Skip to main content

Human Embryonic Stem Cell Banking for Clinical Applications—20 Years from Their Isolation

  • Chapter
  • First Online:
Essentials of Tissue and Cells Banking
  • 539 Accesses

Abstract

Twenty years on from the first reported isolation of pluripotent human embryonic stem cells (hESC) from in vitro fertilised preimplantation embryos, clinical evaluation of derivative cell products is ongoing. Contrary to expectations that pluripotency induction by genetic reprogramming would replace commitment to hESC source material basic and translational research and application has continued. Here we update on current clinical, translational and scientific progress and issues in human embryonic stem cell banking. These reflect transformation of an academically lead research into quality assured good manufacturing practice grade cell banking underpinning active clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Sousa PA, McRae S, Stacey G (2012) Stem cells in the development of products for regenerative medicine. In: Hay DC (ed) Regenerative medicine, stem cells and the liver. CRC Press, Boca Raton, p 77–97

    Google Scholar 

  2. De Sousa PA et al (2016) Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res 17(2):379–390

    Article  PubMed  CAS  Google Scholar 

  3. Bruce KW, Campbell JD, De Sousa P (2017) Quality assured characterization of stem cells for safety in banking for clinical application. Methods Mol Biol 1590:79–98

    Article  CAS  PubMed  Google Scholar 

  4. Fraser L et al (2018) Quality assessment and production of human cells for clinical use. Methods Mol Biol 1780:607–629

    Article  CAS  PubMed  Google Scholar 

  5. Andrews PW et al (2015) Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regen Med 10(2 Suppl):1–44

    Article  CAS  PubMed  Google Scholar 

  6. Kallur T et al (2017) Quality assurance in stem cell banking: emphasis on embryonic and induced pluripotent stem cell banking. Methods Mol Biol 1590:11–16

    Article  CAS  PubMed  Google Scholar 

  7. Stacey G (2017) Stem cell banking: a global view. Methods Mol Biol 1590:3–10

    Article  CAS  PubMed  Google Scholar 

  8. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  9. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  11. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  12. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bilic J, Izpisua Belmonte JC (2012) Concise review: induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Stem Cells 30(1): 33–41

    Google Scholar 

  14. Puri MC, Nagy A (2012) Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 30(1):10–14

    Article  CAS  PubMed  Google Scholar 

  15. Barry J et al (2015) Setting up a haplobank: issues and solutions. Curr Stem Cell Rep 1(2):110–117

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fairchild PJ et al (2016) Beneath the sword of Damocles: regenerative medicine and the shadow of immunogenicity. Regen Med 11(8):817–829

    Article  CAS  PubMed  Google Scholar 

  17. Gourraud PA et al (2012) The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells 30(2):180–186

    Article  CAS  PubMed  Google Scholar 

  18. Pappas DJ et al (2015) Proceedings: human leukocyte antigen haplo-homozygous induced pluripotent stem cell haplobank modeled after the california population: evaluating matching in a multiethnic and admixed population. Stem Cells Transl Med 4(5):413–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilmut I et al (2015) Development of a global network of induced pluripotent stem cell haplobanks. Regen Med 10(3):235–238

    Article  CAS  PubMed  Google Scholar 

  20. Ding C et al (2015) Derivation of a homozygous human androgenetic embryonic stem cell line. Stem Cells Dev 24(19):2307–2316

    Article  CAS  PubMed  Google Scholar 

  21. Mai Q et al (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17(12):1008–1019

    Article  CAS  PubMed  Google Scholar 

  22. Cheng L (2008) More new lines of human parthenogenetic embryonic stem cells. Cell Res 18(2):215–217

    Article  CAS  PubMed  Google Scholar 

  23. Qu C et al (2018) Haploid embryonic stem cells can be enriched and maintained by simple filtration. J Biol Chem 293(14):5230–5235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Revazova ES et al (2008) HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 10(1):11–24

    Article  CAS  PubMed  Google Scholar 

  25. Ma H et al (2015) Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524(7564):234–238

    Article  CAS  PubMed  Google Scholar 

  26. Tachibana M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153(6):1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brevini TA et al (2009) Cell lines derived from human parthenogenetic embryos can display aberrant centriole distribution and altered expression levels of mitotic spindle check-point transcripts. Stem Cell Rev 5(4):340–352

    Article  Google Scholar 

  28. Brevini TA et al (2012) Centrosome amplification and chromosomal instability in human and animal parthenogenetic cell lines. Stem Cell Rev 8(4):1076–1087

    Article  CAS  Google Scholar 

  29. Mai Q et al (2018) Imprinting status in two human parthenogenetic embryonic stem cell lines: analysis of 63 imprinted gene expression levels in undifferentiated and early differentiated stages. Stem Cells Dev 27(6):430–439

    Article  CAS  PubMed  Google Scholar 

  30. Zhao MT et al (2017) Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proc Natl Acad Sci U S A 114(52):E11111-e11120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sagi I et al (2016) Derivation and differentiation of haploid human embryonic stem cells. Nature 532(7597):107–111

    Article  CAS  PubMed  Google Scholar 

  32. Aach J et al (2017) Addressing the ethical issues raised by synthetic human entities with embryo-like features. Elife 6

    Google Scholar 

  33. Dasgupta I et al (2014) Patients’ attitudes toward the donation of biological materials for the derivation of induced pluripotent stem cells. Cell Stem Cell 14(1):9–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. King NM, Perrin J (2014) Ethical issues in stem cell research and therapy. Stem Cell Res Ther 5(4):85

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lomax GP, Hull SC, Isasi R (2015) The DISCUSS project: revised points to consider for the derivation of induced pluripotent stem cell lines from previously collected research specimens. Stem Cells Transl Med 4(2):123–129

    Article  PubMed  PubMed Central  Google Scholar 

  36. Isasi R et al (2014) Identifiability and privacy in pluripotent stem cell research. Cell Stem Cell 14(4):427–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimbrel EA, Lanza R (2016) Pluripotent stem cells: the last 10 years. Regen Med 11(8):831–847

    Article  CAS  PubMed  Google Scholar 

  38. Schwartz SD et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720

    Article  CAS  PubMed  Google Scholar 

  39. Schwartz SD et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516

    Article  PubMed  Google Scholar 

  40. Schwartz SD et al (2016) Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophthalmol Vis Sci 57(5): ORSFc1–ORSFc9

    Google Scholar 

  41. da Cruz L et al (2018) Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 36(4):328–337

    Article  PubMed  CAS  Google Scholar 

  42. Adil MM et al (2018) hPSC-Derived striatal cells generated using a scalable 3D hydrogel promote recovery in a huntington disease mouse model. Stem Cell Reports 10(5):1481–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guenou H et al (2009) Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet 374(9703):1745–1753

    Article  CAS  PubMed  Google Scholar 

  44. Candiello J et al (2018) 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 177:27–39

    Article  CAS  PubMed  Google Scholar 

  45. Lorvellec M et al (2017) Mouse decellularised liver scaffold improves human embryonic and induced pluripotent stem cells differentiation into hepatocyte-like cells. PLoS ONE 12(12):e0189586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rodrigues GMC et al (2017) Defined and scalable differentiation of human oligodendrocyte precursors from pluripotent stem cells in a 3D culture system. Stem Cell Rep 8(6):1770–1783

    Article  CAS  Google Scholar 

  47. Zhang W et al (2017) Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: effects of niche cell supplementation and mechanical stimulation. Acta Biomater 49:204–217

    Article  CAS  PubMed  Google Scholar 

  48. Zimmer B et al (2016) Derivation of Diverse Hormone-Releasing Pituitary Cells from Human Pluripotent Stem Cells. Stem Cell Rep 6(6):858–872

    Article  CAS  Google Scholar 

  49. Xia Y et al (2014) The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor-like cells. Nat Protoc 9(11):2693–2704

    Article  PubMed  Google Scholar 

  50. Mardpour S et al (2017) Extracellular vesicles derived from human embryonic stem cell-MSCs ameliorate cirrhosis in thioacetamide-induced chronic liver injury. J Cell Physiol

    Google Scholar 

  51. Peng Y et al (2018) Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal Muller cells. PLoS ONE 13(3):e0194004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Crook JM et al (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1(5):490–494

    Article  CAS  PubMed  Google Scholar 

  53. Tannenbaum SE et al (2012) Derivation of xeno-free and GMP-grade human embryonic stem cells–platforms for future clinical applications. PLoS ONE 7(6):e35325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Sousa PA et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe021-A (RC-17). Stem Cell Res 17(1):1–5

    Article  PubMed  CAS  Google Scholar 

  55. De Sousa PA et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9). Stem Cell Res 17(1):36–41

    Article  PubMed  CAS  Google Scholar 

  56. De Sousa PA et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe015-A (RC-11). Stem Cell Res 17(1):42–48

    Article  PubMed  CAS  Google Scholar 

  57. De Sousa PA et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe020-a (RC-16). Stem Cell Res 16(3):790–794

    Article  PubMed  CAS  Google Scholar 

  58. De Sousa PA et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe016-A (RC-12). Stem Cell Res 16(3):770–775

    Article  PubMed  CAS  Google Scholar 

  59. De Sousa PA et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe018-A (RC-14). Stem Cell Res 16(3):761–765

    Article  PubMed  CAS  Google Scholar 

  60. De Sousa PA et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe017-A (RC-13). Stem Cell Res 16(3):756–760

    Article  PubMed  CAS  Google Scholar 

  61. De Sousa PA et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe019-A (RC-15). Stem Cell Res 16(3):751–755

    Article  PubMed  CAS  Google Scholar 

  62. Devito L et al (2016) Generation of KCL034 clinical grade human embryonic stem cell line. Stem Cell Res 16(1):184–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Devito L et al (2016) Generation of KCL033 clinical grade human embryonic stem cell line. Stem Cell Res 16(2):296–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Devito L et al (2016) Generation of KCL039 clinical grade human embryonic stem cell line. Stem Cell Res 16(1):170–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jacquet L et al (2016) Generation of KCL031 clinical grade human embryonic stem cell line. Stem Cell Res 16(1):195–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jacquet L et al (2016) Generation of KCL040 clinical grade human embryonic stem cell line. Stem Cell Res 16(1):173–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miere C et al (2016) Generation of KCL037 clinical grade human embryonic stem cell line. Stem Cell Res 16(1):149–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miere C et al (2016) Generation of KCL038 clinical grade human embryonic stem cell line. Stem Cell Res 16(1):137–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miere C et al (2016) Generation of KCL032 clinical grade human embryonic stem cell line. Stem Cell Res 16(1):17–19

    Article  PubMed  PubMed Central  Google Scholar 

  70. Skottman H, Dilber MS, Hovatta O (2006) The derivation of clinical-grade human embryonic stem cell lines. FEBS Lett 580(12):2875–2878

    Article  CAS  PubMed  Google Scholar 

  71. Unger C et al (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17(R1):R48-53

    Article  CAS  PubMed  Google Scholar 

  72. Ye J et al (2017) High quality clinical grade human embryonic stem cell lines derived from fresh discarded embryos. Stem Cell Res Ther 8(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  73. Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes (2009). Stem Cell Rev 5(4):301–314

    Google Scholar 

  74. Crook JM, Hei D, Stacey G (2010) The International Stem Cell Banking Initiative (ISCBI): raising standards to bank on. Vitro Cell Dev Biol Anim 46(3–4):169–172

    Article  Google Scholar 

  75. Stacey GN et al (2016) Ensuring the quality of stem cell-derived in vitro models for toxicity testing. Adv Exp Med Biol 856:259–297

    Article  CAS  PubMed  Google Scholar 

  76. Kim JH et al (2017) Report of the international stem cell banking initiative workshop activity: current hurdles and progress in seed-stock banking of human pluripotent stem cells. Stem Cells Transl Med 6(11):1956–1962

    Article  PubMed  PubMed Central  Google Scholar 

  77. Morrison M et al (2017) The European general data protection regulation: challenges and considerations for iPSC researchers and biobanks. Regen Med 12(6):693–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Luong MX et al (2011) A call for standardized naming and reporting of human ESC and iPSC lines. Cell Stem Cell 8(4):357–359

    Article  CAS  PubMed  Google Scholar 

  79. Kurtz A et al (2018) A standard nomenclature for referencing and authentication of pluripotent stem cells. Stem Cell Rep 10(1):1–6

    Article  CAS  Google Scholar 

  80. Seltmann S et al (2016) hPSCreg–the human pluripotent stem cell registry. Nucleic Acids Res 44(D1):D757–D763

    Article  CAS  PubMed  Google Scholar 

  81. De Sousa PA et al (2017) Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC)—the hot start experience. Stem Cell Res 20:105–114

    Article  PubMed  Google Scholar 

  82. Brazma A et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371

    Article  CAS  PubMed  Google Scholar 

  83. Taylor CF et al (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26(8):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sakurai K et al (2016) First proposal of minimum information about a cellular assay for regenerative medicine. Stem Cells Transl Med 5(10):1345–1361

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hanson C, Caisander G (2005) Human embryonic stem cells and chromosome stability. APMIS 113(11–12):751–755

    Article  PubMed  Google Scholar 

  86. Maitra A et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37(10):1099–1103

    Article  CAS  PubMed  Google Scholar 

  87. Imreh MP et al (2006) In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem 99(2):508–516

    Article  CAS  PubMed  Google Scholar 

  88. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2007) Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Hum Mol Genet 16(Spec No 2):R243–R251

    Google Scholar 

  89. Allegrucci C et al (2007) Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum Mol Genet 16(10):1253–1268

    Article  CAS  PubMed  Google Scholar 

  90. Kim KP et al (2007) Gene-specific vulnerability to imprinting variability in human embryonic stem cell lines. Genome Res 17(12):1731–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Minoguchi S, Iba H (2008) Instability of retroviral DNA methylation in embryonic stem cells. Stem Cells 26(5):1166–1173

    Article  CAS  PubMed  Google Scholar 

  92. Baker DE et al (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25(2):207–215

    Article  CAS  PubMed  Google Scholar 

  93. Chin MH et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5(1):111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Amps K et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29(12):1132–1144

    Article  CAS  PubMed  Google Scholar 

  95. Canham MA et al (2015) The molecular karyotype of 25 clinical-grade human embryonic stem cell lines. Sci Rep 5:17258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Garitaonandia I et al (2015) Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS ONE 10(2):e0118307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Prakash Bangalore M et al (2017) Genotoxic effects of culture media on human pluripotent stem cells. Sci Rep 7:42222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rebuzzini P et al (2016) Achilles’ heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture. Cell Mol Life Sci 73(13):2453–2466

    Article  CAS  PubMed  Google Scholar 

  99. Bai Q et al (2015) Temporal analysis of genome alterations induced by single-cell passaging in human embryonic stem cells. Stem Cells Dev 24(5):653–662

    Article  CAS  PubMed  Google Scholar 

  100. Jacobs K et al (2016) Higher-density culture in human embryonic stem cells results in DNA damage and genome instability. Stem Cell Rep 6(3):330–341

    Article  CAS  Google Scholar 

  101. Zhou D et al (2015) Trace levels of mitomycin C disrupt genomic integrity and lead to DNA damage response defect in long-term-cultured human embryonic stem cells. Arch Toxicol 89(1):33–45

    Article  CAS  PubMed  Google Scholar 

  102. Nguyen HT et al (2014) Human embryonic stem cells show low-grade microsatellite instability. Mol Hum Reprod 20(10):981–989

    Article  CAS  PubMed  Google Scholar 

  103. Jacobs K et al (2014) Low-grade chromosomal mosaicism in human somatic and embryonic stem cell populations. Nat Commun 5:4227

    Article  CAS  PubMed  Google Scholar 

  104. Lamm N et al (2016) Genomic instability in human pluripotent stem cells arises from replicative stress and chromosome condensation defects. Cell Stem Cell 18(2):253–261

    Article  CAS  PubMed  Google Scholar 

  105. Bar S et al (2017) Large-scale analysis of loss of imprinting in human pluripotent stem cells. Cell Rep 19(5):957–968

    Article  CAS  PubMed  Google Scholar 

  106. Pells S et al (2015) Novel human embryonic stem cell regulators identified by conserved and distinct CpG island methylation state. PLoS ONE 10(7):e0131102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gachet Y et al (2001) A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature 412(6844):352–355

    Article  CAS  PubMed  Google Scholar 

  108. Filion TM et al (2009) Survival responses of human embryonic stem cells to DNA damage. J Cell Physiol 220(3):586–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weissbein U, Benvenisty N, Ben-David U (2014) Genome maintenance in pluripotent stem cells. J Anim Vet Adv 12(7):153–163

    Google Scholar 

  110. Damelin M et al (2005) Decatenation checkpoint deficiency in stem and progenitor cells. Cancer Cell 8(6):479–484

    Article  CAS  PubMed  Google Scholar 

  111. Merkle FT et al (2017) Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545(7653):229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Horikawa I, Harris CC (2017) Delta133p53: a p53 isoform enriched in human pluripotent stem cells. Cell Cycle 16(18):1631–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Horikawa I et al (2017) Delta133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ 24(6):1017–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Amir H et al (2017) Spontaneous single-copy loss of TP53 in human embryonic stem cells markedly increases cell proliferation and survival. Stem Cells 35(4):872–885

    Article  CAS  PubMed  Google Scholar 

  115. Yi L et al (2012) Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res 72(21):5635–5645

    Article  CAS  PubMed  Google Scholar 

  116. Wang Q et al (2017) The p53 family coordinates Wnt and nodal inputs in mesendodermal differentiation of embryonic stem cells. Cell Stem Cell 20(1):70–86

    Article  CAS  PubMed  Google Scholar 

  117. Jain AK et al (2012) p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol 10(2):e1001268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jain AK, Barton MC (2018) p53: emerging roles in stem cells, development and beyond. Development 145(8)

    Google Scholar 

  119. Ihry RJ et al (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24(7):939–946

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. De Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Sousa, P.A. (2021). Human Embryonic Stem Cell Banking for Clinical Applications—20 Years from Their Isolation. In: Galea, G., Turner, M., Zahra, S. (eds) Essentials of Tissue and Cells Banking. Springer, Cham. https://doi.org/10.1007/978-3-030-71621-9_15

Download citation

Publish with us

Policies and ethics