
Factorization in Call-by-Name and Call-by-Value
Calculi via Linear Logic

Claudia Faggian1 and Giulio Guerrieri2()

1 Université de Paris, IRIF, CNRS, F-75013 Paris, France
2 University of Bath, Department of Computer Science, Bath, UK

g.guerrieri@bath.ac.uk

Abstract. In each variant of the λ-calculus, factorization and normal-
ization are two key properties that show how results are computed.
Instead of proving factorization/normalization for the call-by-name (CbN)
and call-by-value (CbV) variants separately, we prove them only once,
for the bang calculus (an extension of the λ-calculus inspired by linear
logic and subsuming CbN and CbV), and then we transfer the result via
translations, obtaining factorization/normalization for CbN and CbV.
The approach is robust: it still holds when extending the calculi with op-
erators and extra rules to model some additional computational features.

1 Introduction

The λ-calculus is the model of computation underlying functional programming
languages and proof assistants. Actually there are many λ-calculi, depending on
the evaluation mechanism (for instance, call-by-name and call-by-value—CbN
and CbV for short) and computational features that the calculus aims to model.

In λ-calculi, a rewriting relation formalizes computational steps in program
execution, and normal forms are the results of computations. In each calculus,
a key question is to define a normalizing strategy : How to compute a result? Is
there a reduction strategy which is guaranteed to output a result, if any exists?

Proving that a calculus admits a normalizing strategy is complex, and many
techniques have been developed. A well-known method first proves factorization
[4,32,19,2]. Given a calculus with a rewriting relation −→, a strategy →

l
⊆−→

factorizes if −→∗⊆→
l
∗ · →¬l

∗ (→¬l is the dual of→
l

), i.e. any reduction sequence can

be rearranged so as to perform→
l

-steps first and then the other steps. If, moreover,

the strategy satisfies some “good properties”, we can conclude that the strategy
is normalizing. Factorization is important also because it is commonly used as
a building block in the proof of other properties of the how-to-compute kind.
For instance, standardization, which generalizes factorization: every reduction
sequences can be rearranged according to a predefined order between redexes.

Two for One. CbN and CbV λ-calculi are two distinct rewriting systems. Quoting
from Levy [20]: the existence of two separate paradigms (CbN and CbV) is trou-
bling because to prove a certain property—such as factorization or normalization—
for both systems we always need to do it twice.

c© The Author(s) 2021
S. Kiefer and C. Tasson (Eds.): FOSSACS 2021, LNCS 12650, pp. 205–225, 2021.
https://doi.org/10.1007/978-3-030-71995-1 11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71995-1_11&domain=pdf
http://orcid.org/0000-0002-0469-4279
mailto:g.guerrieri@bath.ac.uk
https://doi.org/10.1007/978-3-030-71995-1_11

206 C. Faggian and G. Guerrieri

The first aim of our paper is to develop a technique for deriving factorization
for both the CbN [4] and CbV [27] λ-calculi as corollaries of a single factorization
theorem, and similarly for normalization. A key tool in our study is the bang
calculus [11,15], a calculus inspired by linear logic in which CbN and CbV embed.

The Bang Calculus. The bang calculus is a variant of the λ-calculus where an
operator ! plays the role of a marker for non-linear management: duplicability and
discardability of resources. The bang calculus is nothing but Simpson’s linear λ-
calculus [31] without linear abstraction, or the untyped version of the implicative
fragment of Levy’s Call-by-Push-Value [20], as first observed by Ehrhard [10].

The motivation to study the bang calculus is to have a general framework
where both CbN and CbV λ-calculi can be simulated, via two distinct translations
inspired by Girard’s embeddings [14] of the intuitionistic arrow into linear logic.
So, a certain property can be studied in the bang calculus and then automatically
transferred to the CbN and CbV settings by translating back.

This approach has so far mainly be exploited semantically [21,10,11,15,9,7],
but can be used it also to study operational properties [15,30,13]. In this paper,
we push forward this operational direction.

The Least-Level Strategy. We study a strategy from the literature of linear logic
[8], namely least-level reduction →

l
, which fires a redex at minimal level—the

level of a redex is the number of ! under which the redex occurs.

We prove that the least-level reduction factorizes and normalizes in the bang
calculus, and then we transfer the same results to CbN and CbV λ-calculi (for
suitable definitions of least-level in CbN and CbV), by exploiting properties of
their translations into the bang calculus. A single proof suffices. It is two-for-one!
Or even better, three-for-one.

The rewriting study of the least level strategy in the bang calculus is based
on simple techniques for factorization and normalization we developed recently
with Accattoli [2], which simplify and generalize Takahashi’s method [32].

Subtleties of the Embeddings. Transferring factorization and normalization results
via translation is highly non-trivial, e.g. in CPS translations [27]. This applies
also to transferring least-level factorization from the bang calculus to the CbN
and CbV λ-calculi. To transfer the property smoothly, the translations should
preserve levels and normal forms, which is delicate, in particular for CbV. For
instance, the embedding of CbV into the bang calculus defined in [15,30] does not
preserve levels and normal forms. As a consequence, the CbV translation studied
in [15,30] cannot be used to derive least-level factorization or any normalization
result in a CbV setting from the corresponding result in the bang calculus.

Here we adopt the refined CbV embedding of Bucciarelli et al. [7], which
does preserve levels and normal forms. While the preservation of normal forms is
already stressed in [7], the preservation of levels is proved here for the first time,
and it is based on non-trivial properties of the embedding.

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 207

Beyond pure. Our second aim is to show that the developed technique for the
joined factorization and normalization of CbN and CbV via the bang calculus
is robust. We do so, by studying extensions of all three calculi with operators
(or, in general, with extra rules) which model some additional computational
features, such as non-deterministic or probabilistic choice. We then show that
the technique scales up smoothly, under mild assumptions on the extension.

A Motivating Example. Let us illustrate our approach on a simple case, which we
will use as a running example. De’ Liguoro and Piperno’s CbN non-deterministic
λ-calculus Λcbn

⊕ [23] extends the CbN λ-calculus with an operator ⊕ whose
reduction →⊕ models non-deterministic choice: t ⊕ s rewrites to either t or
s. It admits a standardization result, from which it follows that the leftmost-
outermost reduction strategy (noted →

loβ⊕) is complete: if t has a normal form u

then t→
loβ⊕

∗ u. In [22], de’ Liguoro considers also a CbV variant Λcbv
⊕ , extending

Plotkin CbV λ-calculus [27] with an operator ⊕. One may prove standardization
and completeness—again—from scratch, even though the proofs are similar.

The approach we propose here is to work in the bang calculus enriched with
the operator ⊕. We show that the calculus satisfies least-level factorization, from
which it follows that the least-level strategy (noted →

l β!⊕) is complete, i.e. if

t has a normal form u, then t →
l β!⊕

∗ u. The translation then guarantees that

analogous results hold also in Λcbn
⊕ and Λcbv

⊕ , without proving them again.

The Importance of Being Modular. The bang calculus with operators is actually a
general formalism for several calculi, one calculus for each kind of computational
feature modeled by operators. Concretely, the reduction→ consists of −→β!

(which
subsumes CbN −→β and CbV −→βv) and other reduction rules −→ρ.

We decompose the proof of factorization of → in modules, by using the
modular approach we recently introduced together with Accattoli [3].

The key module is the least-level factorization of →β!
, because it is where the

higher-order comes into play—this is done, once and for all. Then, we consider
a generic reduction rule −→ρ to add to −→β!

. Our general result is that if −→ρ has
“good properties” and interacts well with −→β!

(which amounts to an easy test,
combinatorial in nature), then we have least-level factorization for −→β!

∪ −→ρ.
Putting all together, when −→ρ is instantiated to a concrete reduction (such

as →⊕), the user of our method only has to verify a simple test (namely Proposi-
tion 34), to conclude that −→β!

∪ −→ρ has least-level factorization. In particular,
factorization for −→β!

is a ready-to-use black box the user need not to worry
about—our proof is robust enough to hold whatever the other rules are. Finally,
the embeddings automatically give least-level factorization for the corresponding
CbV and CbN calculi. Section 7 illustrates our method in the case −→ρ =→⊕.

Subtleties of the Modular Extensions. To adopt the modular approach for factor-
ization presented in [3], we have to face an important difficulty that arises when
dealing with normalizing strategies, and which is not studied in [3].

208 C. Faggian and G. Guerrieri

A normalizing strategy cannot overlook redexes and it usually selects the
redex r to fire through a property that r minimizes with respect to the redexes in
the whole term, such as being a least level redex or being the leftmost-outermost
(shortened to LO) redex—normalizing strategies are positional. The problem is
that, in general, if →=→β ∪ →ρ, then →

lo
reduction is not the union of →

loβ
and

→
loρ

: the normalizing strategy of the compound system is not obtained putting

together the normalizing strategies of the components. Let us explain the issue on
our running example →β⊕, in the familiar case of leftmost-outermost reduction.

Example 1. Consider head reductions for →β and for →β⊕=→β ∪ →⊕, noted
→
h β

and→
h β⊕

, respectively. In the term s = (II)(x⊕y) where I = λx.x, the subterm

II (a β-redex) is in head position for both the reduction →β and its extension
→β⊕. So, s→

h β
I(x⊕ y) and s→

h β⊕
I(x⊕ y). And in the term t = (x⊕ y)(II), the

head position is occupied by x⊕ y, which is a ⊕-redex. Therefore, II is not the
head redex in t, neither for β nor for β⊕. In general, →

h β⊕
=→

h β
∪ →

h ⊕
.

In contrast, for leftmost-outermost reduction →
loβ⊕, which reduces the lo-

redex, we have →
loβ⊕ 6=→loβ ∪ →lo⊕. Consider again the term t = (x⊕ y)(II). Since

x⊕ y is not a β-redex, II is the lo-redex for →β . Instead, II is not the lo-redex
for →β⊕ (here the lo-redex is x⊕ y). So, t→

loβ
(x⊕ y)I but t 6→

loβ⊕ (x⊕ y)I.

The least-level factorization for →β!
, →β , and →βv

we prove here is robust
enough to make it ready to be used as a module in a larger proof, where it may
combine with operators and other rules. The key point is to define the least-level
reduction from the very beginning as a reduction firing a redex at minimal level
with respect to a general set of redexes (including β!, β or βv, respectively), so
that it is “ready” to be extended with other reduction rules (see Section 4).

Proofs. All proofs are available in [12], the long version of this paper.

2 Background in Abstract Rewriting

An (abstract) rewriting system, [33, Ch. 1] is a pair (A,−→) consisting of a set
A and a binary relation −→⊆ A×A (called reduction) whose pairs are written
t −→ s and called steps. A −→-sequence from t is a sequence of −→-steps. As usual,
→∗ (resp. →=) denotes the transitive-reflexive (resp. reflexive) closure of →. We
say that u is →-normal (or a →-normal form) if there is no t such that u→ t.

In general, a term may or may not reduce to a normal form. If it does, not
all reduction sequences necessarily lead to normal form. A term is weakly or
strongly normalizing, depending on if it may or must reduce to normal form. More
precisely, a term t is strongly →-normalizing if every maximal→-sequence from t
ends in a −→-normal form: any choice of →-steps will eventually lead to a normal
form. A term t is weakly →-normalizing if t −→∗ u for some u →-normal. If t is
weakly but not strongly normalizing, how do we compute a normal form? This
is the problem tackled by normalization: by repeatedly performing only specific
steps, a normal form is eventually reached, provided that t can −→-reduce to any.

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 209

Definition 2 (Normalizing and complete strategy). A reduction →e ⊆→
is a strategy for → if it has the same normal forms as →. A strategy →e for → is:

– complete if t→e ∗ u whenever t −→∗ u with u →-normal;

– normalizing if every weakly −→-normalizing term is strongly →e -normalizing.

Note that if the strategy→e is complete and deterministic (i.e. for every t ∈ A,

t→e s for at most one s ∈ A), then →e is a normalizing strategy for →.

Informally, a strategy for −→ is a way to control the fact that in a term there
are different possible choices of a −→-step. A normalizing strategy for → is a
strategy that is guaranteed to reach a →-normal form, if it exists, from any term.
This provides a useful tool to show that a term is not weakly →-normalizing.

Proving Normalization. Factorization means that any →-sequence from a
term to another can be rearranged by performing a certain kind of steps first. It
provides a simple technique to establish that a strategy is normalizing.

Definition 3 (Factorization). Let (A,−→) be a rewriting system with →=→e
∪ →

i
. The relation → satisfies e-factorization, written Fact(→e ,→i), if

Fact(→e ,→i) : (→e ∪ →i)∗ ⊆ →e
∗ · →

i

∗ (Factorization)

Lemma 4 (Normalization [2]). Let→=→e ∪ →¬e , and→e be a strategy for →.

The strategy →e is complete for → if the following conditions hold:

1. (persistence) if t →¬e t′ then t′ is not −→-normal;

2. (factorization) t −→∗ u implies t→e ∗ · →¬e ∗ u.

The strategy →e is normalizing for → if it is complete and the following holds:

3. (uniformity) every weakly →e -normalizing term is strongly →e -normalizing.

A sufficient condition for uniformity (and confluence) is the quasi-diamond.

Property 5 (Newman [25]) If a reduction → is quasi-diamond (i.e. s← t→r
implies s = r or s→ u← r for some u), then → is uniform and confluent (i.e.
s ∗← r →∗ t implies s→∗ u ∗← t for some u).

Proving Factorization. Hindley [17] first noted that a local property implies
factorization. Let →=→e ∪ →i . We say that →

i
strongly postpones after →e if

SP(→e ,→i) : →
i
· →e ⊆ →e

∗ · →
i

= (Strong Postponement)

Lemma 6 (Hindley [17]). SP(→e ,→i) implies Fact(→e ,→i).

210 C. Faggian and G. Guerrieri

Strong postponement can rarely be used directly, because several interesting
reductions—including β-reduction—do not satisfy it. However, it is at the heart
of Takahashi’s method [32] to prove head factorization of −→β , via the following
immediate property that can also be used to prove other factorizations (see [2]).

Property 7 (Characterization of factorization) We have Fact(→e ,→i) if

and only if there is a reduction ◦→
i

such that ◦→
i
∗ =→

i
∗ and SP(→e , ◦→i).

The core of Takahashi’s method [32] to prove head factorization in the λ-
calculus is to introduce a relation ⇒

i
, called internal parallel reduction, which

verifies the conditions of Property 7. We will follow a similar path in Section 6.1,
to prove least-level factorization in the bang calculus.

Compound systems: proving factorization in a modular way. In this pa-
per, we will consider compound rewriting systems that are obtained by extending
the λ-calculus with extra rules to model advanced computational features.

In an abstract setting, let us consider a rewrite system (A,→) where →=→ξ

∪ →ρ. Under which condition → admits factorization, assuming that both →ξ

and →ρ do? To deal with this question, a technique for proving factorization for
compound systems in a modular way has been introduced in [3]. The approach can
be seen as an analogous for factorization of the classical technique for confluence
based on Hindley-Rosen lemma [4]: if →ξ,→ρ are e-factorizing reductions, their
union →ξ ∪ →ρ also is, provided that two local conditions of commutation hold.

Lemma 8 (Modular factorization [3]). Let →ξ =→e ξ ∪ →i ξ and →ρ =→e ρ
∪ →

i ρ
be e-factorizing relations. Let →e :=→e ξ ∪ →e ρ and →

i
:=→

i ξ
∪ →

i ρ
. The

reduction →ξ ∪ →ρ fulfills factorization Fact(→e ,→i) if the following swaps hold:

→
i ξ
· →e ρ ⊆ →e ρ · →

∗
ξ and →

i ρ
· →e ξ ⊆ →e ξ · →

∗
ρ (Linear Swaps)

The subtlety here is to set→e ξ and→e ρ so that→e =→e ξ∪→e ρ. As already shown

in Example 1, when dealing with normalizing strategies one needs extra care.

3 λ-calculi: CbN, CbV, and bang

We present here a generic syntax for λ-calculi, possibly containing operators. All
the variants of the λ-calculus we shall study use this language. We assume some
familiarity with the λ-calculus, and refer to [4,18] for details.

Given a countable set Var of variables, denoted by x, y, z, . . . , terms and values
(whose sets are denoted by ΛO and Val, respectively) are defined as follows:

t, s, r ::= v | ts | o(t1, . . . , tk) Terms : ΛO v ::= x | λx.t Values : Val

where o ranges over a set O of function symbols called operators, each one with
its own arity k ∈ N. If the operators are o1, . . . ,on, the set of terms is indicated

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 211

as Λo1...on
. When the set O of operators is empty, the calculus is called pure, and

the sets of terms is denoted by Λ; otherwise, the calculus is applied.
Terms are identified up to renaming of bound variables, where abstraction is

the only binder. We denote by t{s/x} the capture-avoiding substitution of s for
the free occurrences of x in t. Contexts (with exactly one hole 〈·〉) are generated
by the grammar below, and c〈t〉 stands for the term obtained from the context c
by replacing the hole with the term t (possibly capturing free variables).

c ::= 〈·〉 | tc | ct | λx.c | o(t1, . . . , c, . . . , tk) Contexts: C

A rule ρ is a binary relation on ΛO; we also call it ρ-rule and denote it by
7→ρ, writing t 7→ρ t

′ rather than (t, t′) ∈ ρ. The ρ-reduction −→ρ is the contextual
closure of ρ. Explicitly, t −→ρ t′ holds if t = c〈r〉 and t′ = c〈r′〉 for some context c
with r 7→ρ r

′; the term r is called a ρ-redex. The set of ρ-redexes is denoted by Rρ.
Given a set of rules Rules, the relation → =

⋃
ρ−→ρ (for ρ ∈ Rules) can

equivalently be defined as the contextual closure of 7→ =
⋃
ρ 7→ρ.

3.1 Call-by-Name and Call-by-Value λ-calculi

Pure CbN and Pure CbV λ-calculi. The pure call-by-name (CbN for short) λ-
calculus [4,18] is (Λ,→β), the set of terms Λ together with the β-reduction →β ,
defined as the contextual closure of the usual β-rule, which we recall in (1) below.

The pure call-by-value (CbV for short) λ-calculus [27] is the set Λ endowed
with the reduction −→βv

, defined as the contextual closure of the βv-rule in (2).

CbN: (λx.t)s 7→β t{s/x} (1) CbV: (λx.t)v 7→βv t{v/x} with v∈Val (2)

CbN and CbV λ-calculi. A CbN (resp. CbV) λ-calculus is the set of terms
endowed with a reduction −→ which extends →β (resp. →βv).

In particular, the applied setting with operators (when O 6= ∅) models in the
λ-calculus richer computational features, allowing o-reductions as the contextual
closure of o-rules of the form o(t1, . . . , tk) 7→o s.

Example 9 (Non-deterministic λ-calculi). Let O = {⊕} where ⊕ is a binary
operator; let →⊕ be the contextual closure of the (non-deterministic) rule below:

⊕(t1, t2) 7→⊕ t1 and ⊕ (t1, t2) 7→⊕ t2.

The non-deterministic CbN λ-calculus Λcbn
⊕ = (Λ⊕,→β⊕) is the set Λ⊕

with the reduction →β⊕ = −→β ∪ →⊕. The non-deterministic CbV λ-calculus
Λcbv
⊕ = (Λ⊕,→βv⊕) is the set Λ⊕ with the reduction →βv⊕ = −→βv

∪ →⊕.

3.2 Bang calculi

The bang calculus [11,15] is a variant of the λ-calculus inspired by linear logic.
An operator ! plays the role of a marker for duplicability and discardability. Here

212 C. Faggian and G. Guerrieri

we allow also the presence of operators other than !, ranging over a set O. So,
terms and contexts of the bang calculus (denoted by capital letters) are:

T, S,R ::= x | λx.T | TS | !T | o(T1, . . . , Tk) Terms: Λ!O

C ::= 〈·〉 | λx.C | TC | CT | !C | o(T1, . . . ,C, . . . , Tk) Contexts: C!
Terms of the form !T are called boxes and their set is denoted by !Λ!O. When
there are no operators other than ! (i.e. O = ∅), the set of terms and the set of
boxes are denoted by Λ! and !Λ!, respectively. This syntax can be expressed in
the one at the beginning of Section 3, where ! is an unary operator called bang.

The pure bang calculus. The pure bang calculus (Λ!,→β!
) is the set of terms Λ!

endowed with reduction −→β!
, the closure under contexts in C! of the β!-rule:

(λx.T) !S 7→β!
T{S/x} (3)

Intuitively, in the bang calculus the bang-operator ! marks the only terms
that can be erased and duplicated. Indeed, a β-like redex (λx.T)S can be fired
by 7→β!

only when its argument S is a box, i.e. S = !R: if it is so, the content R
of the box S (and not S itself) replaces any free occurrence of x in T .3

A proof of confluence of β!-reduction −→β!
is in [15].

Notation 10 We use the following notations to denote some notable terms.

ι := λx.x δ := λx.xx I := λx.!x ∆ := λx.x !x.

Remark 11 (Notable terms). The term I = λx.!x plays the role of the identity
in the bang calculus: I !T −→β!

!(x{T/x}) = !T for any term T . Instead, the term
ι = λx.x, when applied to a box !T , opens the box, i.e. returns its content T :
ι !T −→β!

x{T/x} = T . Finally, ∆ !∆ −→β!
∆ !∆ −→β!

. . . is a diverging term.

A bang calculus. A bang calculus (Λ!O,−→) is the set Λ!O of terms endowed with
a reduction −→ which extends −→β!

. In this paper we shall consider calculi where
−→ contains −→β!

and o-reductions −→o (o ∈ O) defined from o-rules of the form
o(T1, . . . , Tk) 7→o S, and possibly other rules. So, →=

⋃
ρ−→ρ (for ρ ∈ Rules),

with Rules ⊇ {!β,o | o ∈ O}. We set →O =
⋃

o∈O→o.

3.3 CbN and CbV translations into the bang calculus

Our motivation to study the bang calculus is to have a general framework
where both CbN [4] and CbV [27] λ-calculi can be embedded, via two distinct
translations. Here we show how these translations work. We extend the simulation
results in [15,30,7] for the pure case to the case with operators (Proposition 13).

Following [7], the CbV translation defined here differs from [15,30] in the
application case. Section 5 will show why this optimization is crucial.

CbN and CbV translations are two maps (·)n : ΛO −→ Λ!O and (·)v : ΛO −→ Λ!O,
respectively, translating terms of the λ-calculus into terms of the bang calculus:

3 Syntax and reduction rule of the bang calculus follow [15], which is slightly different
from [11]. Unlike [15] (but akin to [30,16]), here we do not use ι (aka der) as a
primitive, since ι and its associated rule 7→d can be simulated, see Remark 11 and (4).

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 213

xn = x (λx .t)n = λx .tn (o(t1, . . . , tk))n = o(tn1, . . . , t
n
k) (ts)n = tn !sn ;

xv = !x (λx .t)v = !(λx.tv) (o(t1, . . . , tk))v = o(tv1, . . . , t
v
k) (ts)v =

{
T sv if tv = !T

(ι tv)sv otherwise.

Example 12. Consider the λ-term ω := δδ: then, δn = ∆, δv = !∆ and ωn =
∆ !∆ = ωv (δ and ∆ are defined in Notation 10). The λ-term ω is diverging in
CbN and CbV λ-calculi, and so is ωn = ωv in the bang calculus, see Remark 11.

For any term t ∈ ΛO, tn and tv are just different decorations of t by means of
the bang-operator ! (recall that ι = λx.x). The translation (·)n puts the argument
of any application into a box: in CbN any term is duplicable or discardable. On
the other hand, only values (i.e. abstractions and variables) are translated by
(·)v into boxes, as they are the only terms duplicable or discardable in CbV.

As in [15,30], we prove that the CbN translation (·)n (resp. CbV translation
(·)v) from the pure CbN (resp. CbV) λ-calculus into the bang calculus is sound
and complete: it maps β-reductions (resp. βv-reductions) of the λ-calculus into β!-
reductions of the bang calculus, and conversely β!-reductions — when restricted to
the image of the translation — into β-reductions (resp. βv-reductions). The same
holds if we consider any o-reduction for operators, where we assume that the o-rule
commutes with the translations: if o(t1, . . . , tk) 7→o s then o(tn1, . . . , t

n
k) 7→o s

n,
and if o(tn1, . . . , t

n
k) 7→o S then o(t1, . . . , tk) 7→o s with sn = S; similarly for (·)v.

In the simulation, −→d denotes the contextual closure of the rule:

ι !T 7→d T (this is nothing but (λx.x)!T 7→β!
T) (4)

Clearly, −→d⊆−→β!
(Remark 11). We write T �d S if T −→∗d S and S is d-normal.

Proposition 13 (Simulation of CbN and CbV). Let t ∈ ΛO and o ∈ O.

1. CbN soundness: If t −→β t
′ then tn −→β!

t′
n
. If t −→o t

′ then tn −→o t
′n.

CbN completeness: If tn −→β!
S then S = t′

n
and t −→β t

′, for some t′ ∈ ΛO.
If tn −→o S then S = t′

n
and t −→o t

′, for some t′ ∈ ΛO.
2. CbV soundness: If t −→βv

t′ then tv −→β!
−→=

d t′
v

with t′
v
d-normal. If t −→o t

′

then tv −→o−→=
d t′

v
with t′

v
d-normal.

CbV completeness: If tv −→β!
�d S then tv −→β!

−→=
d S with S = t′

v
and

t −→βv t
′, for some t′ ∈ ΛO. If tv −→o�d S then tv −→o−→=

d S with S = t′
v

and
t −→o t

′, for some t′ ∈ ΛO.

Example 14. Let t = (λz.z)x y and t′= xy. So t −→β t
′ with tn = (λz.z)!x !y −→β!

x !y = t′
n
; and t −→βv

t′ with tv = (ι((λz.!z)!x))!y −→β!
(ι !x)!y −→d x !y = t′

v
.

4 The least-level strategy

The bang calculus Λ! has a natural normalizing strategy, derived from linear logic
[8], namely the least-level reduction. It reduces only redexes at least level, where
the level of a redex R in a term T is the number of bangs ! in which R is nested.

214 C. Faggian and G. Guerrieri

Least-level reduction is easily extended to a general bang calculus (Λ!O,−→).
The level of a redex R is then the number of bangs ! and operators o in which R
is nested; intuitively, least-level reduction fires a redex which is minimally nested.

Below, we formalize the reduction in a way that is independent of the specific
shape of the redexes, and even of specific definition of level one chooses. The
interest of least-level reduction is in the properties it satisfies. All our developments
will rely on such properties, rather than the specific definition of least level.

In this section, →=
⋃
ρ−→ρ for ρ ∈ Rules (for a generic set of rules Rules). We

write R =
⋃
ρRρ (again, with ρ ∈ Rules) for the set of all redexes.

4.1 Least-level reduction in bang calculi

The level of a redex occurrence R in a term T is a measure of its depth. Formally,
we indicate the occurrence of a subterm R in T with the context C such that
C〈R〉 = T . Its level is then the level `(C) ∈ N of the hole in C. The definition of
level for contexts in a bang calculus Λ!O is formalized as follows.

`(〈·〉) = 0 `(λx.C) = `(C) `(CT) = `(C) `(TC) = `(C)

`(!C) = `(C) + 1 `(o(. . . ,C, . . .)) = `(C) + 1
(5)

Note that the level increases by 1 in the scope of !, and of any operator o ∈ O.
A reduction step T −→ρ S is at level k if it fires a ρ-redex at level k ∈ N; it is

least-level if it reduces a redex whose level is minimal.
The least level ``(T) of a term T expresses the minimal level of any redex

occurrences in T ; if no redex is in T , we set ``(T) =∞. Formally:

Definition 15 (Least-level reduction). Let →=
⋃
ρ→ρ (for ρ ∈ Rules) and

R =
⋃
ρRρ the set of redexes. Given a function `(·) from contexts to N:

– The least level of a term T is defined as4

``(T) := inf{`(C) | T = C〈R〉 for some R ∈ R} ∈ (N ∪ {∞}). (6)

– A ρ-reduction step T −→ρ S is:
1. at level k, noted T −→ρ:k S, if T = C〈R〉, S = C〈R′〉, R 7→ρ R′, `(C) = k;
2. least-level, noted T →

l ρ S, if T −→ρ:k S and k = ``(T);

3. internal, noted T →¬l ρ S, if T −→ρ:k S and k > ``(T).

– Least-level reduction is →
l

=
⋃
ρ→l ρ (for ρ ∈ Rules).

– Internal reduction is →¬l =
⋃
ρ →¬l ρ (for ρ ∈ Rules).

Note that → = →
l
∪ →¬l and that our definitions solve the issue of Example 1.

Indeed, the definition of least level ``(T) of a term, and hence the definition of
→
l ρ, depend on the whole set R =

⋃
ρRρ of redexes associated with →.5

4 Recall that inf ∅ =∞, when ∅ is seen as the empty subset of N with the usual order.
5 We should write ``R(T), lR and →lRρ, but we avoid it for the sake of readability.

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 215

Normal Forms. It is immediate that →
l

(→ is a strategy for →. Indeed, →
l

and

→ have the same normal forms because →
l
⊆→ and if a term has a →-redex, it

has a redex at least-level, i.e. it has a →
l

-redex.

Remark 16 (Least level of normal forms). Note that ``(T) =∞ if and only if T
is →-normal, because `(C) ∈ N for all contexts C.

A good least-level reduction. The beauty of least-level reduction for the bang
calculus, is that it satisfies some elegant properties, which allow for neat proofs,
in particular monotonicity and internal invariance (in Definition 17). The devel-
opments in the rest of the paper rely on such properties, and in fact will apply
to any calculus whose reduction → has the properties described below.

Definition 17 (Good least-level). A reduction → has a good least-level if:

1. (monotonicity) T → S implies ``(T) ≤ ``(S); and
2. (internal invariance) T →¬l S implies ``(T) = ``(S).

Point 1 states that no step can decrease the least level of a term. Point 2 says
that internal steps cannot change the least level of a term. Therefore, only least-
level steps may increase the least level. Together, they imply persistence: only
least-level steps can approach normal forms.

Property 18 (Persistence) If → has a good least-level, then T →¬l S implies

that S is not →-normal.

Reduction →β!
in the pure bang calculus (Λ!,→β!

) has a good least-level.
More in general, the same holds when extending the reduction with operators.

Proposition 19 (Good least-level of bang calculi). Given Λ!O, let →=
→β!

∪ →O, where each o ∈ O has a redex of shape o(P1, . . . , Pk). The reduction
→ has a good least-level.

4.2 Least-level for a bang calculus: examples.

Let us see more closely the least-level reduction for a bang calculus (Λ!O,−→).
For concreteness, we consider Rules = {β!,o | o ∈ O}, hence the set of redexes is
R = Rβ!

∪RO, where RO is the set of terms o(T1, . . . , Tk) for any o ∈ O.
We observe that the least level ``(T) of a term T ∈ Λ!O can be easily defined

in a direct way, by induction on T :

– ``(T) = 0 if T ∈ R = Rβ!
∪RO,

– otherwise, ``(x) =∞ and

``(λx.T) = ``(T) ``(!T) = ``(T) + 1 ``(TS) = min{``(T), ``(S)}.

Example 20 (Least level of a term). Let R ∈ Rβ!
. If T0 := R !R, then ``(T0) = 0.

If T1 := x !R then ``(T1) = 1. If T2 := o(x, y)!R then ``(T2) = 0, as o(x, y) ∈ RO.

216 C. Faggian and G. Guerrieri

Intuitively, least-level reduction fires a redex that is minimally nested, where
a redex is any subterm whose form is in R = Rβ!

∪ RO. Note that least-level
reduction can choose to fire one among possibly several redexes at minimal level.

Example 21. Let us revisit Example 20 with R = ι !z ∈ Rβ!
(so R 7→β!

z, see
Remark 11). Then T1 := x !R →

l β!
x !z but T0 := R !R 6→

l β!
R !z and T2 :=

o(x, y) !R 6→
l β!

o(x, y)!z. Also, o(x,R) 6→
l β!

o(x, z) although o(x,R)→β!
o(x, z).

Let S = ι !(z !z) (so S 7→β!
z !z). In (λz.S)!S, two least-level steps are possible

(the fired β!-redex is underlined): (λz.S)!S →
l β!

ι !(S !S), and (λz.S)!S →
l β!

(λz.z !z)!S. But (λz.S)!S 6→
l β!

(λz.S)!(z !z) although (λz.S)!S →β!
(λz.S)!(z !z).

4.3 Least-level for CbN and CbV λ-calculi

The definition of least-level reduction in Section 4.1 is independent of the specific
notion of level chosen, and of the specific calculus. The idea is that the reduction
strategy persistently fires a redex at minimal level, once such a notion is set.

Least-level reduction can indeed be defined also for the CbN and CbV λ-
calculi, given an opportune definition of level. In CbN, we count the number of
nested arguments and operators containing the redex occurrence. In CbV, we
count the number of nested operators and unapplied abstractions containing the
redex occurrence, where an abstraction is unapplied if it is not the right-hand
side of an application. Formally, a redex occurrence is identified by a context (as
explained in Section 4.1), and we define the level `CbN(c) ∈ N and `CbV(c) ∈ N
of a context c in CbN and CbV λ-calculi, respectively, as follows.

`CbN(〈·〉) = 0 `CbV(〈·〉) = 0

`CbN(λx.c) = `CbN(c) `CbV(λx.c) = `CbV(c) + 1

`CbN(ct) = `CbN(c) `CbV(ct) =

{
`CbV(c′) if c = λx.c′

`CbV(c) otherwise

`CbN(tc) = `CbN(c) + 1 `CbV(tc) = `CbV(c)

`CbN(o(. . . , c, . . .)) = `CbN(c) + 1 `CbV(o(. . . , c, . . .)) = `CbV(c) + 1.

In both CbN and CbV λ-calculi, the least level of a term (denoted by ``CbN(·)
and ``CbV(·)) and least-level and internal reductions are given by Definition 15
(replace `(·) with `CbN(·) for CbN, and with `CbV(·) for CbV).

In Section 5 we will see that the definitions of CbN and CbV least level are not
arbitrary, but induced by the CbN and CbV translations defined in Section 3.3.

5 Embedding of CbN and CbV by level

Here we refine the analysis of the CbN and CbV translations given in Section 3.3,
by showing two new results: translations preserve normal forms (Proposition 22)
and least-level (Proposition 25), back and forth. This way, to obtain least-level

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 217

factorization or least-level normalization results, it suffices to prove them in
the bang calculus. The translation transfers the results into the CbN and CbV
λ-calculi (Theorem 26). We use here the expression “translate” in a strong sense:
the results for CbN and CbV λ-calculi are obtained from the corresponding
results in the bang calculus almost for free, just via CbN and CbV translations.

Preservation of normal forms. The targets of the CbN translation (·)n and CbV
translation (·)v into the bang calculus can be characterized syntactically. A fine
analysis of these fragments of the bang calculus (see [12] for details) proves that
both CbN and CbV translations preserve normal forms, back and forth.

Proposition 22 (Preservation of normal forms). Let t, s ∈ ΛO and o ∈ O.

1. CbN: t is β-normal iff tn is β!-normal; t is o-normal iff tn is o-normal.
2. CbV: t is βv-normal iff tv is β!-normal; t is o-normal iff tv is o-normal.

By Remark 16, Proposition 22 can be seen as the fact that CbN and CbV
translations preserve the least-level of a term, back and forth, when the least-level
is infinite. Actually, this holds more in general for any value of the least-level.

Preservation of levels. We aim to show that least-level steps in CbN and CbV
λ-calculi correspond to least-level steps in the bang calculus—back and forth—via
CbN and CbV translations, respectively (Proposition 25). This result is subtle,
one of the main technical contributions of this paper.

First, we extend the definition of translations to contexts. The CbN and
CbV translations for contexts are two functions (·)n : C −→ C! and (·)v : C −→ C!,
respectively, mapping contexts of the λ-calculus into contexts of the bang calculus:

〈·〉n = 〈·〉 〈·〉v = 〈·〉
(λx.c)n = λx.cn (λx.c)v = !(λx.cv)

(o(t1, ..., c, ..., tk))n = o(tn1, ..., c
n, ..., tnk) (o(t1, ..., c, ..., tk))v = o(tv1, ..., c

v, ..., tvk)

(ct)n = cn !(tn) (ct)v =

{
C tv if cv = !C

(ι cv)tv otherwise

(tc)n = tn !(cn) ; (tc)v =

{
T cv if tv = !T

(ι tv)cv otherwise.

Note that CbN (resp. CbV) level of a context defined in Section 4.3 increases
by 1 whenever the CbN (resp. CbV) translation for contexts adds a !. Thus,
CbN and CbV translations preserve, back and forth, the level of a redex and the
least-level of a term. Said differently, the level for CbN and CbV is defined in
Section 4.3 so as to enable the preservation of level via CbN and CbV translations.

Lemma 23 (Preservation of level via CbN translation).

1. For contexts: For any context c ∈ C, one has `CbN(c) = `(cn).
2. For reduction: For any term t ∈ ΛO: t −→β:k s if and only if tn −→β!:k s

n; and
t −→o:k s if and only if tn −→o:k s

n, for any o ∈ O.

218 C. Faggian and G. Guerrieri

3. For least-level of a term: For any term t ∈ ΛO, one has ``CbN(t) = ``(tn).

Lemma 24 (Preservation of level via CbV translation).

1. For contexts: For any context c ∈ C, one has `CbV(c) = `(cv).
2. For reduction: For any term t ∈ ΛO: t −→βv :k s if and only if tv −→β!:k−→=

d:k s
v;

and t −→o:k s if and only if tv −→o:k−→=
d:k s

v, for any o ∈ O.
3. For least-level of a term: For any term t ∈ ΛO, one has ``CbV(t) = ``(tv).

From the two lemmas above it follows that CbN and CbV translations preserve
least-level and internal reductions, back and forth.

Proposition 25 (Preservation of least-level and internal reductions).
Let t ∈ ΛO and o ∈ O.

1. CbN least-level: t→
l β s iff tn →

l β!
sn; and t→

l o s iff tn →
l o s

n.

2. CbN internal: t →¬l β s iff tn →¬l β!
sn; and t →¬l o s iff tn →¬l o s

n.

3. CbV least-level: t→
l βv

s iff tv →
l β!
→
l d

= sv; and t→
l o s iff tv →

l o→l d
= sv.

4. CbV internal: t→
l βv s iff tv →¬l β!

→¬l d
= sv; and t→

l o s iff tv →¬l o→¬l d
= sv.

As a consequence, least-level reduction induces factorization in CbN and CbV
λ-calculi as soon as it does in the bang calculus. And, by Proposition 22, it is a
normalizing strategy in CbN and CbV as soon as it is so in the bang calculus.

Theorem 26 (Factorization and normalization by translation). Let
Λcbn
O = (ΛO,→β ∪ →O) and Λcbv

O = (ΛO, →βv ∪ →O).

1. If Λ!O admits least-level factorization Fact(→
l
,→¬l), then so do Λcbn

O and Λcbv
O .

2. If Λ!O admits least-level normalization, then so do Λcbn
O and Λcbv

O .

A similar result will hold also when extending the pure calculi with a rule 7→ρ

other than 7→o, as long as the translation preserves ρ-redexes, back and forth.

Remark 27 (Preservation of least-level and of normal forms). Preservation of
normal form and least-level is delicate. For instance, it does not hold with the
definition CbV translation (·)v in [15,30]. There, the translation t = rs ∈ Λ would
be tv = (ι !(rv))sv and then Proposition 22 and Proposition 25 would not hold:
ι !(rv) is a β!-redex in tv (see Remark 11) and hence tv would not be normal even
though so is t, and ``(tv) = 0 even though ``CbV(t) 6= 0. This is why we defined
two distinct case when defining (·)v for applications, akin to Bucciarelli et al. [7].

6 Least-level factorization via bang calculus

We have shown that least-level factorization in a bang calculus Λ!O implies least-
level factorization in the corresponding CbN and CbV calculi, via forth-and-back
translation. The central question now is how to prove least-level factorization for
a bang calculus: this section is devoted to that, in the pure and applied cases.

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 219

Overview. Let us overview our approach by considering O = {o}, and →=
→β!

∪ →o. Since by definition →
l

=→
l β!
∪ →

l o (and →¬l =→¬l β!
∪ →¬l o), Lemma 8

states that we can decompose least-level factorization of → in three modules:

1. prove least-level factorization of →β!
, i.e. →∗β!

⊆ →
l β!

∗ · →¬l β!
;

2. prove least-level factorization of →o, i.e. →o
∗ ⊆ →

l o
∗ · →¬l o;

3. prove the two linear swaps of Lemma 8.

Note that, for each of →
l β!

and →
l o, the least level is defined with respect to the

set of all redexes R = Rβ!
∪ Ro, so as to have →

l
=→

l β!
∪ →

l o. This approach

solves the issue we mentioned in Example 1.
Clearly, Points 2 and 3 depend on the specific rule 7→o. However, the beauty

of a modular approach is that Point 1 can be established in general: we do not
need to know 7→o, only the shape of its redexes given by Ro. In Section 6.1 we
provide a general result of least-level factorization for →β!

(Theorem 28). In fact,
we shall show a bit more: the way of decomposing the study of factorization
that we have sketched, can be applied to study least-level factorization of any
reduction →=→β!

∪ →ρ, as long as → has a good least-level.
Once (1) is established (once and for all), to prove factorization of a reduction

→β!
∪ →o we are only left with (2) and (3). In Section 6.3 we show that the proof

of the two linear swaps can be reduced to a single, simple test, involving only
the 7→o step (Proposition 34). In Section 7, we will illustrate how all elements
play together on a concrete case, applying them to non-deterministic λ-calculi.

6.1 Factorization of →β! in a bang calculus

We show that →β!
factorizes via least-level reduction (Theorem 28). This holds

for a definition of →
l β!

(as in Section 4) where the set of redexes R contains

Rβ!
∪ RO—this generalization has essentially no cost, and allows us to use

Theorem 28 as a module in the factorization of larger reductions containing →β!
.

We prove factorization via Takahashi’s parallel reduction method [32]. We
define a reflexive reduction⇒¬lβ!

(called parallel internal β!-reduction) which fulfills

the conditions of Property 7, i.e. ⇒¬lβ!
∗=→¬l β!

∗ and ⇒¬lβ!
·→
l β!
⊆→

l β!
∗ ·⇒¬lβ!

.

The tricky point is to prove that ⇒¬lβ!
·→
l β!
⊆→

l β!
∗ ·⇒¬lβ!

We adapt the proof

technique in [2]. All details are in [12]. Here we just give the definition of ⇒¬lβ!
.

We first introduce ⇒β!:n with n ∈ N ∪ {∞} (the parallel version of −→β!:n),
which fires simultaneously a number of β!-redexes at level at least n ∈ N, and
⇒β!:∞ does not reduce any β!-redex: T ⇒β!:∞ S implies T = S.

x⇒β!:∞ x
T ⇒β!:n T

′

λx.T ⇒β!:n λx.T
′

T ⇒β!:m T ′ S ⇒β!:n S
′

TS ⇒β!:min{m,n} T
′S′

T ⇒β!:n T
′

!T ⇒β!:n+1 !T ′

T ⇒β!:n T
′ S ⇒β!:m S′

(λx.T)!S ⇒β!:0 T
′{S′/x}

220 C. Faggian and G. Guerrieri

The parallel internal β!-reduction ⇒¬lβ!
is the parallel version of →¬l β!

, which

fires simultaneously a number of β!-redexes that are not at minimal level. Formally,

T ⇒¬lβ! S if T ⇒β!:n S with n =∞ or n > ``(T).

Theorem 28 (Least-level factorization of →β!
). Let →ρ be the contextual

closure of a rule 7→ρ, and assume that →=→β!
∪ →ρ has good least-level in Λ!O.

Then, T −→∗β!
S implies T →

l β!
∗ · →¬l β!

∗ S.

In particular, as −→β!
has a good least-level (Proposition 19) in Λ!, we have:

Corollary 29 (Least-level factorization in the pure bang calculus). In
the pure bang calculus (Λ!,−→β!

), if T −→∗β!
S then T →

l β!
∗ · →¬l β!

∗ S.

Surface Digression. According to Definition 15, β!-reduction −→β!:0 at level 0
(called surface reduction in Simpson [31]) can only fire redexes at level 0, i.e.,
redexes that are not inside boxes or other operators. It can be equivalently defined
as the closure of 7→β!

under contexts S defined by S ::= 〈·〉 | λx.S | ST | TS.
Since −→β!:0⊆→l β!

, from least-level factorization (Corollary 29) and monotonicity

(Proposition 19), a new proof of a result already proven by Simpson [31] follows.

Corollary 30 (Surface factorization in the pure bang calculus). In the
pure bang calculus (Λ!,−→β!

), if T −→∗β!
S then T −→∗β!:0

·−→∗β!:k
S with k > 0.

6.2 Pure calculi and least-level normalization

Least-level factorization of →β!
implies in particular least-level factorization for

→β and →βv
. As a consequence, least-level reduction is a normalizing strategy

for all three pure calculi: the bang calculus, the CbN, and the CbV λ-calculi.

The pure bang calculus. The least-level reduction →
l β!

is a normalizing strategy

for →β!
. Indeed, it satisfies all ingredients in Lemma 4. Since we have least-level

factorization (Corollary 29), same normal forms, and persistence (Proposition 19),
→
l β!

is a complete strategy for→β!
: if T →∗β!

S and S is β!-normal, then T →
l β!

∗ S.

We already observed (Example 21) that the least-level reduction →
l β!

is

non-deterministic, because several redexes at least level may be available. Such
non-determinism is however harmless and inessential, because →

l β!
is uniform.

Lemma 31 (Quasi-Diamond). In the pure bang calculus (Λ!,−→β!
), the re-

duction →
l β!

is quasi-diamond (Property 5), and therefore uniform.

Putting all the ingredients together, we have (by Lemma 4):

Theorem 32 (Least-level normalization). In the pure bang calculus (Λ!,
−→β!

), the least-level reduction →
l β!

is a normalizing strategy for →β!
.

Theorem 32 means not only that if T is weakly β!-normalizing then T can
reach its normal form by just performing least-level steps, but also that performing
whatever least-level steps eventually leads to the normal form, if any.

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 221

Pure CbV and CbN λ-calculi. By forth-and-back translation (Theorem 26) the
least-level factorization and normalization results for the pure bang calculus
immediately transfers to the (pure) CbN and CbV settings.

Theorem 33 (CbV and CbN least-level normalization).

– CbN: In (Λ,→β), →
l β is a normalizing strategy for →β.

– CbV: In (Λ,→βv), →
l βv is a normalizing strategy for →βv .

6.3 Least-level Factorization, Modularly

Least-level factorization of →β!
(Theorem 28) can be used to prove factorization

for a more complex calculus. Indeed, a simple and modular test establishes
least-level factorization of a reduction →β!

∪ →ρ (→ρ is a reduction added to
→β!

), by adapting a similar result in [3]. The test relies on the fact that we have
already proved Theorem 28, and it simplifies Lemma 8: the proof of the two
linear swaps of Lemma 8 is reduced to a single, easier check, which only involves
the rule 7→ρ. As usual, the least level in →

l β!
and →

l ρ is defined with respect to

the set R = Rβ!
∪Rρ of redexes. An example of the use of this test is in Section 7.

Proposition 34 (Modular test for least-level factorization). Let →ρ be
the contextual closure of a rule 7→ρ, and assume that →=→β!

∪ →ρ has a good
least-level in Λ!O. Then → factorizes via →

l
=→

l β!
∪ →

l ρ if the following hold:

1. (least-level factorization of →ρ) →∗ρ ⊆ →l ρ
∗ · →¬l ρ

∗;

2. (substitutivity of 7→ρ) R 7→ρ R
′ implies R{T/x} 7→ρ R

′{T/x};
3. (root linear swap) →¬l β!

· 7→ρ ⊆ 7→ρ · →∗β!
.

7 Case study: non-deterministic λ-calculi

To show how to use our framework, we apply the tools we have developed on our
running example (see Examples 1 and 9). We extend the bang calculus with a non-
deterministic binary operator ⊕, that is, (Λ!⊕,→β!⊕) where →β!⊕=→β!

∪ →⊕,
and →⊕ is the contextual closure of the (non-deterministic) rules:

⊕(T, S) 7→⊕ T ⊕(T, S) 7→⊕ S.

First step: non-deterministic bang calculus. We analyze Λ!⊕. We use our modular
test to prove least-level factorization for Λ!⊕: if T →∗β!⊕ U then T →

l β!⊕
∗ · →¬l β!⊕

∗

U . By Lemma 4, an immediate consequence of the factorization result is that the
least-level strategy is complete: if U is normal, T →∗β!⊕ U implies T →

l β⊕
∗ U .

Second step: CbN and CbV non-deterministic calculi. By translation, we have for
free, that the analogous results hold in Λcbn

⊕ and Λcbv
⊕ , as defined in Example 9.

So, least-level factorization holds for both calculi, and moreover

– CbN completeness : in Λcbn
⊕ , if u is normal, t→∗β⊕ u implies t→

l β⊕
∗ u.

– CbV completeness : in Λcbv
⊕ , if u is normal, t→∗βv⊕ u implies t→

l βv⊕
∗ u.

222 C. Faggian and G. Guerrieri

What do we really need to prove? The only result we need to prove is least-
level factorization of →β!⊕. Completeness then follows by Lemma 4 and the
translations will automatically take care of transferring the results.

To prove factorization of →β!⊕, most of the work is done, since least-level
factorization of →β!

is already established; we then use our test (Proposition 34)
to extend →β!

with →⊕. The only ingredients we need are substitutivity of 7→⊕
(which is an obvious property), and the following easy lemma.

Lemma 35 (Roots). Let ρ ∈ {β!,⊕}. If T →¬l ρ R 7→⊕ S then T 7→⊕ · →=
ρ S.

Theorem 36 (Least-level factorization in non-deterministic calculi).

1. In (Λ!⊕,−→), Fact(→
l
,→¬l) holds for →=→⊕ ∪ →β!

.

2. Least-level factorization holds in (Λcbn
⊕ ,→⊕ ∪ →β), and in (Λcbv

⊕ ,→⊕ ∪ →βv).

Proof. 1. It is enough to verify the hypotheses of Proposition 34, via Lemma 35.
2. It follows from Theorem 26 and Theorem 36.1. ut

Completeness is the best that can be achieved in these calculi, because of the
true non-determinism of →⊕ and hence of least-level reduction and of any other
complete strategy for −→. For instance, in Λcbn

⊕ there is no normalizing strategy
for ⊕(x, δδ) in the sense of Definition 2, since x←

l⊕ ⊕(x, δδ)→
l ⊕ δδ →l β

8 Conclusions and Related Work

Combining translations (Theorem 26), least-level factorization for →β!
(Theo-

rem 28), and modularity (Proposition 34), gives us a powerful method to analyze
factorization in various λ-calculi that extend the pure CbN and CbV calculi. The
main novelty is transferring the results from a calculus to another via translations.

Related Work. Many calculi inspired by linear logic subsume CbN and CbV, such
as [5,6,29,24] (other than the ones already cited). We chose the bang calculus for
its simplicity, which eases the analysis of the CbN and CbV translations.

To study CbN and CbV in a uniform way, an approach orthogonal to ours
is given by Ronchi della Rocca and Paolini’s parametric λ-calculus [28]. It is a
meta-calculus, where the reduction rule is parametric with respect to a subset
of terms (called values) with suitable properties. Different choices for the set
of values define different calculi—that is, different reductions. This allows for a
uniform presentation of proof arguments, such as the proof of standardization,
which is actually a meta-proof that can be instantiated in both CbN and CbV.

Least-level reduction is studied for calculi based on linear-logic in [34,1] and
for linear logic proof-nets in [8,26]. It is studied for pure CbN λ-calculus in [2].

Acknowledgments. The authors thank Beniamino Accattoli for insightful com-
ments and discussions. This work was partially supported by EPSRC Project
EP/R029121/1 Typed Lambda-Calculi with Sharing and Unsharing.

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 223

References

1. Accattoli, B.: An Abstract Factorization Theorem for Explicit Substitutions. In:
23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 15, pp. 6–21. Schloss
Dagstuhl (2012). https://doi.org/10.4230/LIPIcs.RTA.2012.6

2. Accattoli, B., Faggian, C., Guerrieri, G.: Factorization and normalization, essentially.
In: Programming Languages and Systems - 17th Asian Symposium, APLAS 2019.
Lecture Notes in Computer Science, vol. 11893, pp. 159–180. Springer (2019).
https://doi.org/10.1007/978-3-030-34175-6 9

3. Accattoli, B., Faggian, C., Guerrieri, G.: Factorize factorization. In: 29th EACSL
Annual Conference on Computer Science Logic, CSL 2021. LIPIcs, vol. 183, pp.
6:1–6:25. Schloss-Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.6

4. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, Studies in
Logic and the Foundations of Mathematics, vol. 103. North Holland (1984)

5. Benton, P.N., Bierman, G.M., de Paiva, V., Hyland, M.: A term calculus for
intuitionistic linear logic. In: International Conference on Typed Lambda Calculi
and Applications, TLCA ’93. Lecture Notes in Computer Science, vol. 664, pp.
75–90. Springer (1993). https://doi.org/10.1007/BFb0037099

6. Benton, P.N., Wadler, P.: Linear logic, monads and the lambda calcu-
lus. In: Proceedings, 11th Annual IEEE Symposium on Logic in Com-
puter Science, LICS 1996. pp. 420–431. IEEE Computer Society (1996).
https://doi.org/10.1109/LICS.1996.561458

7. Bucciarelli, A., Kesner, D., Rı́os, A., Viso, A.: The bang calculus revisited. In:
Functional and Logic Programming - 15th International Symposium, FLOPS
2020. Lecture Notes in Computer Science, vol. 12073, pp. 13–32. Springer (2020).
https://doi.org/10.1007/978-3-030-59025-3 2

8. de Carvalho, D., Pagani, M., Tortora de Falco, L.: A semantic measure of the
execution time in linear logic. Theor. Comput. Sci. 412(20), 1884–1902 (2011).
https://doi.org/10.1016/j.tcs.2010.12.017

9. Chouquet, J., Tasson, C.: Taylor expansion for Call-By-Push-Value. In: 28th EACSL
Annual Conference on Computer Science Logic (CSL 2020). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 152, pp. 16:1–16:16. Schloss Dagstuhl
(2020). https://doi.org/10.4230/LIPIcs.CSL.2020.16

10. Ehrhard, T.: Call-by-push-value from a linear logic point of view. In: Program-
ming Languages and Systems - 25th European Symposium on Programming
(ESOP 2016). Lecture Notes in Computer Science, vol. 9632, pp. 202–228 (2016).
https://doi.org/10.1007/978-3-662-49498-1 9

11. Ehrhard, T., Guerrieri, G.: The bang calculus: an untyped lambda-calculus gener-
alizing call-by-name and call-by-value. In: Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2016).
pp. 174–187. ACM (2016). https://doi.org/10.1145/2967973.2968608

12. Faggian, C., Guerrieri, G.: Factorization in call-by-name and call-by-value calculi
via linear logic (long version). CoRR abs/2101.08364 (2021), https://arxiv.org/
abs/2101.08364

13. Faggian, C., Ronchi Della Rocca, S.: Lambda calculus and probabilistic computation.
In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019.
pp. 1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785699

14. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987).
https://doi.org/10.1016/0304-3975(87)90045-4

https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.4230/LIPIcs.CSL.2021.6
https://doi.org/10.1007/BFb0037099
https://doi.org/10.1109/LICS.1996.561458
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.4230/LIPIcs.CSL.2020.16
https://doi.org/10.1007/978-3-662-49498-1_9
https://doi.org/10.1145/2967973.2968608
https://arxiv.org/abs/2101.08364
https://arxiv.org/abs/2101.08364
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1016/0304-3975(87)90045-4

224 C. Faggian and G. Guerrieri

15. Guerrieri, G., Manzonetto, G.: The bang calculus and the two Girard’s translations.
In: Proceedings Joint International Workshop on Linearity & Trends in Linear
Logic and Applications (Linearity-TLLA 2018). EPTCS, vol. 292, pp. 15–30 (2019).
https://doi.org/10.4204/EPTCS.292.2

16. Guerrieri, G., Olimpieri, F.: Categorifying non-idempotent intersection
types. In: 29th EACSL Annual Conference on Computer Science Logic,
CSL 2021. LIPIcs, vol. 183, pp. 25:1–25:24. Schloss Dagstuhl (2021).
https://doi.org/10.4230/LIPIcs.CSL.2021.25

17. Hindley, J.R.: The Church-Rosser Property and a Result in Combinatory Logic.
Ph.D. thesis, University of Newcastle-upon-Tyne (1964)

18. Hindley, J.R., Seldin, J.P.: Introduction to Combinators and Lambda-Calculus.
Cambridge University Press (1986)

19. Hirokawa, N., Middeldorp, A., Moser, G.: Leftmost Outermost Revisited. In: 26th
International Conference on Rewriting Techniques and Applications (RTA 2015).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 36, pp. 209–222.
Schloss Dagstuhl (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.209

20. Levy, P.B.: Call-by-push-value: A subsuming paradigm. In: Typed Lambda Cal-
culi and Applications, 4th International Conference (TLCA’99). Lecture Notes in
Computer Science, vol. 1581, pp. 228–242 (1999). https://doi.org/10.1007/3-540-
48959-2 17

21. Levy, P.B.: Call-by-push-value: Decomposing call-by-value and call-by-name. High.
Order Symb. Comput. 19(4), 377–414 (2006). https://doi.org/10.1007/s10990-006-
0480-6

22. de’ Liguoro, U.: Non-deterministic untyped λ-calculus. A study about explicit non
determinism in higher-order functional calculi. Ph.D. thesis, Università di Roma
La Sapienza (1991), http://www.di.unito.it/∼deligu/papers/UdLTesi.pdf

23. de’ Liguoro, U., Piperno, A.: Non deterministic extensions of
untyped lambda-calculus. Inf. Comput. 122(2), 149–177 (1995).
https://doi.org/10.1006/inco.1995.1145

24. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. Theor. Comput. Sci. 228(1-2), 175–210
(1999). https://doi.org/10.1016/S0304-3975(98)00358-2

25. Newman, M.: On theories with a combinatorial definition of equivalence. Annals of
Mathematics 43(2) (1942)

26. Pagani, M., Tranquilli, P.: The conservation theorem for differ-
ential nets. Math. Struct. Comput. Sci. 27(6), 939–992 (2017).
https://doi.org/10.1017/S0960129515000456

27. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci. 1(2), 125–159 (1975). https://doi.org/10.1016/0304-3975(75)90017-1

28. Ronchi Della Rocca, S., Paolini, L.: The Parametric Lambda Calculus - A Meta-
model for Computation. Texts in Theoretical Computer Science. An EATCS Series,
Springer (2004)

29. Ronchi Della Rocca, S., Roversi, L.: Lambda calculus and intuitionistic linear logic.
Stud Logica 59(3), 417–448 (1997). https://doi.org/10.1023/A:1005092630115

30. Santo, J.E., Pinto, L., Uustalu, T.: Modal embeddings and calling paradigms.
In: 4th International Conference on Formal Structures for Computation and De-
duction, FSCD 2019. LIPIcs, vol. 131, pp. 18:1–18:20. Schloss Dagstuhl (2019).
https://doi.org/10.4230/LIPIcs.FSCD.2019.18

31. Simpson, A.K.: Reduction in a linear lambda-calculus with applications to op-
erational semantics. In: Term Rewriting and Applications, 16th International

https://doi.org/10.4204/EPTCS.292.2
https://doi.org/10.4230/LIPIcs.CSL.2021.25
https://doi.org/10.4230/LIPIcs.RTA.2015.209
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1007/s10990-006-0480-6
http://www.di.unito.it/~deligu/papers/UdLTesi.pdf
https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1016/S0304-3975(98)00358-2
https://doi.org/10.1017/S0960129515000456
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1023/A:1005092630115
https://doi.org/10.4230/LIPIcs.FSCD.2019.18

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic 225

Conference (RTA 2005). Lecture Notes in Computer Science, vol. 3467, pp. 219–234
(2005). https://doi.org/10.1007/978-3-540-32033-3 17

32. Takahashi, M.: Parallel reductions in lambda-calculus. Inf. Comput. 118(1), 120–127
(1995). https://doi.org/10.1006/inco.1995.1057

33. Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

34. Terui, K.: Light affine lambda calculus and polynomial time strong
normalization. Archive for Mathematical Logic 46(3-4), 253–280 (2007).
https://doi.org/10.1007/s00153-007-0042-6

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-32033-3_17
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1007/s00153-007-0042-6
http://creativecommons.org/licenses/by/4.0/

	Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic
	1 Introduction
	2 Background in Abstract Rewriting
	3 λ-calculi: CbN, CbV, and bang
	3.1 Call-by-Name and Call-by-Value λ-calculi
	3.2 Bang calculi
	3.3 CbN and CbV translations into the bang calculus

	4 The least-level strategy
	4.1 Least-level reduction in bang calculi
	4.2 Least-level for a bang calculus: examples.
	4.3 Least-level for CbN and CbV λ-calculi

	5 Embedding of CbN and CbV by level
	6 Least-level factorization via bang calculus
	6.1 Factorization of →β! in a bang calculus
	6.2 Pure calculi and least-level normalization
	6.3 Least-level Factorization, Modularly

	7 Case study: non-deterministic λ-calculi
	8 Conclusions and Related Work
	References

