Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1327))

Abstract

Biological sex and psychosocial gender both play a role in many disease outcomes, and the novel coronavirus disease (COVID-19) is no different. Clinical observations in COVID-19 patient data delineate clear disparities between males and females, indicating males are at a higher risk for poorer disease outcomes. Although we are yet to understand the sex and gender-based disparities specific to COVID-19, there is evidence for sex-based differences in the endocrine, immune and renin–angiotensin system, all systems implicated in COVID-19 outcomes. Such disparities are largely thought to be driven by sex chromosomes and modulating sex hormones, which are known to vary between sex, and across the reproductive lifespan. Understanding and exploiting these driving factors are critical to understanding the pathobiology of SARS-CoV-2 virus and may lead to the development of novel therapies and increase the efficacy of preventative vaccine strategies currently under development. This chapter focuses on the endocrine, immune and renin–angiotensin system and genetic sex-based differences that could account for the meaningful differences observed in the outcomes of the SARS-CoV-2 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2020) WHO COVID-19 dashboard. https://covid19.who.int/. Accessed 12 Oct 2020

  2. Marazuela M, Giustina A, Puig-Domingo M (2020) Endocrine and metabolic aspects of the COVID-19 pandemic. Rev Endocr Metab Disord 21(4):495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coronavirus symptoms: frequently asked questions. Johns Hopkins Medicine (2020) https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/coronavirus-symptoms-frequently. Accessed 12 Oct 2020

  4. Vakili S, Savardashtaki A, Jamalnia S, Tabrizi R, Nematollahi MH, Jafarinia M et al (2020) Laboratory findings of COVID-19 infection are conflicting in different age groups and pregnant women: a literature review. Arch Med Res 51(7):603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cevik M, Bamford CGG, Ho A (2020) COVID-19 pandemic – a focused review for clinicians. Clin Microbiol Infect 26(7):842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G (2020) Real estimates of mortality following COVID-19 infection. Lancet Infect Dis 20(7):773. https://doi.org/10.1016/s1473-3099(20)30195-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. ORF6 protein (2020) Severe acute respiratory syndrome coronavirus 2. https://www.ncbi.nlm.nih.gov/gene/43740572. Accessed 12 Oct

  8. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD (2020) Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med 382(17):1653–1659

    Article  CAS  PubMed  Google Scholar 

  9. Zou X, Chen K, Zou J, Han P, Hao J, Han Z (2020) Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 14(2):185–192

    Article  PubMed  Google Scholar 

  10. Patel AB, Verma A (2020) COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence? JAMA 323(18):1769–1770

    CAS  PubMed  Google Scholar 

  11. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 46(4):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muniyappa R, Gubbi S (2020) COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 318(5):E736–E741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P et al (2020) Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med:1–8. https://doi.org/10.1007/s42399-020-00363-4. Online ahead of print

  14. Wenham C, Smith J, Morgan R, Gender, Group C-W (2020) COVID-19: the gendered impacts of the outbreak. Lancet 395(10227):846–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. The Sex, Gender and Covid-19 Project (2020) https://globalhealth5050.org/the-sex-gender-and-covid-19-project/. Accessed 12 Oct

  16. Lee JH, Kim YC, Cho SH, Lee J, You SC, Song YG et al (2020) Effect of sex hormones on coronavirus disease 2019: an analysis of 5,061 laboratory-confirmed cases in South Korea. Menopause. https://doi.org/10.1097/GME.0000000000001657. Online ahead of print

  17. Galbadage T, Peterson BM, Awada J, Buck AS, Ramirez DA, Wilson J et al (2020) Systematic review and meta-analysis of sex-specific COVID-19 clinical outcomes. Front Med (Lausanne) 7:348. https://doi.org/10.3389/fmed.2020.00348

    Article  Google Scholar 

  18. Abate BB, Kassie AM, Kassaw MW, Aragie TG, Masresha SA (2020) Sex difference in coronavirus disease (COVID-19): a systematic review and meta-analysis. BMJ Open 10(10):e040129. https://doi.org/10.1136/bmjopen-2020-040129

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shastri A, Wheat J, Agrawal S, Chaterjee N, Pradhan K, Goldfinger M et al (2020) Delayed clearance of SARS-CoV2 in male compared to female patients: high ACE2 expression in testes suggests possible existence of gender-specific viral reservoirs. medRxiv. https://doi.org/10.1101/2020.04.16.20060566

  20. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S (2017) Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J Immunol 198(10):4046–4053

    Article  CAS  PubMed  Google Scholar 

  22. Ding T, Zhang J, Wang T, Cui P, Chen Z, Jiang J et al (2020) Potential influence of menstrual status and sex hormones on female SARS-CoV-2 infection: a cross-sectional study from multicentre in Wuhan, China. Clin Infect Dis:ciaa1022. https://doi.org/10.1093/cid/ciaa1022. Online ahead of print

  23. Ortona E, Pierdominici M, Rider V (2019) Editorial: sex hormones and gender differences in immune responses. Front Immunol 10(1076). https://doi.org/10.3389/fimmu.2019.01076

  24. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X et al (2020) COVID-19 infection: the perspectives on immune responses. Cell Death Differ 27(5):1451–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N et al (2020) Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27(6):992–1000.e1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8(4):420–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roth O, Solbakken MH, Tørresen OK, Bayer T, Matschiner M, Baalsrud HT et al (2020) Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Proc Natl Acad Sci U S A 117(17):9431–9439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rainville JR, Tsyglakova M, Hodes GE (2018) Deciphering sex differences in the immune system and depression. Front Neuroendocrinol 50:67–90

    Article  CAS  PubMed  Google Scholar 

  29. Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW (2011) Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118(22):5918–5927

    Article  CAS  PubMed  Google Scholar 

  30. Flanagan KL, Fink AL, Plebanski M, Klein SL (2017) Sex and gender differences in the outcomes of vaccination over the life course. Annu Rev Cell Dev Biol 33(1):577–599

    Article  CAS  PubMed  Google Scholar 

  31. Berger A (2000) Th1 and Th2 responses: what are they? BMJ 321(7258):424. https://doi.org/10.1136/bmj.321.7258.424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85(1):9–18; quiz 18, 21. https://doi.org/10.1016/s1081-1206(10)62426-x

    Article  CAS  PubMed  Google Scholar 

  33. Infante-Duarte C, Kamradt T (1999) Th1/Th2 balance in infection. Springer Semin Immunopathol 21(3):317–338

    Article  CAS  PubMed  Google Scholar 

  34. Girón-González JA, Moral FJ, Elvira J, García-Gil D, Guerrero F, Gavilán I et al (2000) Consistent production of a higher TH1:TH2 cytokine ratio by stimulated T cells in men compared with women. Eur J Endocrinol 143(1):31–36

    Article  PubMed  Google Scholar 

  35. Meester I, Manilla-Muñoz E, León-Cachón RBR, Paniagua-Frausto GA, Carrión-Alvarez D, Ruiz-Rodríguez CO et al (2020) SeXY chromosomes and the immune system: reflections after a comparative study. Biol Sex Differ 11(1):3. https://doi.org/10.1186/s13293-019-0278-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanda N, Tamaki K (1999) Estrogen enhances immunoglobulin production by human PBMCs. J Allergy Clin Immunol 103(2 Pt 1):282–288

    Article  CAS  PubMed  Google Scholar 

  37. Piccinni MP, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, Sampognaro S et al (1995) Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol 155(1):128–133

    CAS  PubMed  Google Scholar 

  38. Arruvito L, Giulianelli S, Flores AC, Paladino N, Barboza M, Lanari C et al (2008) NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J Immunol 180(8):5746–5753

    Article  CAS  PubMed  Google Scholar 

  39. Márquez EJ, Chung CH, Marches R, Rossi RJ, Nehar-Belaid D, Eroglu A et al (2020) Sexual-dimorphism in human immune system aging. Nat Commun 11(1):751. https://doi.org/10.1038/s41467-020-14396-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vom Steeg LG, Klein SL (2019) Sex and sex steroids impact influenza pathogenesis across the life course. Semin Immunol 41(2):189–194. https://doi.org/10.1007/s00281-018-0718-5

    Article  CAS  Google Scholar 

  41. Voigt EA, Ovsyannikova IG, Kennedy RB, Grill DE, Goergen KM, Schaid DJ et al (2019) Sex differences in older adults’ immune responses to seasonal influenza vaccination. Front Immunol 10:180–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salciccia S, Del Giudice F, Gentile V, Mastroianni CM, Pasculli P, Di Lascio G et al (2020) Interplay between male testosterone levels and the risk for subsequent invasive respiratory assistance among COVID-19 patients at hospital admission. Endocrine 70(2):206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mauvais-Jarvis F, Klein SL, Levin ER (2020) Estradiol, progesterone, immunomodulation, and COVID-19 outcomes. Endocrinology 161(9). https://doi.org/10.1210/endocr/bqaa127

  44. Fish EN (2008) The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 8(9):737–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638

    Article  CAS  PubMed  Google Scholar 

  46. Giefing-Kröll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B (2015) How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14(3):309–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fink AL, Klein SL (2015) Sex and gender impact immune responses to vaccines among the elderly. Physiology 30(6):408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumru S, Godekmerdan A, Yılmaz B (2004) Immune effects of surgical menopause and estrogen replacement therapy in peri-menopausal women. J Reprod Immunol 63(1):31–38

    Article  CAS  PubMed  Google Scholar 

  49. Gameiro C, Romao F (2010) Changes in the immune system during menopause and aging. Front Biosci (Elite Ed) 2:1299–1303

    Article  Google Scholar 

  50. Abdi F, Mobedi H, Mosaffa N, Dolatian M, Ramezani Tehrani F (2016) Effects of hormone replacement therapy on immunological factors in the postmenopausal period. Climacteric 19(3):234–239

    Article  CAS  PubMed  Google Scholar 

  51. Caruso C, Accardi G, Virruso C, Candore G (2013) Sex, gender and immunosenescence: a key to understand the different lifespan between men and women? Immun Ageing 10(1):20–20

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sivro A, Lajoie J, Kimani J, Jaoko W, Plummer FA, Fowke K et al (2013) Age and menopause affect the expression of specific cytokines/chemokines in plasma and cervical lavage samples from female sex workers in Nairobi, Kenya. Immun Ageing 10(1):42. https://doi.org/10.1186/1742-4933-10-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Majdic G (2020) Could sex/gender differences in ACE2 expression in the lungs contribute to the large gender disparity in the morbidity and mortality of patients infected with the SARS-CoV-2 virus? Front Cell Infect Microbiol 10:327. https://doi.org/10.3389/fcimb.2020.00327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duffy SJ, Biegelsen ES, Eberhardt RT, Kahn DF, Kingwell BA, Vita JA (2005) Low-renin hypertension with relative aldosterone excess is associated with impaired NO-mediated vasodilation. Hypertension 46(4):707–713

    Article  CAS  PubMed  Google Scholar 

  55. Keidar S, Strizevsky A, Raz A, Gamliel-Lazarovich A (2007) ACE2 activity is increased in monocyte-derived macrophages from prehypertensive subjects. Nephrol Dial Transplant 22(2):597–601

    Article  CAS  PubMed  Google Scholar 

  56. Reich HN, Oudit GY, Penninger JM, Scholey JW, Herzenberg AM (2008) Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int 74(12):1610–1616

    Article  CAS  PubMed  Google Scholar 

  57. Williams B, Zhang Y (2020) Hypertension, renin-angiotensin-aldosterone system inhibition, and COVID-19. Lancet 395(10238):1671–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alexandre J, Cracowski JL, Richard V, Bouhanick B, Drugs, COVID-19’ working group of the French Society of Pharmacology, Therapeutics (2020) Renin-angiotensin-aldosterone system and COVID-19 infection. Ann Endocrinol 81(2–3):63–67

    Article  Google Scholar 

  59. Flacco ME, Acuti Martellucci C, Bravi F, Parruti G, Cappadona R et al (2020) Treatment with ACE inhibitors or ARBs and risk of severe/lethal COVID-19: a meta-analysis. Heart 106(19):1519–1524

    Article  CAS  PubMed  Google Scholar 

  60. Komukai K, Mochizuki S, Yoshimura M (2010) Gender and the renin–angiotensin–aldosterone system. Fundam Clin Pharmacol 24(6):687–698

    Article  CAS  PubMed  Google Scholar 

  61. Cohall DH, Scantlebury-Manning T, James S, Hall K, Ferrario CM (2015) Renin-angiotensin-aldosterone system gender differences in an Afro-Caribbean population. J Renin-Angiotensin-Aldosterone Syst 16(3):539–546

    Article  CAS  PubMed  Google Scholar 

  62. Toering TJ, Gant CM, Visser FW, Graaf AMVD, Laverman GD et al (2018) Sex differences in renin-angiotensin-aldosterone system affect extracellular volume in healthy subjects. Am J Physiol Ren Physiol 314(5):F873–F878

    Article  CAS  Google Scholar 

  63. Reyes-Engel A, Morcillo L, Aranda FJ, Ruiz M, Gaitan MJ, Mayor-Olea A et al (2006) Influence of gender and genetic variability on plasma angiotensin peptides. J Renin-Angiotensin-Aldosterone Syst 7(2):92–97

    Article  CAS  PubMed  Google Scholar 

  64. Bukowska A, Spiller L, Wolke C, Lendeckel U, Weinert S, Hoffmann J et al (2017) Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Exp Biol Med (Maywood) 242(14):1412–1423

    Article  CAS  Google Scholar 

  65. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE et al (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417(6891):822–828

    Article  CAS  PubMed  Google Scholar 

  66. Chappell MC, Yamaleyeva LM, Westwood BM (2006) Estrogen and salt sensitivity in the female mRen(2). Lewis rat. Am J Phys Regul Integr Comp Phys 291(5):R1557–R1563

    CAS  Google Scholar 

  67. Pendergrass KD, Pirro NT, Westwood BM, Ferrario CM, Brosnihan KB, Chappell MC (2008) Sex differences in circulating and renal angiotensins of hypertensive mRen(2). Lewis but not normotensive Lewis rats. Am J Physiol Heart Circ Physiol 295(1):H10–H20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brosnihan KB, Li P, Ganten D, Ferrario CM (1997) Estrogen protects transgenic hypertensive rats by shifting the vasoconstrictor-vasodilator balance of RAS. Am J Phys 273(6):R1908–R1915

    Article  CAS  Google Scholar 

  69. Lu X, Zhang L, Du H, Zhang J, Li YY, Chinese Pediatric Novel Coronavirus Study T (2020) SARS-CoV-2 infection in children. N Engl J Med 382(17):1663–1665

    Article  PubMed  Google Scholar 

  70. Hofmann H, Geier M, Marzi A, Krumbiegel M, Peipp M, Fey GH et al (2004) Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319(4):1216–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Datta PK, Liu F, Fischer T, Rappaport J, Qin X (2020) SARS-CoV-2 pandemic and research gaps: understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 10(16):7448–7464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wei X, Xiao YT, Wang J, Chen R, Zhang W, Yang Y et al (2020) Sex differences in severity and mortality among patients with covid-19: evidence from pooled literature analysis and insights from integrated bioinformatic analysis (Preprint). arXiv. arXiv:200313547v1

    Google Scholar 

  73. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT et al (2020) ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis 222(4):556–563

    Article  CAS  PubMed  Google Scholar 

  74. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275(43):33238–33243

    Article  CAS  PubMed  Google Scholar 

  75. Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD et al (2014) The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov 4(11):1310–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cornish EF, Filipovic I, Åsenius F, Williams DJ, McDonnell T (2020) Innate immune responses to acute viral infection during pregnancy. Front Immunol 11(2404). https://doi.org/10.3389/fimmu.2020.572567

  77. Qiao J (2020) What are the risks of COVID-19 infection in pregnant women? Lancet 395(10226):760–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wong SF, Chow KM, Leung TN, Ng WF, Ng TK, Shek CC et al (2004) Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am J Obstet Gynecol 191(1):292–297

    Article  PubMed  PubMed Central  Google Scholar 

  79. Savasi VM, Parisi F, Patanè L, Ferrazzi E, Frigerio L, Pellegrino A et al (2020) Clinical findings and disease severity in hospitalized pregnant women with coronavirus disease 2019 (COVID-19). Obstet Gynecol 136(2):252–258

    Article  CAS  PubMed  Google Scholar 

  80. Berghella V, Burd J, Anderson K, Boelig R, Roman A (2020) Decreased incidence of preterm birth during COVID-19 pandemic. Am J Obstet Gynecol MFM 2(4). https://doi.org/10.1016/j.ajogmf.2020.100258

  81. Zhong Y, Cao Y, Zhong X, Peng Z, Jiang S, Tang T et al (2020) Immunity and coagulation/fibrinolytic processes may reduce the risk of severe illness in pregnant women with COVID-19. Am J Obstet Gynecol:S0002-9378(20)31207-2. https://doi.org/10.1016/j.ajog.2020.10.032. Online ahead of print

  82. Yang R, Mei H, Zheng T, Fu Q, Zhang Y, Buka S et al (2020) Pregnant women with COVID-19 and risk of adverse birth outcomes and maternal-fetal vertical transmission: a population-based cohort study in Wuhan, China. BMC Med 18(1):330. https://doi.org/10.1186/s12916-020-01798-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khalil A, Kalafat E, Benlioglu C, O’Brien P, Morris E, Draycott T et al (2020) SARS-CoV-2 infection in pregnancy: a systematic review and meta-analysis of clinical features and pregnancy outcomes. EClinicalMedicine 25:100446. https://doi.org/10.1016/j.eclinm.2020.100446

    Article  PubMed  PubMed Central  Google Scholar 

  84. Knight M, Bunch K, Vousden N, Morris E, Simpson N, Gale C et al (2020) Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. BMJ 369:m2107. https://doi.org/10.1136/bmj.m2107

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fenizia C, Biasin M, Cetin I, Vergani P, Mileto D, Spinillo A et al (2020) Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nat Commun 11(1):5128–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lü M, Qiu L, Jia G, Guo R, Leng Q (2020) Single-cell expression profiles of ACE2 and TMPRSS2 reveals potential vertical transmission and fetus infection of SARS-CoV-2. Aging (Albany NY) 12(20):19880–19897

    Article  Google Scholar 

  87. Fu J, Zhou B, Zhang L, Balaji KS, Wei C, Liu X et al (2020) Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep 47(6):4383–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cortes Rivera M, Mastronardi C, Silva-Aldana CT, Arcos-Burgos M, Lidbury BA (2019) Myalgic encephalomyelitis/chronic fatigue syndrome: a comprehensive review. Diagnostics (Basel) 9(3). https://doi.org/10.3390/diagnostics9030091

  89. Moulton VR (2018) Sex hormones in acquired immunity and autoimmune disease. Front Immunol 9(2279). https://doi.org/10.3389/fimmu.2018.02279

  90. Gadi N, Wu SC, Spihlman AP, Moulton VR (2020) What’s sex got to do with COVID-19? Gender-based differences in the host immune response to coronaviruses. Front Immunol 11(2147). https://doi.org/10.3389/fimmu.2020.0214

Download references

Acknowledgements

This work was financially supported by departmental funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, N., Gurvich, C., Kulkarni, J. (2021). Sex Differences and COVID-19. In: Guest, P.C. (eds) Identification of Biomarkers, New Treatments, and Vaccines for COVID-19. Advances in Experimental Medicine and Biology(), vol 1327. Springer, Cham. https://doi.org/10.1007/978-3-030-71697-4_6

Download citation

Publish with us

Policies and ethics