7, http://www.sciencedirect.com/
science/article/pii/S0168007200000567

10. Dal Lago, U., Hofmann, M.: Bounded linear logic, revisited. In: Curien, P.L. (ed.)
Typed Lambda Calculi and Applications. pp. 80–94. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02273-9 8

11. Fujii, S., Katsumata, S., Melliès, P.: Towards a formal theory of graded monads.
In: Jacobs, B., Löding, C. (eds.) Foundations of Software Science and Computation
Structures - 19th International Conference, FOSSACS 2016, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eind-
hoven, The Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9634, pp. 513–530. Springer (2016). https://doi.org/10.1007/978-3-
662-49630-5 30

12. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear depen-
dent types for differential privacy. In: Giacobazzi, R., Cousot, R. (eds.) The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. pp. 357–
370. ACM (2013). https://doi.org/10.1145/2429069.2429113, http://dl.acm.org/
citation.cfm?id=2429069

13. Gaboardi, M., Katsumata, S., Orchard, D., Breuvart, F., Uustalu, T.: Combin-
ing effects and coeffects via grading. SIGPLAN Not. 51(9), 476–489 (Sep 2016).
https://doi.org/10.1145/3022670.2951939

14. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: Shao,
Z. (ed.) Programming Languages and Systems. pp. 331–350. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 18

https://doi.org/10.1016/j.apal.2004.08.003
https://doi.org/10.1145/3009837
http://dl.acm.org/citation.cfm?id=3009890
https://doi.org/10.1145/3209108.3209189
https://lipn.univ-paris13.fr/~breuvart/These_breuvart.pdf
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1016/S0168-0072(99)00040-8
https://doi.org/10.1016/S0168-0072(00)00056-7
http://www.sciencedirect.com/science/article/pii/S0168007200000567
http://www.sciencedirect.com/science/article/pii/S0168007200000567
https://doi.org/10.1007/978-3-642-02273-9_8
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1145/2429069.2429113
http://dl.acm.org/citation.cfm?id=2429069
http://dl.acm.org/citation.cfm?id=2429069
https://doi.org/10.1145/3022670.2951939
https://doi.org/10.1007/978-3-642-54833-8_18

Generalized Bounded Linear Logic and its Categorical Semantics 245

15. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987).
https://doi.org/10.1016/0304-3975(87)90045-4

16. Girard, J., Scedrov, A., Scott, P.J.: Bounded linear logic: A modular approach
to polynomial-time computability. Theor. Comput. Sci. 97(1), 1–66 (1992).
https://doi.org/10.1016/0304-3975(92)90386-T

17. Grellois, C., Melliès, P.: An infinitary model of linear logic. In: Pitts, A.M. (ed.)
Foundations of Software Science and Computation Structures - 18th International
Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings. Lecture Notes in Computer Science, vol. 9034, pp. 41–55. Springer
(2015). https://doi.org/10.1007/978-3-662-46678-0 3

18. Grellois, C., Melliès, P.: Relational semantics of linear logic and higher-order
model checking. In: Kreutzer [23], pp. 260–276, http://www.dagstuhl.de/dagpub/
978-3-939897-90-3

19. Hofmann, M., Scott, P.J.: Realizability models for bll-like languages. Theor. Com-
put. Sci. 318(1-2), 121–137 (2004). https://doi.org/10.1016/j.tcs.2003.10.019

20. Hoshino, N.: Linear realizability. In: Duparc, J., Henzinger, T.A. (eds.) Com-
puter Science Logic, 21st International Workshop, CSL 2007, 16th Annual Con-
ference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceed-
ings. Lecture Notes in Computer Science, vol. 4646, pp. 420–434. Springer (2007).
https://doi.org/10.1007/978-3-540-74915-8 32

21. Hyland, M., Power, J.: Pseudo-commutative monads and pseudo-closed 2-
categories. Journal of Pure and Applied Algebra 175(1), 141 – 185 (2002).
https://doi.org/10.1016/S0022-4049(02)00133-0, http://www.sciencedirect.com/
science/article/pii/S0022404902001330, special Volume celebrating the 70th birth-
day of Professor Max Kelly

22. Katsumata, S.: A double category theoretic analysis of graded linear exponential
comonads. In: Baier, C., Dal Lago, U. (eds.) Foundations of Software Science and
Computation Structures. pp. 110–127. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-89366-2 6

23. Kreutzer, S. (ed.): 24th EACSL Annual Conference on Computer Science Logic,
CSL 2015, September 7-10, 2015, Berlin, Germany, LIPIcs, vol. 41. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2015), http://www.dagstuhl.de/
dagpub/978-3-939897-90-3

24. Lago, U.D., Gaboardi, M.: Linear dependent types and relative completeness. In:
Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science,
LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada. pp. 133–142. IEEE Com-
puter Society (2011). https://doi.org/10.1109/LICS.2011.22, https://ieeexplore.
ieee.org/xpl/conhome/5968099/proceeding

25. McBride, C.: I got plenty o’ nuttin’. In: Lindley, S., McBride, C., Trinder,
P.W., Sannella, D. (eds.) A List of Successes That Can Change the World
- Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday.
Lecture Notes in Computer Science, vol. 9600, pp. 207–233. Springer (2016).
https://doi.org/10.1007/978-3-319-30936-1 12

26. Orchard, D., Liepelt, V.B., Eades III, H.: Quantitative program reasoning
with graded modal types. Proc. ACM Program. Lang. 3(ICFP) (Jul 2019).
https://doi.org/10.1145/3341714

27. Orchard, D., Wadler, P., Eades, H.: Unifying graded and parameterised monads.
Electronic Proceedings in Theoretical Computer Science 317, 18–38 (May 2020).
https://doi.org/10.4204/eptcs.317.2

https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1007/978-3-662-46678-0_3
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
https://doi.org/10.1016/j.tcs.2003.10.019
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/10.1016/S0022-4049(02)00133-0
http://www.sciencedirect.com/science/article/pii/S0022404902001330
http://www.sciencedirect.com/science/article/pii/S0022404902001330
https://doi.org/10.1007/978-3-319-89366-2_6
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
https://doi.org/10.1109/LICS.2011.22
https://ieeexplore.ieee.org/xpl/conhome/5968099/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5968099/proceeding
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3341714
https://doi.org/10.4204/eptcs.317.2

246 Y. Fukihara and S. Katsumata

28. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: Unified static analysis of context-
dependence. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
Automata, Languages, and Programming. pp. 385–397. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2 35

29. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for
differential privacy. In: Hudak, P., Weirich, S. (eds.) Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming, ICFP 2010,
Baltimore, Maryland, USA, September 27-29, 2010. pp. 157–168. ACM (2010).
https://doi.org/10.1145/1863543.1863568

30. Schöpp, U.: Computation-by-interaction with effects. In: Yang, H. (ed.) Program-
ming Languages and Systems. pp. 305–321. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25318-8 23

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1007/978-3-642-25318-8_23
http://creativecommons.org/licenses/by/4.0/

	Generalized Bounded Linear Logic and its Categorical Semantics
	1 Introduction
	2 Generalized Bounded Linear Logic
	2.1 Indexing 2-Category
	2.2 Formulas and Proofs
	2.3 Complexity of Cut-Elimination in GBLL

	3 Translation from Constrained BLL
	3.1 Resource Polynomials and Constraints
	3.2 Formulas and Inference Rules of CBLL
	3.3 Translation into GBAL+

	4 Categorical Semantics for GBLL
	4.1 Semantics of GBLL
	4.2 Construction of an Indexed Linear Exponential Comonad
	4.3 GBLL Semantics by Realizability Category

	5 Conclusion and Related Work
	References

