Skip to main content

Ocular Tissue Banking

  • Chapter
  • First Online:
Essentials of Tissue and Cells Banking
  • 522 Accesses

Abstract

Disease and trauma can cause loss of corneal transparency or distortion of corneal shape, resulting in severe visual impairment. For many of these patients, the only option to restore vision is a corneal transplant where clear, healthy tissue from a deceased eye donor is used to replace the diseased tissue. Corneal transplantation is one of the oldest and most frequently performed transplant operations with at least 180 000 procedures annually worldwide. Hypothermic storage allows corneas to be kept for up to two weeks. Alternatively, organ culture at 28–37 ℃, allows up to four weeks of storage. For the great majority of transplants, a healthy corneal endothelium is required. These cells do not readily proliferate in situ and there is a gradual decline in endothelial cell density throughout life. The endothelial cell density is therefore one of the principal quality assessment criteria used by eye banks. Full-thickness corneal transplantation (penetrating keratoplasty) has in many cases been superseded by techniques where only the diseased part of the cornea is replaced. Endothelial keratoplasty, where the graft comprises endothelium supported only on its basement membrane with or without a thin layer of corneal stroma, is now the method of choice for endothelial deficiency. Stromal opacities can be treated with transplants of stromal tissue without the endothelium, retaining the patient’s own healthy endothelium. Sclera and limbal tissue are used, respectively, for reconstructive surgery and for treating ocular surface disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armitage WJ, Tullo AB, Larkin DFP (2006) The first successful full-thickness corneal transplant: a commentary on Eduard Zirm’s landmark paper of 1906. Brit J Ophthalmol 90(10):1222–1223

    Article  CAS  Google Scholar 

  2. Gain P, Jullienne R, He Z et al (2016) Global survey of corneal transplantation and eye banking. JAMA Ophthalmol 134(2):167–173

    Article  PubMed  Google Scholar 

  3. Tseng SC (2001) Amniotic membrane transplantation for ocular surface reconstruction. Biosci Rep 21(4):481–489

    Article  CAS  PubMed  Google Scholar 

  4. Maharajan VS, Shanmuganathan V, Currie A, Hopkinson A, Powell-Richards A, Dua HS (2007) Amniotic membrane transplantation for ocular surface reconstruction: indications and outcomes. Clin Exp Ophthalmol 35(2):140–147

    PubMed  Google Scholar 

  5. Kruse FE, Cursiefen C (2008) Surgery of the cornea: corneal, limbal stem cell and amniotic membrane transplantation. Dev Ophthalmol 41:159–170

    Article  CAS  PubMed  Google Scholar 

  6. Yao X, Lee M, Ying F et al (2008) Transplanted corneal graft with metastatic cholangiocarcinoma to the donor eye. Eye Contact Lens 34(6):340–342

    Article  PubMed  Google Scholar 

  7. Campanelli M, Misto R, Limongelli A, Valente MG, Cuttin MS, D’Amato TJ (2013) A donor cornea with metastatic cells from a cutaneous malignant melanoma. Cornea 32(12):1613–1616

    Article  PubMed  Google Scholar 

  8. McGeorge AJ, Vote BJ, Elliot DA, Polkinghorne PJ (2002) Papillary adenocarcinoma of the iris transmitted by corneal transplantation. Arch Ophthalmol 120(10):1379–1383

    PubMed  Google Scholar 

  9. Li JY (2016) Donors with melanoma history: the risk to ocular tissue recipients. Int J Eye Banking 4(1):1–4

    CAS  Google Scholar 

  10. Klyce SD, Beuerman RW (1998) Structure and function of the cornea. In: Kaufman HE, Barron BA, McDonald MB (eds) The cornea. Butterworth-Heinemann, Boston, pp 3–50

    Google Scholar 

  11. Maurice DM (1984) The cornea and sclera. In: Davson H (ed) The eye. Academic Press, Orlando, FL, pp 1–158

    Google Scholar 

  12. Dikstein S, Maurice DM (1972) The metabolic basis to the fluid pump in the cornea. J Physiol (Lond) 221(1):29–41

    Article  CAS  Google Scholar 

  13. Maurice DM (1972) The location of the fluid pump in the cornea. J Physiol (Lond) 221(1):43–54

    Article  CAS  Google Scholar 

  14. Armitage WJ, Dick AD, Bourne WM (2003) Predicting endothelial cell loss and long-term corneal graft survival. Invest Ophth Vis Sci 44(8):3326–3331

    Article  Google Scholar 

  15. Mohammadpour M, Masoumi A, Mirghorbani M, Shahraki K, Hashemi H (2017) Updates on corneal collagen cross-linking: indications, techniques and clinical outcomes. J Curr Ophthalmol 29(4):235–247

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alio JL, Shah S, Barraquer C, Bilgihan K, Anwar M, Melles GRJ (2002) New techniques in lamellar keratoplasty. Curr Opin Ophthalmol 13(4):224–229

    Article  PubMed  Google Scholar 

  17. Dapena I, Ham L, Netukova M, van der Wees J, Melles GR (2011) Incidence of early allograft rejection after descemet membrane endothelial keratoplasty. Cornea 30(12):1341–1345

    Article  PubMed  Google Scholar 

  18. Okumura N, Kinoshita S, Koizumi N (2014) Cell-based approach for treatment of corneal endothelial dysfunction. Cornea 33(Suppl 11):S37-41

    Article  PubMed  Google Scholar 

  19. Armitage WJ (2008) Developments in corneal preservation. In: Reinhard T, Larkin F (eds) Cornea and external eye disease. Springer, Berlin, pp 101–109

    Chapter  Google Scholar 

  20. Filatov VP (1935) Transplantation of the cornea. Arch Ophthalmol 13:321–347

    Article  Google Scholar 

  21. McCarey BE, Kaufman HE (1974) Improved corneal storage. Invest Ophthalmol 13(3):165–173

    CAS  PubMed  Google Scholar 

  22. Fuller BJ (1991) The effects of cooling on mammalian cells. In: Fuller BJ, Grout BWW (eds) Clinical applications of cryobiology. CRC Press, Boca Raton, pp 1–22

    Google Scholar 

  23. Lindstrom RL, Kaufman HE, Skelnik DL et al (1992) Optisol corneal storage medium. Am J Ophthalmol 114(3):345–356

    Article  CAS  PubMed  Google Scholar 

  24. Smith TM, Popplewell J, Nakamura T, Trousdale MD (1995) Efficacy and safety of gentamicin and streptomycin in optisol-GS, a preservation medium for donor corneas. Cornea 14(1):49–55

    CAS  PubMed  Google Scholar 

  25. Chen CH, Rama P, Chen SC, Sansoy FN (1997) Efficacy of organ preservation media enriched with nonlactate-generating substrate for maintaining tissue viability: a transplantation study. Transplantation 63(5):656–663

    Article  CAS  PubMed  Google Scholar 

  26. Serbecic N, Beutelspacher SC (2005) Anti-oxidative vitamins prevent lipid-peroxidation and apoptosis in corneal endothelial cells. Cell Tissue Res 320(3):465–475

    Article  CAS  PubMed  Google Scholar 

  27. Steinhardt RA, Alderton JM (2006) Poloxamer 188 enhances endothelial cell survival in bovine corneas in cold storage. Cornea 25(7):839–844

    Article  PubMed  Google Scholar 

  28. Summerlin WT, Miller GE, Harris JE, Good RA (1973) The organ-cultured cornea: an in vitro study. Invest Ophthalmol 12(3):176–180

    CAS  PubMed  Google Scholar 

  29. Doughman DJ, Harris JE, Mindrup E, Lindstrom RL (1982) Prolonged donor cornea preservation in organ culture: long-term clinical evaluation. Cornea 1:7–20

    Google Scholar 

  30. Sperling S (1979) Human corneal endothelium in organ culture. The influence of temperature and medium of incubation. Acta Ophthalmol 57(2):269–76

    Google Scholar 

  31. Sperling S (1978) Early morphological changes in organ cultured human corneal endothelium. Acta Ophthalmol 56(5):785–792

    Article  CAS  Google Scholar 

  32. Pels E, Schuchard Y (1983) Organ-culture preservation of human corneas. Doc Ophthalmol 56(1–2):147–153

    Article  CAS  PubMed  Google Scholar 

  33. Maas-Reijs J, Pels E, Tullo AB (1997) Eye banking in Europe 1991–1995. Acta Ophthalmol Scand 75(5):541–543

    Article  CAS  PubMed  Google Scholar 

  34. Pels E, Vrensen GF (1999) Microbial decontamination of human donor eyes with povidone-iodine: penetration, toxicity, and effectiveness. Brit J Ophthalmol 83(9):1019–1026

    Article  CAS  Google Scholar 

  35. van Luijk CM, Bruinsma M, van der Wees J, Lie JT, Ham L, Melles GR (2012) Combined chlorhexidine and PVP-I decontamination of human donor eyes prior to corneal preservation. Cell Tissue Bank 13(2):333–339

    Article  PubMed  CAS  Google Scholar 

  36. Armitage WJ, Easty DL (1997) Factors influencing the suitability of organ-cultured corneas for transplantation. Invest Ophth Vis Sci 38(1):16–24

    CAS  Google Scholar 

  37. Crewe JM, Armitage WJ (2001) Integrity of epithelium and endothelium in organ-cultured human corneas. Invest Ophth Vis Sci 42(8):1757–1761

    CAS  Google Scholar 

  38. Ehlers H, Ehlers N, Hjortdal JO (1999) Corneal transplantation with donor tissue kept in organ culture for 7 weeks. Acta Ophthalmol Scand 77(3):277–278

    Article  CAS  PubMed  Google Scholar 

  39. Thuret G, Manissolle C, Campos-Guyotat L, Guyotat D, Gain P (2005) Animal compound-free medium and poloxamer for human corneal organ culture and deswelling. Invest Ophth Vis Sci 46(3):816–822

    Article  Google Scholar 

  40. (2007) Transplant activity in the UK 2006–2007: NHS blood and transplant

    Google Scholar 

  41. Armitage WJ, Jones MN, Zambrano I et al (2014) The suitability of corneas stored by organ culture for penetrating keratoplasty and influence of donor and recipient factors on 5-year graft survival. Invest Ophth Vis Sci 55(2):784–791

    Article  Google Scholar 

  42. Pellegrini G, Golisano O, Paterna P et al (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145(4):769–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schlötzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81(3):247–264

    Article  PubMed  CAS  Google Scholar 

  44. Rama P, Bonini S, Lambiase A et al (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72(9):1478–1485

    Article  CAS  PubMed  Google Scholar 

  45. Williams KA, Brereton HM, Aggarwal R et al (1995) Use of DNA polymorphisms and the polymerase chain reaction to examine the survival of a human limbal stem cell allograft. Am J Ophthalmol 120(3):342–350

    Article  CAS  PubMed  Google Scholar 

  46. Ang LPK, Nakamura T, Inatomi T et al (2006) Autologous serum-derived cultivated oral epithelial transplants for severe ocular surface disease. Arch Ophthalmol 124(11):1543–1551

    Article  PubMed  Google Scholar 

  47. Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44(5):415–425

    Article  CAS  PubMed  Google Scholar 

  48. Ahmad S, Figueiredo F, Lako M (2006) Corneal epithelial stem cells: characterization, culture and transplantation. Regen Med 1(1):29–44

    Article  CAS  PubMed  Google Scholar 

  49. Nakamura T, Ang LPK, Rigby H et al (2006) The use of autologous serum in the development of corneal and oral epithelial equivalents in patients with Stevens-Johnson syndrome. Invest Ophth Vis Sci 47(3):909–916

    Article  Google Scholar 

  50. Chirila T, Barnard Z, Zainuddin, Harkin DG, Schwab IR, Hirst L (2008) Bombyx mori silk fibroin membranes as potential substrata for epithelial constructs used in the management of ocular surface disorders. Tissue Eng Part A 14(7):1203–11

    Google Scholar 

  51. Groeneveld-van Beek EA, Lie JT, van der Wees J, Bruinsma M, Melles GR (2013) Standardized ‘no-touch’ donor tissue preparation for DALK and DMEK: harvesting undamaged anterior and posterior transplants from the same donor cornea. Acta Ophthalmol (Oxf) 91(2):145–150

    Article  CAS  Google Scholar 

  52. Tomida D, Yamaguchi T, Ogawa A et al (2015) Effects of corneal irregular astigmatism on visual acuity after conventional and femtosecond laser-assisted descemet’s stripping automated endothelial keratoplasty. Jpn J Ophthalmol 59(4):216–222

    Article  PubMed  Google Scholar 

  53. Hjortdal J, Nielsen E, Vestergaard A, Sondergaard A (2012) Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser. Open Ophthalmol J 6:19–22

    Article  PubMed  PubMed Central  Google Scholar 

  54. Akbaba Y, Weller JM, Rossler K et al (2017) Bubble-in-the-roll” technique using the endoject DMEK injector: influence of the air bubble on endothelial cell loss. Cornea 36(12):1576–1579

    Article  PubMed  Google Scholar 

  55. Ragunathan S, Ivarsen A, Nielsen K, Hjortdal J Comparison of organ cultured precut corneas versus surgeon-cut corneas for Descemet’s stripping automated endothelial keratoplasty. Cell Tissue Bank 15(4):573–8

    Google Scholar 

  56. Heinzelmann S, Huther S, Bohringer D, Eberwein P, Reinhard T, Maier P (2014) Influence of donor characteristics on descemet membrane endothelial keratoplasty. Cornea 33(6):644–648

    Article  PubMed  Google Scholar 

  57. Williams RS, Mayko ZM, Friend DJ, Straiko MD, Clay RD, Stoeger CG Descemet membrane endothelial keratoplasty (DMEK) tissue preparation: a donor diabetes mellitus categorical risk stratification scale for assessing tissue suitability and reducing tissue loss. Cornea 35(7):927–31

    Google Scholar 

  58. van Dijk K, Liarakos VS, Parker J et al (2015) Bowman layer transplantation to reduce and stabilize progressive, advanced keratoconus. Ophthalmology 122(5):909–17

    Google Scholar 

  59. Groeneveld-van Beek EA, Parker J, Lie JT et al (2016) Donor tissue preparation for bowman layer transplantation. Cornea 35(12):1499–1502

    Article  PubMed  Google Scholar 

  60. Zhang MC, Liu X, Jin Y, Jiang DL, Wei XS, Xie HT (2015) Lamellar keratoplasty treatment of fungal corneal ulcers with a cellular porcine corneal stroma. Am J Transplant 15(4):1068–1075

    Article  PubMed  Google Scholar 

  61. Chae JJ, Choi JS, Lee JD et al (2015) Physical and biological characterization of the gamma-irradiated human cornea. Cornea 34(10):1287–1294

    Article  PubMed  Google Scholar 

  62. Tran KD, Li Y, Holiman JD et al (2018) Light scattering measurements in electron-beam sterilized corneas stored in recombinant human serum albumin. Cell Tissue Bank 19(1):19–25

    Article  CAS  PubMed  Google Scholar 

  63. Yvon C, Ramsden CM, Lane A et al (2015) Using stem cells to model diseases of the outer retina. Comput Struct Biotechnol J 13:382–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. da Cruz L, Fynes K, Georgiadis O et al (2018) Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 36(4):328–337

    Article  PubMed  CAS  Google Scholar 

  65. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. Saunders, Philadelphia

    Google Scholar 

  66. Armitage WJ (1999) Eye banking. In: Easty DL, Sparrow JM (eds) Oxford textbook of ophthalmology. Oxford University Press, Oxford, pp 1167–1171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. John Armitage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armitage, W.J. (2021). Ocular Tissue Banking. In: Galea, G., Turner, M., Zahra, S. (eds) Essentials of Tissue and Cells Banking. Springer, Cham. https://doi.org/10.1007/978-3-030-71621-9_4

Download citation

Publish with us

Policies and ethics